CN115376917A - 反向阻断igbt - Google Patents

反向阻断igbt Download PDF

Info

Publication number
CN115376917A
CN115376917A CN202211220498.3A CN202211220498A CN115376917A CN 115376917 A CN115376917 A CN 115376917A CN 202211220498 A CN202211220498 A CN 202211220498A CN 115376917 A CN115376917 A CN 115376917A
Authority
CN
China
Prior art keywords
region
semiconductor substrate
reverse blocking
trenches
edge termination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211220498.3A
Other languages
English (en)
Inventor
F.布鲁基
M.达伊内塞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Austria AG
Original Assignee
Infineon Technologies Austria AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Austria AG filed Critical Infineon Technologies Austria AG
Publication of CN115376917A publication Critical patent/CN115376917A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

本发明涉及反向阻断IGBT。一种制造反向阻断IGBT(绝缘栅双极晶体管)的方法,包括:在半导体衬底的器件区域中形成多个IGBT单元;在半导体衬底的围绕器件区域的周界区域中形成反向阻断边缘终端结构;在半导体衬底的切口区域与反向阻断边缘终端结构之间在周界区域中蚀刻一个或多个沟槽;沉积p型掺杂物源,其至少部分地填充所述一个或多个沟槽;以及将p型掺杂物从p型掺杂物源扩散到围绕所述一个或多个沟槽的半导体材料中,以便在半导体衬底的下表面处减薄半导体衬底之后在周界区域中形成从半导体衬底的上表面延伸到半导体衬底的下表面的连续p型掺杂区域。

