CN115385694B - 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法 - Google Patents

一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法 Download PDF

Info

Publication number
CN115385694B
CN115385694B CN202211317645.9A CN202211317645A CN115385694B CN 115385694 B CN115385694 B CN 115385694B CN 202211317645 A CN202211317645 A CN 202211317645A CN 115385694 B CN115385694 B CN 115385694B
Authority
CN
China
Prior art keywords
phosphate
composite material
network structure
carbide
interpenetrating network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211317645.9A
Other languages
English (en)
Other versions
CN115385694A (zh
Inventor
孙威
湛紫章
张帅帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202211317645.9A priority Critical patent/CN115385694B/zh
Publication of CN115385694A publication Critical patent/CN115385694A/zh
Application granted granted Critical
Publication of CN115385694B publication Critical patent/CN115385694B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法。该材料包括磷酸盐相和碳化物陶瓷相,且碳化物陶瓷相与磷酸盐相之间为互穿网络结构;所述碳化物陶瓷相与磷酸盐相之间存在碳界面。该复合材料中的磷酸盐相与碳化物陶瓷相均为连续相,且呈互穿网络结构分布,两相之间通过碳界面紧密结合,大大提升了高温机械力学性能和抗侵蚀性能,拓宽了材料的应用范围,且材料的制备工艺简单,成本低廉,适合工业规模化生产。