Description

反向阻断IGBT
本申请为分案申请,其母案的发明名称为“反向阻断IGBT”,申请日为2017年7月28日,申请号为201710630022.X。
技术领域
本申请涉及反向阻断IGBT,并且更特别地涉及具有缩小的芯片面积的反向阻断IGBT。
背景技术
反向阻断IGBT(绝缘栅双极晶体管)可以通过对标准IGBT的结构添加微小改变以便使该器件能够耐受反向电压来实现。在各种应用中需要反向阻断能力,所述应用诸如是电流源逆变器、共振电路、双向开关、矩阵变换器等。
反向阻断IGBT与仅正向阻断的IGBT的不同之处在于,由p型区域来保护管芯背侧处的p-n结免受管芯的切割边缘的影响。按照惯例,p型区域是通过管芯(芯片)的周界周围的非常深的掺杂物扩散过程形成的。该深度扩散的区域环绕管芯周界并占据管芯的全厚度。在反向阻断条件下,该背侧p-n结截断电流。当对该背侧p-n结进行反向偏置时,空间电荷区域中的等势线无法到达管芯的切割边缘,并且因此不引起沿着未受保护的切割边缘的泄漏。可以直接由该p型区域跨管芯的整个深度将集电极电势传递到在管芯的相对表面处的反向阻断终端。
经由常规的深度掺杂物扩散过程在反向阻断IGBT的周界周围且跨管芯的整个厚度形成p型区域表现出困难。在诸如硅的半导体材料中具有快速扩散的诸如铝之类的扩散品种不具有高活性掺杂度。此外,要求较高的热预算,从而进一步限制了集成选项。另外,管芯的有效侧面积被深度掺杂物扩散过程所消耗,这增加了管芯尺寸并且仅能够通过在切口区域(即,半导体晶片的由例如锯片或激光所切割以便将半导体管芯彼此单颗化(在物理上分离)的区域)中开始扩散过程来部分地抵消。
发明内容
根据制造反向阻断IGBT(绝缘栅双极晶体管)的方法的实施例,该方法包括:在半导体衬底的器件区域中形成多个IGBT单元;在所述半导体衬底的围绕所述器件区域的周界区域中形成反向阻断边缘终端结构;在所述半导体衬底的切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻一个或多个沟槽;沉积p型掺杂物源,其至少部分地填充所述一个或多个沟槽;以及将p型掺杂物从所述p型掺杂物源扩散到围绕所述一个或多个沟槽的半导体材料中,以便在所述半导体衬底的下表面处减薄所述半导体衬底之后在所述周界区域中形成从所述半导体衬底的上表面延伸到所述半导体衬底的下表面的连续p型掺杂区域。
根据反向阻断IGBT(绝缘栅双极晶体管)的实施例,所述反向阻断IGBT包括设置在半导体衬底的器件区域中的多个IGBT单元,设置在所述半导体衬底的围绕所述器件区域的周界区域中的反向阻断边缘终端结构,在所述半导体衬底的边缘面与所述反向阻断边缘终端结构之间在所述周界区域中形成的一个或多个沟槽,至少部分地填充所述一个或多个沟槽的p型掺杂物源,以及设置在所述周界区域中并且由从所述p型掺杂物源向外扩散的p型掺杂物形成的连续p型掺杂区域。所述连续p型掺杂区域从所述半导体衬底的上表面延伸到所述半导体衬底的下表面。
本领域技术人员将在阅读以下详细描述时并且在查看附图时认识到附加的特征和优点。
附图说明
附图中的元素不一定是相对于彼此按比例的。相同的附图标记标明了对应的类似部分。可以组合各种图示出的实施例的特征,除非它们相互排斥。在附图中描绘并在以下描述中详述了实施例。
图1图示出包括反向阻断IGBT(绝缘栅双极晶体管)的半导体管芯(芯片)的截面图,所述反向阻断IGBT具有在该管芯的周界中的被p型掺杂物源填充的沟槽框架。
图2A到2C图示出沟槽框架的不同实施例的相应俯视图。
图3A到3N图示出在制造图1中所示的反向阻断IGBT的不同阶段期间的半导体衬底的部分截面图。
图4A到6图示出根据替换实施例的在图3A到3N中所示的半导体衬底的部分截面图。
图7图示出根据另一实施例的包括反向阻断IGBT的半导体管芯的截面图,所述反向阻断IGBT具有在该管芯的周界中的被p型掺杂物源填充的沟槽框架。
具体实施方式
本文中描述的实施例提供了用于实现在管芯(芯片)的周界中具有非常深的掺杂物扩散的反向阻断IGBT的集成方案,所述掺杂物扩散覆盖了管芯的整个厚度,但是具有的最小管芯面积消耗和最小附加热预算超越了在标准正向阻断IGBT制造技术中所已经采用的。该非常深的扩散区域是通过以下方式形成的:在半导体衬底的切口区域与反向阻断边缘终端结构之间在半导体衬底的周界区域中蚀刻一个或多个沟槽框架,并且沉积至少部分地填充每个沟槽框架的p型掺杂物源。然后将p型掺杂物从p型掺杂物源扩散到周围的半导体材料中,以便在下表面处减薄衬底之后在周界区域中形成从半导体衬底的上表面延伸到下表面的连续p型掺杂区域。该连续p型掺杂区域将管芯背侧电连接到管芯正侧。
图1图示出包括反向阻断IGBT(绝缘栅双极晶体管)器件的半导体管芯(芯片)100的截面图。该反向阻断IGBT器件包括设置在半导体衬底106的器件区域104中的多个IGBT单元102,以及设置在半导体衬底106的围绕器件区域104的周界区域110中的反向阻断边缘终端结构108。在图1中有意地夸大了周界区域110的尺寸相对于器件区域104的尺寸,以便强调在器件区域104的构造之上的周界区域110的构造。在实践中,器件区域104大于周界区域110,并且因此比周界区域110占据更多的衬底面积。此外,没有以任何细节示出包含在器件区域104中的IGBT单元102。特定的IGBT单元构造是不相关的,并且可以采用任何标准的IGBT单元类型。IGBT单元组合了双极晶体管和MOS场效应晶体管的优点,并且通常类似于n沟道垂直构造的功率MOSFET来构造,除了用p+集电极层来代替n+漏极之外,从而形成垂直PNP双极结式晶体管。该附加的p+区域产生了PNP双极结式晶体管与表面n沟道MOSFET的级联连接。
在器件区域104外部,在半导体衬底106的边缘面114与反向阻断边缘终端结构108之间在周界区域110中形成一个或多个沟槽112。反向阻断边缘终端结构108被图示为VLD(横向掺杂变型)型边缘终端。可以在该边缘终端处局部地发生IGBT器件解构。VLD型边缘终端表示用于增加IGBT器件的坚固性的一种终端技术。可以使用其它类型的反向阻断边缘终端结构,诸如例如JTE(结终端扩展)型边缘终端。在每种情况中,反向阻断边缘终端结构108都防止耗尽层(或空间电荷区域)在反向阻断模式中到达半导体衬底106的边缘面114。
该反向阻断IGBT器件包括在反向阻断边缘终端结构108与器件区域104之间设置在周界区域110中的正向阻断边缘终端结构116。正向阻断边缘终端结构116可以具有与反向阻断边缘终端结构108相同或不同的构造(例如VLD型、JTE型等),并且在正常条件下防止耗尽层(或空间电荷区域)在正向阻断模式中到达半导体衬底106的边缘面114。在该情况中,正向阻断边缘终端结构116防止空间电荷到达沟道截断器区域118和反向阻断边缘终端结构108的p掺杂区域。沟道截断器区域118在反向阻断和正向阻断边缘终端结构108、116之间被设置在周界区域110中。沟道截断器118在正常条件下具有双重作用,因为沟道截断器区域118被两个边缘终端结构108、116所共享。取决于Vce > 0还是Vce < 0(其中,Vce是跨IGBT的集电极和发射极的电压),来自于正向阻断边缘终端结构116的空间电荷或来自于反向阻断边缘终端结构108的空间电荷应当被截断以免于到达沟道截断器区域118。
沟道截断器区域118包括通过一个或多个导电通孔或接触孔120穿过厚介电绝缘138电连接到漂移区(n型)电势的金属场板142。可选的n掺杂层119围绕每个导电通孔/接触孔120并保护每个导电通孔/接触孔120免于在阻断期间被空间电荷击穿。也电连接到金属场板142的一个或多个可选沟槽121提供了对于与漂移区122的接触的进一步保护。沟道截断器118限制沟道区域从器件区域104的伸展和/或防止在正向和反向阻断模式二者中形成寄生沟道(即,逆转层)。沟道截断器118被一个或多个沟槽112围绕,该一个或多个沟槽112在半导体衬底106的边缘面114与反向阻断边缘终端结构108之间被形成在周界区域110中。这些沟槽112中的每一个深度地延伸到半导体衬底106中、几乎或完全延伸到管芯100的背表面,并且在管芯100的周界区域110中形成围绕反向阻断边缘终端结构108的框架。由(一个或多个)沟槽112形成的框架可以是连续的或者分段的,如本文中稍后描述的那样。(一个或多个)沟槽112在本文中也称为(一个或多个)沟槽框架。
p型掺杂物源126至少部分地填充每个沟槽框架112,所述每个沟槽框架112在半导体衬底106的边缘面114与反向阻断边缘终端结构108之间被形成在周界区域110中。根据实施例,可以仅利用掺硼多晶硅、仅利用掺硼硅酸盐玻璃或者利用掺硼多晶硅和掺硼硅酸盐玻璃二者作为p型掺杂物源126来填充每个沟槽框架112。例如,p型掺杂物源126可以包括沿着每个沟槽框架的侧壁和底部设置的掺硼硅酸盐玻璃共形层,以及占据了沟槽框架112中未被掺硼硅酸盐玻璃共形层所占据的空间的掺硼多晶硅。可以在沉积p型掺杂物源126之前将诸如SiO2之类的氧化物内衬(图1中未示出)设置在每个沟槽框架112的侧壁和底部上,以便将p型掺杂物源126与周围的半导体材料分离。
在每种情况中,设置在周界区域110中的连续p型掺杂区域128都是由从p型掺杂物源126向外扩散的p型掺杂物形成的。连续p型掺杂区域128从半导体衬底106的上表面130延伸到下表面124。连续p型掺杂区域128在IGBT器件的周界区域110中将设置在半导体衬底106的下表面124处的p型集电极132连接到衬底106的上表面130处的反向阻断边缘终端结构108。IGBT器件还可以包括在p型集电极132上方且在反向阻断边缘终端结构108下方设置在半导体衬底106中的n型场截断区域134,所述n型场截断区域134从器件区域104横向延伸到周界区域110中。连续p型掺杂区域128在周界区域110中不中断地垂直地贯穿n型场截断区域134。即,并不由场截断掺杂来补偿周界区域110中的p掺杂,以便保持半导体衬底106的正表面和背表面124、130之间的p型掺杂的连续性。还通过介电隔离区域136来将连续p型掺杂区域128与正向阻断边缘终端结构116以及与沟道截断器118隔离。
利用IGBT管芯100的周界区域110中的这样的构造,提供了从半导体衬底106的下表面124到上表面130的穿过周界区域110中的管芯100的整个厚度(Tdie)的电连接,以便实现防止耗尽层(或空间电荷区域)在反向阻断模式中到达半导体衬底106的边缘面114的反向阻断IGBT。在半导体衬底106的上表面130上形成诸如SiO2之类的绝缘层138,以便将衬底106与上覆的金属喷镀层140分离。金属喷镀层140被图案化以便提供与设置在半导体衬底106中的IGBT器件的不同部件的相应连接。例如,图案化的金属喷镀层140可以包括电连接到沟道截断器118的第一区段142,形成与设置在器件区域104中的IGBT单元102的栅电极电连接的栅极流道的第二区段144,以及与IGBT单元102的源区域电连接的源极焊盘146。可以在图案化的金属喷镀层140与设置在半导体衬底106中的IGBT器件的附加部件之间提供其它电连接,并且所述其它电连接如贯穿了在衬底106的上表面130上形成的绝缘层138的对应通孔连接那样在图1中是看不到的。
该IGBT器件具有对于1200V和1700V级的可扩缩性。该可扩缩性与蚀刻沟槽框架112并利用适当的p型掺杂物源126(诸如掺硼硅酸盐玻璃或掺硼硅酸盐玻璃加上掺硼多晶硅)来填充沟槽框架112的能力有关。管芯厚度Tdie确定了沟槽纵横比。对于1200V级的器件来说,用于2µm宽的沟槽框架112的1:70的纵横比以及用于3µm宽的沟槽框架112的1:50的纵横比是典型的。对于1700V级的器件来说,用于2µm宽的沟槽框架112的1:95的纵横比以及用于3µm宽的沟槽框架112的1:60的纵横比是典型的。这样的参数可利用在制造DRAM沟槽电容器时采用的标准沟槽蚀刻过程以及利用博世型蚀刻处理来得到。也可以利用标准处理来实现沟槽填充。例如,针对+/-3µm的减薄精度,在沟槽底部148与管芯100的下表面124之间的距离与在650V级中相同。如果将减薄精度放宽到+/-5µm,那么p型掺杂物源126的最大扩散深度达到12.5µm到17.5µm。可以使用附加的热处理来在这样的深度处使硼扩散。然而,掺硼硅酸盐玻璃在这样的扩散深度处可以被视为几乎无限的扩散源,从而准许扩散至12.5µm、17.5µm或甚至更深,而同时针对在这样的深度处的连续p型掺杂区域128维持足够高的掺杂水平。