Description

一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法
技术领域
本发明涉及一种磷酸盐材料,具体涉及一种互穿网络结构磷酸盐/碳化物复合材料,还涉及其制备方法,属于复合材料的制备技术领域。
背景技术
磷酸盐材料是由酸式磷酸或磷酸盐和金属氧化物之间的酸碱反应形成,其中金属氧化物的种类和溶液的PH值等对材料的微观结构具有至关重要的影响。磷酸盐材料不仅具备优异的力学性能和隔热性能,而且制备工艺简单、成本低和根据特定的设计制备成特定的形状。然而,磷酸盐材料由于其各组分熔点大多较低,使其无法在高温环境下长期使用。
目前,添加高熔点填料是提高其耐高温性能最常用的解决方法,例如氧化物陶瓷、硅酸盐及碳化物等。Collonetti等研究了Al2O3的添加对CBPC微观结构和性能的影响。Han等人通过在CBPC中添加Al2O3和SiC填料将耐磨性和抗氧化性能提高,使其在高温下能够稳定使用。虽然上述方法可以使CBPC的综合性能得到提高,但其耐高温性能仍局限在2000℃以下。
超高温陶瓷具有高熔点、高硬度以及在高温(2000℃以上)下具有优异的化学稳定性和机械强度,其主要包括过渡金属硼化物、碳化物和氮化物,例如ZrB2、ZrC和ZrN等。其中,硼化物是研究最为广泛的超高温陶瓷。以ZrB2为例,其在高温下具有高强度(在2573K时为200MPa)和优异的耐侵蚀/腐蚀性能,且与多种化合物如:碳化物、硅化物、氮化物及氧化物等结合后可以抑制其活性氧化,从而进一步提高其耐高温性能。
然而,以颗粒的形式将其添加到磷酸盐材料中会存在颗粒局部聚集、分散不均匀,从而使得材料整体的机械强度不足。
发明内容
针对现有磷酸盐材料存在的耐高温性能受限、稳定性较差、机械强度不足等缺陷,本发明的目的是在于提供一种互穿网络结构磷酸盐/碳化物复合材料,该材料中的磷酸盐相与碳化物陶瓷相均为连续相,且呈互穿网络结构分布,两相之间结合紧密,具有优异的高温力学性能以及抗热震性能和抗侵蚀性能。
本发明的另一个目的是在于提供一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,该方法工艺简单,成本低廉,适合工业规模化生产。
为了实现上述目的,本发明提供了一种互穿网络结构磷酸盐/碳化物复合材料,其包括磷酸盐相和碳化物陶瓷相,且碳化物陶瓷相与磷酸盐相为互穿网络结构;所述碳化物陶瓷相与所述磷酸盐相之间存在碳界面。该复合材料中的磷酸盐相与碳化物陶瓷相均为连续相,且呈互穿网络结构分布,两相之间通过碳界面紧密结合,大大提升了高温机械力学性能和抗侵蚀性能。
作为一个优选的方案,所述磷酸盐相、碳界面与碳化物陶瓷相的质量比为30~33:1~2:65~70。在该配比条件下才能获得综合性能较好的复合材料。
作为一个优选的方案,所述磷酸盐相包括磷酸二氢铝、磷酸氢锆、磷酸铝铬中至少一种磷酸盐。
作为一个优选的方案,所述碳化物为难熔金属碳化物。所述难熔金属碳化物包括碳化铪、碳化锆等。
作为一个优选的方案,所述碳界面由树脂热解碳构成。树脂碳界面层能够将磷酸盐相与碳化物陶瓷相紧密结合,从而使得互穿网络结构更加稳定。
作为一个优选的方案,所述互穿网络结构磷酸盐/碳化物复合材料的孔隙率≤6%,显气孔率≤1%。所述复合材料的密度为2.0~2.5g/cm3
本发明还提供了一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,该该方法是将磷酸盐溶液与碱性金属氧化物混合形成溶胶,所述溶胶与酚醛树脂混合,得到磷酸盐坯体;将所述磷酸盐坯体先进行热解处理,再进行化学气相沉积碳化物,即得复合材料。
本发明首先利用磷酸盐基体的常温固化散热的特性与酚醛树脂结合,散发的热可以一定程度上促使酚醛树脂的固化,以达到两者同时常温固化的目的,得到的含酚醛树脂的磷酸盐生坯密度低,强度较高,且可以长期储存,同时,酚醛树脂的加入会使磷酸盐材料的固化速度变慢,为金属氧化物与磷酸盐溶液的反应争取了更多时间,有更多的磷酸盐相形成,让整体磷酸盐的力学性能较为理想;其次,添加酚醛树脂后形成的磷酸盐坯体进行热处理时,酚醛树脂彻底分解,产生的气体挥发在磷酸盐基体内形成孔隙结构,且空隙上形成树脂碳界层,同时,磷酸盐坯体中的游离水和未参与反应的磷酸根离子均受热挥发,留下耐高温的高熔点的磷酸盐相,另外,在热处理造孔过程中形成的碳界面也极大程度上缓解了磷酸盐与碳化物之间的热失配问题,使碳化物与磷酸盐相之间紧密结合。
作为一个优选的方案,所述磷酸盐溶液包括磷酸二氢铝溶液、磷酸氢锆溶液、磷酸铝铬溶液中至少一种。
作为一个优选的方案,所述碱性金属氧化物包括氧化镁、氧化铜、氧化钙、氧化镧、氧化铝中至少一种。
作为一个优选的方案,所述碱性金属氧化物的粒径为0.1~10μm,进一步优选为0.1~1μm。选择合适粒径的碱性金属氧化物能够与磷酸盐溶液充分反应,使得固化强度较为理想,粒径过大会使磷酸盐与氧化物反应不够完全,材料成型后不够致密,影响强度,而粒径过小,会使得氧化物颗粒存在团簇的现象,导致材料的强度相对降低。
作为一个优选的方案,所述磷酸盐溶液的质量浓度为50~70%。控制磷酸盐溶液浓度在合适的范围有利于提高材料的力学性能。磷酸盐溶液浓度过高,材料在固化后处于高温下会形成大量不稳定的物质,使得材料的高温强度相对降低;反之,磷酸盐溶液浓度过低,材料固化后无法获得较理想的强度。
作为一个优选的方案,所述磷酸盐溶液中的磷酸盐与碱性金属氧化物的质量比为1:1~1.3。控制磷酸盐与碱性金属氧化物的摩尔比在合适的范围有利于获得性能较优的复合材料,碱性金属氧化物比例过高,材料固化后无法获得较理想的强度;碱性金属氧化物比例过低,材料在固化后处于高温下会形成大量不稳定的物质,使得材料的高温强度相对降低。