在图1中示出了在半导体衬底106的边缘面114与反向阻断边缘终端结构108之间的单个沟槽框架112。然而,可以在周界区域110中形成多于一个沟槽框架112,并利用从其向外扩散p型掺杂物的p型掺杂物源126来部分地或完全地填充所述多于一个沟槽框架112,以便形成连续p型掺杂区域128。每个沟槽框架112还可以具有不同的构造。
图2A到2C图示出不同沟槽框架实施例的相应的俯视图。为了易于图示,在图2A到2C中仅示出半导体管芯100的边缘面114和沟槽框架112。在图2A中,在周界区域中形成单个连续沟槽框架112并且利用p型掺杂物源126部分地或完全地对其进行填充。在图2B中,将沟槽框架112分段成多个间隔开的区段,每个区段都形成在周界区域110中并且利用p型掺杂物源126部分地或全部地对其进行填充。在横向上足够靠近地间隔沟槽区段,使得从掺杂物源126向外扩散的p型掺杂物在周界区域110中形成连续p型掺杂区域128。在掺硼硅酸盐玻璃作为p型掺杂物源126的情况下,由掺硼硅酸盐玻璃引起的应力低于由热氧化物引起的应力,这是因为硼增加了SiO2的热膨胀系数,使得其更靠近Si,并且掺硼硅酸盐玻璃流动并且将应力向下释放到近似900°,这是热氧化物做不到的。为了进一步释放由于沟槽框架112产生的应力,可以使用图2B中所示的被分段的周界沟槽框架112,其具有的间隙可比得上标准热处理过程期间的硼的扩散长度。图2C中所示的实施例类似于图2B中所示的实施例。然而,不同之处在于沟槽框架112的各区段在图2C中以交错方式布置,即,被设置在中心线的交替侧上。沟槽框架112的区段可以在每个过渡处对偏一定距离,所述距离的范围从几百nm到几微米。
图3A到3N图示出制造图1中所示种类的多个反向阻断IGBT管芯的方法的实施例。在诸如硅晶片之类的常见半导体衬底200上制造IGBT管芯。在完成IGBT管芯之后,通过管芯单颗化过程来单颗化管芯,所述管芯单颗化过程涉及到沿着切口区域例如通过锯片或激光切割将IGBT管芯在物理上彼此分离(分开)。图3A到3N图示出在半导体衬底200上制造的一个IGBT管芯以及将该IGBT管芯与看不到的邻近管芯分离的切口区域。
在图3A中,在半导体衬底200的上表面201上沉积诸如SiO2/Si3N4之类的LOCOS(硅的局部氧化)掩模202。LOCOS是其中在硅晶片上的所选区域中形成二氧化硅的过程,其中,所得到的Si-SiO2界面处于比其余的硅表面更低的点处。LOCOS掩模202中的开口204确定了随后在何处形成二氧化硅。
在图3B中,在形成二氧化硅之前穿过LOCOS掩模202中的开口204将沟槽206蚀刻到半导体衬底200中。图3B中所示的沟槽206限定了要在何处形成反向和正向阻断边缘终端结构。可以使用任何标准蚀刻过程来形成沟槽206。
在图3C中,将p型掺杂物注入到形成在半导体衬底200中的沟槽206中,以便在每个IGBT的周界区域中限定反向和正向阻断边缘终端结构208、210。可以使用任何标准的掺杂物注入过程来限定所述反向和正向阻断边缘终端结构208、210。反向和正向阻断边缘终端结构208、210可以具有JTE、VLD或其它类型的设计。
在图3D中,以标准的凹进式(recessed)LOCOS过程来氧化沟槽的暴露侧壁和底部以便形成隔离区域212。
在图3E中,使用标准光刻处理来在半导体衬底200的上表面201之上沉积例如2-3µm的中间厚度的抗蚀剂214。抗蚀剂214具有开口216,其具有在每个IGBT管芯的周界周围延伸的框架形状。开口216的位置正好位于反向阻断边缘终端结构208外部。在抗蚀剂214中形成的开口216限定了用于p型掺杂物源的沟槽框架区域。抗蚀剂214可以通过具有环绕每个IGBT管芯的周界的多于一个开口216来限定多于一个沟槽框架。由抗蚀剂214限定的每个沟槽框架区域位于反向阻断边缘终端结构208与切口区域之间。
在图3F中,对LOCOS掩模202的被抗蚀剂214中的每个开口216暴露的部分进行等离子蚀刻,并且之后是在由抗蚀剂214限定的每个沟槽框架区域中进行深度沟槽蚀刻。LOCOS掩模202足够薄以使得可以用沟槽蚀刻工具在原位执行该蚀刻,但是可以在别处执行该蚀刻。在一个实施例中,通过标准博世型蚀刻来形成每个沟槽框架218,所述标准博世型蚀刻允许非常高的纵横比和对光致抗蚀剂的非常高的选择度。博世型蚀刻(也称为脉冲或时间复用蚀刻)在两种模式之间重复交替,以便实现几乎垂直的结构。在沟槽蚀刻过程中,沟槽蚀刻的暴露面积是非常小的(例如在1%的范围内),并且在这些条件下博世型蚀刻通常具有对深度均匀性的非常高的控制。在一个具体示例中,目标沟槽宽度可以是2µm,并且深度优选地低于针对IGBT管芯指定的最终目标厚度。针对+/-0.5µm的沟槽深度均匀性和+/-3µm的管芯厚度容差,对于60µm的管芯目标厚度而言目标深度为56µm。在该具体示例性情况中,沟槽框架218的纵横比(AR)为1:28。假设在最终目标管芯厚度中的容差是+/-3µm,则在该具体示例中,沟槽底部距管芯背侧表面的最大距离为7.5µm。其它管芯厚度、沟槽纵横比和沟槽底部间距也在本文中描述的实施例的范围内,并且上述示例不应被视为是限制性的。例如,沟槽底部距最终目标管芯厚度的距离可以大于7.5µm,例如12.5µm或甚至更多,这取决于制造容差。替换地,沟槽深度可以延伸到最终管芯厚度或甚至更深地延伸到半导体衬底200中,如由图3F中的垂直虚线所指示的。在一个实施例中,在下表面203处减薄衬底200之前,以大于针对IGBT管芯指定的最终目标厚度的深度来蚀刻每个沟槽框架218,或者甚至完全穿过半导体衬底200蚀刻每个沟槽框架218。
最终目标管芯厚度是在减薄半导体衬底200的背侧203之后的每个IGBT管芯的目标厚度。如果沟槽框架深度没有达到最终目标管芯厚度,则沟槽底部与最终目标管芯厚度之间的距离应当是使得在每个IGBT管芯中在沟槽底部下方保留的半导体材料足够由要被沉积在每个沟槽框架218中的p型掺杂物源的向外扩散来掺杂,以使得提供从每个IGBT管芯的下表面到上表面的在周界区域中穿过管芯的整个厚度的电连接,以便实现防止耗尽层(或空间电荷区域)在反向阻断模式中到达管芯的边缘面的反向阻断IGBT,如先前本文中结合图1描述的那样。
在图3G中,剥离抗蚀剂214,之后是进行蚀刻后清洁。可以使用标准的抗蚀剂剥离和蚀刻后清洁过程。
在图3H中,在图3F中蚀刻的每个沟槽框架218中沉积p型掺杂物源220。p型掺杂物源220至少部分地填充每个沟槽框架218。在一个实施例中,p型掺杂物源220包括使用诸如SACVD(次大气压化学气相沉积)之类的高共形沉积技术沿着每个沟槽框架218的侧壁和底部沉积的掺硼硅酸盐玻璃共形层。在一种情况下,在将p型掺杂物从p型掺杂物源向外扩散到周围的半导体材料中之前,掺硼硅酸盐玻璃共形层具有约4%的硼浓度。在给定SiO2具有2.3E22cm-3的分子密度并且具有这样的硼浓度的情况下,在形成于每个IGBT管芯的反向阻断边缘终端结构208外部的每个沟槽框架218中提供8E20cm-3的p型掺杂物源。这样的p型掺杂物源沿着每个IGBT管芯的整个厚度产生实际上无限的扩散源,这可以同时允许沿着全管芯厚度的高掺杂水平和高扩散深度。
替换地或附加地,p型掺杂物源220可以包括掺硼硅酸盐玻璃共形层,其部分地填充每个沟槽框架218,以使得每个沟槽框架218的一部分未被掺硼硅酸盐玻璃共形层填充。p型掺杂物源220还包括掺硼多晶硅或SiO2和掺硼多晶硅的组合,其填充每个沟槽框架218的先前未填充的部分。根据该实施例,掺硼硅酸盐玻璃共形层可以具有200nm到600nm之间的厚度,并且掺硼多晶硅和/或SiO2(如果包括的话)占据每个沟槽框架218的其余部分。在又一实施例中,仅利用掺硼多晶硅或仅利用掺硼多晶硅和SiO2的组合来填充每个沟槽框架218。
在图3I中,从p型掺杂物源220穿过每个沟槽框架218的侧壁和底部将p型掺杂物向外扩散到周围的半导体材料中,以便在每个IGBT管芯的周界区域中形成连续p型掺杂区域222。连续p型掺杂区域222从半导体衬底200的上表面201至少延伸到最终目标管芯厚度(即,在下表面203处减薄半导体衬底200之后的管芯厚度)。在掺硼硅酸盐玻璃作为p型掺杂物源220的情况下,可以使用标准热处理来增密掺杂玻璃。某些硼将在热处理之前就已经扩散到周围的半导体材料中。
还在边缘终端区域中发生掺杂物扩散和活化以便形成反向和正向阻断边缘终端结构208、210。在边缘终端掺杂物的高热预算扩散期间,硼也从每个沟槽框架218中的p型掺杂物源220向外扩散到周围的半导体材料中。如果未将(一个或多个)沟槽框架蚀刻到至少一个最终目标管芯厚度的话,该扩散的硼以高掺杂水平甚至对半导体衬底在沟槽底部下方的部分进行掺杂。相应地,在每个IGBT管芯的周界区域中的连续p型掺杂区域222在整个管芯厚度上分布,从而产生沿着管芯厚度的高且均匀的p掺杂,同时由该扩散区域占据最小面积。由先前形成的LOCOS结构212将正向阻断边缘终端结构210与连续p型掺杂区域222以及与周界区域中的反向阻断边缘终端结构208电隔离。
在图3J中,通过标准CMP(化学机械抛光)过程来去除LOCOS掩模202。可以使用可选的标准等离子回蚀刻过程,以便缩短CMP时间。如果采用的话,在到达LOCOS掩模202之前停止等离子回蚀刻。使用LOCOS掩模202作为CMP截断层。LOCOS去除过程采用CMP,直到停止在LOCOS掩模上,然后剥离LOCOS掩模202。在去除LOCOS掩模202之后,过程可以刚好在IGBT管芯的活性区域中的沟槽蚀刻之前返回到标准剥离单元IGBT处理。接下来结合图3K到3M描述示例性标准过程。
在图3K中,通过标准的注入、扩散、退火和氧化过程来在每个IGBT管芯的活性区域中构造IGBT单元224。还在反向阻断边缘终端结构208与正向阻断边缘终端结构210之间在每个IGBT管芯的周界区域中形成沟道截断器226。沟道截断器226可以包括可选的n掺杂层228和如在本文中先前结合图1解释的一个或多个可选的沟槽230。沟道截断器区域226可以在IGBT单元224的标准制造期间通过调节光刻布局来形成。
在图3L中,通过标准沉积过程来在半导体衬底200的下表面201之上沉积夹层电介质232(诸如SiO2和/或Si3N4),并且在夹层电介质232中形成接触孔(看不到)。通过标准沉积或电镀过程来在夹层电介质232上形成金属喷镀层234。对金属喷镀层234进行图案化以便形成与设置在半导体衬底200中的IGBT单元224的不同部件的相应连接。例如,图案化的金属喷镀层234可以包括通过一个或多个导电通孔或接触孔237穿过夹层电介质232电连接到漂移区(n型)电势的场板区段236(如先前在本文中结合图1描述的那样),电连接到设置在器件区域中的IGBT单元224的栅电极(未示出)的栅极流道区段238,以及电连接到IGBT单元224的源极区域的源极焊盘240。可以在图案化的金属喷镀层234与IGBT单元224的附加部件之间提供其它电连接,并且所述其它电连接在图3L中看不到,如贯穿将金属层234与半导体衬底200分离的夹层电介质232的对应通孔连接那样。
在图3M中,通过标准减薄过程在衬底200的下表面203处将半导体衬底200减薄至最终管芯厚度。