作为一个优选的方案,所述酚醛树脂为热固性酚醛树脂。热固性酚醛树脂经热处理后形成的碳界面层能够更好地与磷酸盐坯体结合,其中,残碳量为20~30wt%。
作为一个优选的方案,所述酚醛树脂的用量为溶胶的2~10wt%。控制酚醛树脂的用量在合适的范围有利于获得孔隙率合适的磷酸盐坯体。如果酚醛树脂用量过少,会导致磷酸盐坯体的孔隙率太小,无法沉积金属碳化物形成连续相,从而一定程度地降低材料的力学性能;而酚醛树脂的用量过大会导致磷酸盐坯体的孔隙率太大,使得掺入的金属碳化物相过多,造成磷酸盐不易形成连续相,从而一定程度地降低磷酸盐基体的强度,增加生产难度,同时相对降低了复合材料的隔热性能及破坏材料的互穿网络结构,一定程度减少复合材料的使用寿命。
作为一个优选的方案,所述热解处理条件为:隔绝氧气,温度为500~700℃,时间为2~3h。所述热处理过程在马弗炉中进行。控制热处理温度在所述范围内能够使酚醛树脂彻底分解形成树脂碳,同时分解气体挥发在磷酸盐基体内形成连续的孔隙结构。
作为一个优选的方案,所述化学气相沉积条件为:将温度升至1200~1500℃,分别通入碳源、难溶金属盐和稀释气体,控制压力为5~8KPa,保温3~8h,惰性气体氛围中自然降温。所述碳源通气速率为90~150ml/min,难溶金属盐通气速率为0.3~0.8g/min,稀释气体通气速率为500~800ml/min。所述碳源为甲烷,难溶金属盐为HfCl4或ZrCl4,稀释气体为氢气。所述惰性气体为氩气。所述化学气相沉积过程在化学气相沉积炉中进行。
与现有技术相比,本发明的优势在于:
(1)通过向磷酸盐基体中加入酚醛树脂,利用“消失模”工艺的原理进行造连续孔,使得气相沉积后的难熔金属碳化物相在磷酸盐基体中可呈连续相形式增强磷酸盐材料,解决了超高温陶瓷相在磷酸盐材料中分布不均、影响磷酸盐材料机械性能的问题,大大提高了材料的高温力学性能、抗热震性能及抗侵蚀性能;
(2)所得复合材料中的磷酸盐相与碳化物陶瓷相均为连续相,且呈互穿网络结构分布,两相之间通过碳界面紧密结合,大大提升了材料的综合性能,拓宽了材料的应用范围;
(3)制备工艺简单,成本低廉,适合工业规模化生产。
附图说明
图1为实施例1中固化后的磷酸盐坯体样品的微观形貌图。
图2为实施例1制得的磷酸盐/碳化物复合材料样品的微观形貌图。
图3为实施例1制得的磷酸盐/碳化物复合材料经2200℃氧乙炔火焰烧蚀120s后样品烧蚀中心区的微观形貌图。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
(1)以30wt%氧化镁粉(0.5um),15wt%氧化钙粉(0.6um),7wt%氧化镧粉(0.5um)为金属氧化物粉末,以48wt%磷酸二氢铝溶液(浓度为65wt%)为磷酸盐溶液,充分混合后,加入其质量百分比为5wt%的酚醛树脂(THC-800),随后静置固化;
(2)将固化后的磷酸盐坯体置于500℃的真空马弗炉中进行造孔处理,保温2h后得到孔隙率为25%的磷酸盐复合材料,然后将多孔磷酸盐材料置于化学气相沉积炉中,进行CVI工艺沉积ZrC相,工艺为:将炉内温度升至1300℃,以甲烷为碳源,以ZrCl4锆源,以氢气作为稀释气体,分别以100ml/min、0.5g/min和600ml/min的流量通入沉积炉内,炉压保持在6KPa,并在该温度下保温5h,随后关闭电源自然降温,降温过程中通入氩气保护,即得到互穿网络结构磷酸盐/碳化物复合材料。
对本实施例成品试样进行表征,结果如下:体积密度2.6g/cm3,孔隙率3%,显气孔率0.6%,参考《JTG E51-2009-T0805-199》标准,测得抗压强度80MPa,整体导热系数1.2W/(m*K);根据《GJB323A-96》标准,在2200℃氧乙炔火焰烧蚀120s后其线烧蚀率为0.0028mm/s,质量烧蚀率为-0.006g/s,背温为196.3℃,表明该复合材料具有优异的高温力学性能和抗侵蚀性能。
实施例2
(1)以28wt%氧化镁粉(0.5um),17wt%氧化钙粉(0.6um),10wt%氧化镧粉(0.5um)为金属氧化物粉末,以45wt%磷酸二氢铝溶液(浓度为68wt%)为磷酸盐溶液,充分混合后,加入其质量百分比为6wt%的酚醛树脂(THC-800),随后静置固化;
(2)将固化后的磷酸盐坯体置于600℃的真空马弗炉中进行造孔处理,保温2h后得到孔隙率为30%的磷酸盐复合材料,然后将多孔磷酸盐材料置于化学气相沉积炉中,进行CVI工艺沉积HfC相,工艺为:将炉内温度升至1400℃,以甲烷为碳源,以HfCl4铪源,以氢气作为稀释气体,分别以120ml/min、0.6g/min和620ml/min的流量通入沉积炉内,炉压保持在7KPa,并在该温度下保温6h,随后关闭电源自然降温,降温过程中通入氩气保护,即得到互穿网络结构磷酸盐/碳化物复合材料。
对本实施例成品试样进行表征,结果如下:体积密度2.8g/cm3,孔隙率2.8%,显气孔率0.55%,抗压强度90MPa,整体导热系数1.3W/(m*K);在2200℃氧乙炔火焰烧蚀120s后其线烧蚀率为0.0023mm/s,质量烧蚀率为-0.008g/s,背温为206.6℃。
对比例1
采用实施例的方法制备复合材料,不同之处在于:酚醛树脂的添加量为磷酸盐溶液和金属氧化物混合物的0.5wt%。结果表明,所制得的材料因产生的孔隙度减少,未能充分形成整体的互穿网络结构,使得材料综合性能相对下降。
对比例2
采用实施例的方法制备复合材料,不同之处在于:酚醛树脂的添加量为磷酸盐溶液和金属氧化物混合物的15wt%。结果表明,所制得的材料因产生的孔隙过多,磷酸盐基材的强度相对降低,沉积后的碳化物陶瓷相过多,导致材料整体的热导率相对提高。