在图3N中,在半导体衬底200的下表面203处减薄衬底200之后在下表面203处形成p型集电极242。将反向阻断边缘终端结构208设置在半导体衬底200的上表面201处,并且周界区域中的连续p型掺杂区域222将下表面203处的p型集电极242连接到上表面201处的反向阻断边缘终端结构208。可以在半导体衬底200中在p型集电极242上方并且在反向阻断边缘终端结构208下方形成n型场截断区域244。可以通过注入或外延生长来形成n型场截断区域244。亦即,可以替代注入而外延生长整个垂直IGBT结构。
在任一情况下,在距衬底200的背表面203例如4µm到5µm的深度处可以具有1E16cm-3、1E17cm-3或更高的峰值掺杂的n型场截断区域244从器件区域横向延伸到周界区域中。设置在每个IGBT管芯的周界区域中的每个沟槽框架218中的p型掺杂物源220将足量的向外扩散的掺杂物提供到周围的半导体材料中,使得周界区域中的所得出的连续p型掺杂区域222不中断地垂直地贯穿n型场截断区域244。在p型掺杂物扩散之前具有约4%的硼浓度的掺硼硅酸盐玻璃是这样的适当源,并且允许连续p型掺杂区域222具有比n型场截断层244的峰值掺杂浓度高得多的掺杂浓度。然后沿着半导体衬底200的切口区域单颗化每个IGBT管芯。
每个单颗化的IGBT管芯的边缘面不将背侧处的集电极电势载送到正侧处的沟道截断器226。而是,由该连接直接通过连续p型掺杂区域222来完成。相应地,不需要将沟道截断器226的金属触点236电连接到在LOCOS 212之外的将沟道截断器226与管芯的边缘面分离的底层半导体材料。图3N中所示的实施例将保持IGBT器件与单颗化后的管芯的泄漏的切割边缘面电绝缘。作为附加预防措施,以额外的光刻步骤为代价,将会可以使用HDR(高动态鲁棒性)型背侧发射极,其中该背侧发射极刚好在沟道截断器226外部在连续p型掺杂区域222处截断。
图4A和4B图示出对图3H中图示出的过程步骤的替换实施例。在图3H中,掺硼硅酸盐玻璃是在每个IGBT管芯的周界中蚀刻的沟槽框架218中沉积的唯一p型掺杂物源220。在图4A中,在沟槽框架218的侧壁和底部上沉积具有例如200nm到600nm之间的厚度的掺硼硅酸盐玻璃共形层300。这样,沟槽框架218的一部分并未被掺硼硅酸盐玻璃共形层300填充。在图4B中,利用掺硼多晶硅203、SiO2或掺硼多晶硅和SiO2的组合填充沟槽框架218的未填充部分。
图5A和5B图示出对图3H中图示出的过程步骤的另一替换实施例。在图5A中,在沟槽框架218的侧壁和底部上形成诸如SiO2之类的氧化物内衬400。在图5B中,在用氧化物内衬400覆盖侧壁和底部之后在沟槽框架218中沉积p型掺杂物源402。p型掺杂物源402可以仅是掺硼硅酸盐玻璃共形层、仅是掺硼多晶硅或者是掺硼硅酸盐玻璃共形层与掺硼多晶硅的组合。在每种情况中,p型掺杂物从p型掺杂物源402穿过氧化物内衬402向外扩散并扩散到周围的半导体材料中,以形成每个IGBT管芯的周界区域中的连续p型掺杂区域,如先前在本文中结合图3I描述的。
图6图示出对图3F中图示出的过程步骤的替换实施例。在图3F中,在每个IGBT管芯的周界区域中蚀刻单个沟槽框架218。在图6中,在反向阻断边缘终端结构208与切口区域之间在周界区域中蚀刻至少两个沟槽框架218、218’。每个沟槽框架218、218’被填充有向外扩散到周围的半导体材料中的p型掺杂物源,如先前在本文中描述的。通过足够窄以被从每个沟槽框架218、218’中的p型掺杂物源向外扩散的掺杂物充分掺杂的半导体材料区域来横向地分离沟槽框架218、218’中的相邻沟槽框架。例如,相邻沟槽框架218、218’的横向间距可以被选择为使得将沟槽框架218、218’进行分离的半导体材料在向外扩散过程之后具有至少1E16cm-3、至少1E17cm-3或甚至更高的掺杂浓度。每个沟槽框架218、218’可以具有在图2A、2B或2C中图示出的构造。
图7图示出包括反向阻断IGBT的半导体管芯500的另一实施例的截面图。图7中所示的实施例类似于图1中所示的实施例。然而,不同之处在于在减薄在其上制造管芯500的半导体衬底106之前,将在IGBT管芯500的周界区域110中形成的每个沟槽框架112至少蚀刻到与IGBT管芯500的最终目标厚度相对应的深度。这样,在半导体衬底106的下表面124处进行减薄之后,沟槽框架112延伸到下表面124。可以使用在图2A到2C中图示出的沟槽框架结构中的任意,并且可以形成一个或多个沟槽框架112,如先前在本文中描述的那样。每个沟槽框架112被填充有p型掺杂物源126,也如先前在本文中描述的那样。
先前在本文中描述的实施例产生了具有空间上均匀的、高水平的p型掺杂区域的IGBT器件,所述p型掺杂区域将管芯背侧连接到管芯正侧,并且沿着围绕整个管芯的管芯周界中的沟槽框架分布。可以在管芯厚度之上以及沿着管芯表面二者实现近似均匀的掺杂。高度p掺杂区域以一个或多个深沟槽框架为中心并且填充有p型掺杂物源。可以将沟槽框架蚀刻到低于最终管芯厚度的深度,但是替代地沟槽框架可以短于衬底减薄之前的最终管芯厚度而终止。在任一情况中,沟槽框架都在沟道截断器沟槽外部但是在切口区域中的切割区域内部。通过掺杂重叠(doping overlap)将高度掺杂p型区域电连接到背侧发射极,并且经由接触孔系统将高度掺杂p型区域电连接到正侧处的沟道截断器金属喷镀。
为了易于描述而使用诸如“下方”、“之下”、“下部”、“之上”、“上部”等的空间相关术语来解释一个元件相对于第二元件的定位。这些术语意图涵盖除了与图中描绘的取向不同的取向之外的器件的不同取向。此外,还使用诸如“第一”、“第二”等的术语来描述各种元件、区域、区段等,并且它们也不意图是限制性的。遍及本说明书,相同的术语指代相同的元素。
如本文中使用的,术语“具有”、“包含”、“包括”、“涵盖”等是开放式术语,其指示存在所阐述的元件或特征,但是不排除附加元件或特征。冠词“一”、“一个”和“该”意图包括复数和单数,除非上下文清楚地另有指示。
在考虑到变型和应用的以上范围的情况下,应理解的是,本发明不被前述描述所限制,也不被附图所限制。而是,本发明仅由所附权利要求和其法定等价方式来限制。

Claims (29)

1.一种制造反向阻断IGBT(绝缘栅双极晶体管)的方法,所述方法包括:
在半导体衬底的器件区域中形成多个IGBT单元;
在所述半导体衬底的围绕所述器件区域的周界区域中形成反向阻断边缘终端结构;
在所述半导体衬底的切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻一个或多个沟槽;
沉积p型掺杂物源,其至少部分地填充所述一个或多个沟槽;
将p型掺杂物从所述p型掺杂物源扩散到围绕所述一个或多个沟槽的半导体材料中,以便在所述半导体衬底的下表面处减薄所述半导体衬底之后在所述周界区域中形成从所述半导体衬底的上表面延伸到所述半导体衬底的下表面的连续p型掺杂区域;
在所述半导体衬底的下表面处减薄所述半导体衬底之后在所述下表面处形成p型集电极;以及
在所述半导体衬底中在所述p型集电极上方且在所述反向阻断边缘终端结构下方形成n型场截断区域,所述n型场截断区域从所述器件区域横向延伸到所述半导体衬底的所述周界区域中;
其中,将p型掺杂物从至少部分地填充所述一个或多个沟槽的所述p型掺杂物源扩散到围绕所述一个或多个沟槽的所述半导体材料中包括:
对所述半导体晶片应用热处理,使得硼从所述掺硼硅酸盐玻璃共形层扩散穿过所述一个或多个沟槽的所述侧壁和底部并扩散到围绕所述一个或多个沟槽的所述半导体材料中,并且使得所述周界区域中的所述连续p型掺杂区域不中断地垂直地贯穿所述n型场截断区域。
2.根据权利要求1所述的方法,还包括:
在所述半导体衬底的下表面处减薄所述半导体衬底之后在所述下表面处形成p型集电极,
其中,所述反向阻断边缘终端结构被设置在所述半导体衬底的所述上表面处,
其中,在所述周界区域中的所述连续p型掺杂区域将所述半导体衬底的所述下表面处的所述p型集电极连接到所述半导体衬底的所述上表面处的所述反向阻断边缘终端结构。
3.根据权利要求2所述的方法,还包括:
在所述半导体衬底中在所述p型集电极上方且在所述反向阻断边缘终端结构下方形成n型场截断区域,所述n型场截断区域从所述器件区域横向延伸到所述周界区域中,
其中,所述周界区域中的所述连续p型掺杂区域不中断地垂直地贯穿所述n型场截断区域。
4.根据权利要求1所述的方法,还包括:
在所述反向阻断边缘终端结构与所述器件区域之间在所述周界区域中形成正向阻断边缘终端结构,
其中,所述周界区域中的所述连续p型掺杂区域与所述正向阻断边缘终端结构隔离。
5.根据权利要求4所述的方法,还包括:
在所述反向阻断边缘终端结构与所述正向阻断边缘终端结构之间在所述周界区域中形成沟道截断器区域;以及
将所述沟道截断器区域电连接到所述反向阻断IGBT的漂移区电势。
6.根据权利要求1所述的方法,其中,在所述切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻所述一个或多个沟槽包括:
在所述下表面处减薄所述半导体衬底之前完全穿过所述周界区域蚀刻所述一个或多个沟槽。
7.根据权利要求1所述的方法,其中,在所述切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻所述一个或多个沟槽包括:
在所述下表面处减薄所述半导体衬底之前将所述一个或多个沟槽蚀刻至所述周界区域中的小于所述半导体衬底的厚度的深度。
8.根据权利要求1所述的方法,其中,沉积所述p型掺杂物源包括:
沿着所述一个或多个沟槽的侧壁和底部沉积掺硼硅酸盐玻璃共形层。
9.根据权利要求8所述的方法,其中,在将所述p型掺杂物从所述p型掺杂物源扩散到围绕所述一个或多个沟槽的所述半导体材料中之前,所述掺硼硅酸盐玻璃共形层具有约4%的硼浓度。
10.根据权利要求8所述的方法,其中,所述一个或多个沟槽被部分地填充有所述掺硼硅酸盐玻璃共形层,使得所述一个或多个沟槽的一部分未被所述掺硼硅酸盐玻璃共形层填充,所述方法还包括:
利用掺硼多晶硅、SiO2或掺硼多晶硅和SiO2的组合填充所述一个或多个沟槽的未填充部分。
11.根据权利要求8所述的方法,还包括:
在沉积所述掺硼硅酸盐玻璃共形层之前,在所述一个或多个沟槽的所述侧壁和底部上形成氧化物内衬。
12.根据权利要求1所述的方法,其中,沉积所述p型掺杂物源包括:
仅利用掺硼多晶硅或仅利用掺硼硅酸盐玻璃来填充所述一个或多个沟槽。
13.根据权利要求1所述的方法,其中,在所述切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻所述一个或多个沟槽包括:
在所述切口区域与所述反向阻断边缘终端结构之间且围绕所述器件区域的所述周界区域中蚀刻单个沟槽。
14.根据权利要求1所述的方法,其中,在所述切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻所述一个或多个沟槽包括:
在所述切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻多个沟槽,
其中,由半导体材料区域分离所述多个沟槽中的相邻沟槽。
15.一种反向阻断IGBT(绝缘栅双极晶体管),包括:
设置在半导体衬底的器件区域中的多个IGBT单元;
设置在所述半导体衬底的围绕所述器件区域的周界区域中的反向阻断边缘终端结构;
在所述半导体衬底的边缘面与所述反向阻断边缘终端结构之间在所述周界区域中形成的一个或多个沟槽;
至少部分地填充所述一个或多个沟槽的p型掺杂物源;
设置在所述周界区域中并且由从所述p型掺杂物源向外扩散的p型掺杂物形成的连续p型掺杂区域,所述连续p型掺杂区域从所述半导体衬底的上表面延伸到所述半导体衬底的下表面;
设置在所述半导体衬底的所述下表面处的p型集电极;以及
在所述半导体衬底中在所述p型集电极上方且在所述反向阻断边缘终端结构下方设置的n型场截断区域,
其中,所述n型场截断区域从所述器件区域横向延伸到所述半导体衬底的所述周界区域中,
其中,所述周界区域中的所述连续p型掺杂区域不中断地垂直地贯穿所述n型场截断区域。
16.根据权利要求15所述的反向阻断IGBT,还包括:
设置在所述半导体衬底的所述下表面处的p型集电极,
其中,所述反向阻断边缘终端结构被设置在所述半导体衬底的所述上表面处,
其中,所述周界区域中的所述连续p型掺杂区域将所述半导体衬底的所述下表面处的所述p型集电极连接到所述半导体衬底的所述上表面处的所述反向阻断边缘终端结构。
17.根据权利要求16所述的反向阻断IGBT,还包括:
在所述半导体衬底中在所述p型集电极上方且在所述反向阻断边缘终端结构下方设置的n型场截断区域,所述n型场截断区域从所述器件区域横向延伸到所述周界区域中,
其中,所述周界区域中的所述连续p型掺杂区域不中断地垂直地贯穿所述n型场截断区域。
18.根据权利要求15所述的反向阻断IGBT,还包括:
在所述反向阻断边缘终端结构与所述器件区域之间在所述周界区域中设置的正向阻断边缘终端结构,
其中,所述周界区域中的所述连续p型掺杂区域与所述正向阻断边缘终端结构隔离。
19.根据权利要求18所述的反向阻断IGBT,还包括:
在所述反向阻断边缘终端结构与所述正向阻断边缘终端结构之间在所述周界区域中设置的沟道截断器区域,
其中,将所述沟道截断器区域电连接到所述反向阻断IGBT的漂移区电势。
20.根据权利要求15所述的反向阻断IGBT,其中,所述一个或多个沟槽完全贯穿所述周界区域延伸到所述半导体衬底的所述下表面。
21.根据权利要求15所述的反向阻断IGBT,其中,所述p型掺杂物源包括沿着所述一个或多个沟槽的侧壁和底部设置的掺硼硅酸盐玻璃共形层。
22.根据权利要求21所述的反向阻断IGBT,还包括设置在先前的所述一个或多个沟槽的所述侧壁和底部上并且将所述掺硼硅酸盐玻璃共形层与围绕所述一个或多个沟槽的半导体材料分离的氧化物内衬。
23.根据权利要求15所述的反向阻断IGBT,其中,所述p型掺杂物源包括:沿着所述一个或多个沟槽的侧壁和底部设置的掺硼硅酸盐玻璃共形层,以及占据了所述一个或多个沟槽中未被所述掺硼硅酸盐玻璃共形层所占据的空间的掺硼多晶硅。
24.根据权利要求15所述的反向阻断IGBT,其中,仅利用掺硼多晶硅或仅利用掺硼硅酸盐玻璃作为所述p型掺杂物源来填充所述一个或多个沟槽。
25.根据权利要求15所述的反向阻断IGBT,其中,所述一个或多个沟槽包括围绕所述器件区域的单个沟槽。
26.根据权利要求15所述的反向阻断IGBT,其中,所述一个或多个沟槽包括在所述半导体衬底的所述边缘面与所述反向阻断边缘终端结构之间在所述周界区域中的多个沟槽,其中,由半导体材料区域分离所述多个沟槽中的相邻沟槽,并且其中,所述周界区域中的所述连续p型掺杂区域延伸到所述多个沟槽中的相邻沟槽之间的所述半导体材料区域中。
27.根据权利要求26所述的反向阻断IGBT,其中,所述多个沟槽以交错方式布置。
28.一种制造反向阻断IGBT(绝缘栅双极晶体管)的方法,所述方法包括:
在半导体衬底的器件区域中形成多个IGBT单元;
在所述半导体衬底的围绕所述器件区域的周界区域中形成反向阻断边缘终端结构;
在所述半导体衬底的切口区域与所述反向阻断边缘终端结构之间在所述周界区域中蚀刻一个或多个沟槽;
沉积p型掺杂物源,其至少部分地填充所述一个或多个沟槽;
将p型掺杂物从所述p型掺杂物源扩散到围绕所述一个或多个沟槽的半导体材料中,以便在所述半导体衬底的下表面处减薄所述半导体衬底之后在所述周界区域中形成从所述半导体衬底的上表面延伸到所述半导体衬底的下表面的连续p型掺杂区域;
其中所述反向阻断边缘终端结构是横向掺杂变型型边缘终端。
29.一种反向阻断IGBT(绝缘栅双极晶体管),包括:
设置在半导体衬底的器件区域中的多个IGBT单元;
设置在所述半导体衬底的围绕所述器件区域的周界区域中的反向阻断边缘终端结构;
在所述半导体衬底的边缘面与所述反向阻断边缘终端结构之间在所述周界区域中形成的一个或多个沟槽;
至少部分地填充所述一个或多个沟槽的p型掺杂物源;
设置在所述周界区域中并且由从所述p型掺杂物源向外扩散的p型掺杂物形成的连续p型掺杂区域,所述连续p型掺杂区域从所述半导体衬底的上表面延伸到所述半导体衬底的下表面;
其中所述反向阻断边缘终端结构是横向掺杂变型型边缘终端。
CN202211220498.3A 2016-07-29 2017-07-28 反向阻断igbt Pending CN115376917A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/223834 2016-07-29
US15/223,834 US9741570B1 (en) 2016-07-29 2016-07-29 Method of manufacturing a reverse-blocking IGBT
CN201710630022.XA CN107665922A (zh) 2016-07-29 2017-07-28 反向阻断igbt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710630022.XA Division CN107665922A (zh) 2016-07-29 2017-07-28 反向阻断igbt