Claims (9)

1.一种互穿网络结构磷酸盐/碳化物复合材料,其特征在于:包括磷酸盐相和碳化物陶瓷相,且碳化物陶瓷相与磷酸盐相为互穿网络结构;所述碳化物陶瓷相与所述磷酸盐相之间存在碳界面;
所述复合材料的制备过程为:将磷酸盐溶液与碱性金属氧化物混合形成溶胶,所述溶胶与酚醛树脂混合,得到磷酸盐坯体;将所述磷酸盐坯体先进行热解处理,再进行化学气相沉积碳化物,即得复合材料;所述酚醛树脂的用量为溶胶的2~10wt%。
2.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料,其特征在于:所述磷酸盐相、碳界面与碳化物陶瓷相的质量比为30~33:1~2:65~70。
3.根据权利要求1或2所述的一种互穿网络结构磷酸盐/碳化物复合材料,其特征在于:
所述磷酸盐相包括磷酸二氢铝、磷酸氢锆、磷酸铝铬中至少一种磷酸盐;
所述碳化物为难熔金属碳化物;
所述碳界面由树脂热解碳构成。
4.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料,其特征在于:所述互穿网络结构磷酸盐/碳化物复合材料的孔隙率≤6%,显气孔率≤1%。
5.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,其特征在于:
所述磷酸盐溶液包括磷酸二氢铝溶液、磷酸氢锆溶液、磷酸铝铬溶液中至少一种;
所述碱性金属氧化物包括氧化镁、氧化铜、氧化钙、氧化镧、氧化铝中至少一种。
6.根据权利要求1或5所述的一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,其特征在于:
所述碱性金属氧化物的粒径为0.1~10μm;
所述磷酸盐溶液的质量浓度为50~70%;
所述磷酸盐溶液中的磷酸盐与碱性金属氧化物的质量比为1:1~1.3。
7.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,其特征在于:所述酚醛树脂为热固性酚醛树脂。
8.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,其特征在于:所述热解处理条件为:隔绝氧气,温度为500~700℃,时间为2~3h。
9.根据权利要求1所述的一种互穿网络结构磷酸盐/碳化物复合材料的制备方法,其特征在于:
所述化学气相沉积条件为:将温度升至1200~1500℃,分别通入碳源、难溶金属盐和稀释气体,控制压力为5~8KPa,保温3~8h,惰性气体氛围中自然降温;
所述碳源通气速率为90~150ml/min,难溶金属盐通气速率为0.3~0.8g/min,稀释气体通气速率为500~800ml/min;
所述碳源为甲烷,难溶金属盐为HfCl4和/或ZrCl4,稀释气体为氢气。
CN202211317645.9A 2022-10-26 2022-10-26 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法 Active CN115385694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211317645.9A CN115385694B (zh) 2022-10-26 2022-10-26 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211317645.9A CN115385694B (zh) 2022-10-26 2022-10-26 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115385694A CN115385694A (zh) 2022-11-25
CN115385694B true CN115385694B (zh) 2023-02-03