Publications (1)

Publication Number Publication Date
CN115376917A true CN115376917A (zh) 2022-11-22

Family

ID=59581290

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211220498.3A Pending CN115376917A (zh) 2016-07-29 2017-07-28 反向阻断igbt
CN201710630022.XA Pending CN107665922A (zh) 2016-07-29 2017-07-28 反向阻断igbt

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710630022.XA Pending CN107665922A (zh) 2016-07-29 2017-07-28 反向阻断igbt

Country Status (2)

Country Link
US (2) US9741570B1 (zh)
CN (2) CN115376917A (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10424677B2 (en) * 2017-08-31 2019-09-24 Littelfuse, Inc. Charge carrier extraction inverse diode
CN108172616A (zh) * 2017-12-27 2018-06-15 电子科技大学 恒流器件及其制造方法
CN108183128A (zh) * 2017-12-27 2018-06-19 电子科技大学 恒流器件及其制造方法
CN108183129A (zh) * 2017-12-27 2018-06-19 电子科技大学 恒流器件及其制造方法
CN109346514A (zh) * 2018-11-05 2019-02-15 北京工业大学 一种逆阻igbt的芯片及制造方法
US11568688B2 (en) * 2020-08-25 2023-01-31 Motional Ad Llc Simulation of autonomous vehicle to improve safety and reliability of autonomous vehicle
US11901406B2 (en) * 2021-07-13 2024-02-13 Analog Power Conversion LLC Semiconductor high-voltage termination with deep trench and floating field rings
US20230021169A1 (en) * 2021-07-13 2023-01-19 Analog Power Conversion