Family

ID=84128598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211317645.9A Active CN115385694B (zh) 2022-10-26 2022-10-26 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115385694B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143533B (zh) * 2023-04-14 2023-11-07 中南大学 一种轻质耐高温磷酸盐复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480308A (zh) * 2021-07-02 2021-10-08 中南大学 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法
CN115108844A (zh) * 2022-07-26 2022-09-27 中南大学 一种梯度自适应碳纤维/石英纤维复合增强金属磷酸盐基复合材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156385A1 (en) * 2003-10-29 2009-06-18 Giang Biscan Manufacture and use of engineered carbide and nitride composites
WO2016078963A2 (en) * 2014-11-17 2016-05-26 Müller Werner Ernst Ludwig Georg Amorphous inorganic polyphosphate-calcium-phosphate and carbonate particles as morphogenetically active coatings and scaffolds
CN106966738B (zh) * 2016-11-25 2018-02-23 北京航空航天大学 自愈合陶瓷基复合材料燃烧室火焰筒及其制备方法与应用
CN107021773B (zh) * 2017-05-22 2018-03-30 中南大学 一种新型超高温陶瓷一体化改性抗烧蚀炭/炭复合材料及其制备方法
CN109293367B (zh) * 2018-10-16 2021-08-31 航天特种材料及工艺技术研究所 一种磷酸铈改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN113248283A (zh) * 2021-06-08 2021-08-13 中南大学 修补剂和碳基复合材料表面修补的方法
CN113292350B (zh) * 2021-07-27 2021-10-08 中南大学 一种常压低温固化的镧铝系磷酸盐复合材料及其制备方法、应用
CN114716228B (zh) * 2022-04-07 2022-11-08 中南大学 一种耐超高温低导热的镁铝铬多元磷酸盐复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480308A (zh) * 2021-07-02 2021-10-08 中南大学 一种耐高温抗烧蚀低温化学键合磷酸基可陶瓷化材料及其制备方法
CN115108844A (zh) * 2022-07-26 2022-09-27 中南大学 一种梯度自适应碳纤维/石英纤维复合增强金属磷酸盐基复合材料及其制备方法

Also Published As

Publication number Publication date
CN115385694A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
JP4647370B2 (ja) 繊維強化炭化ケイ素複合材料及びその製造方法
CN114853477B (zh) 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法
CN109678511A (zh) 一种致密HfC(Si)-HfB2复相陶瓷的制备方法
CN1189430C (zh) 复合碳质隔热材料及其制造方法
CN115385694B (zh) 一种互穿网络结构磷酸盐/碳化物复合材料及其制备方法
CN104671815B (zh) 一种ZrC‑TiC改性C/C‑SiC复合材料及其制备方法
CN100497265C (zh) 一种C/SiC复合材料表面抗氧化涂层及其制备方法
CN104831107B (zh) 一种耐烧蚀炭/炭‑碳化锆‑铜复合材料及其制备方法
CN1751006A (zh) 硅化热结构复合材料的方法及由此方法得到的部件
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
JPH09510174A (ja) 炭化ケイ素含有セラミック複合粉末の現場製造
CN114645449A (zh) 一种聚酰亚胺树脂碳改性C/C-SiC摩擦材料的制备方法
CN111196730B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
JP4539014B2 (ja) 耐酸化性c/c複合材及びその製造方法
CN115353414B (zh) 一种SiC与碳氮化物互穿抗烧蚀涂层及其制备方法
CN114736400B (zh) 一种可陶瓷化酚醛气凝胶及其制备方法
CN101423407B (zh) 一种Al4SiC4-Al2OC复合耐火材料及其制备方法
CN108558423B (zh) 一种低氧含量的连续碳化硅纤维增强Ni-Al/SiCp陶瓷基复合材料的制备方法
JP2010508228A (ja) 半固体TiB2プレカーサー混合物
CN112174685A (zh) 一种单向纤维束增强ZrB2-SiC复合材料的制备方法
CN115991608B (zh) 一种内生纤维增强碳/陶喉衬材料的制备方法
CN109485442B (zh) 一种层状刚玉-尖晶石耐火材料的制备方法
CN104058753A (zh) 一种氧化锆二硼化锆碳质导液管的制备方法
JP2006143517A (ja) 炭素含有不焼成耐火物及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant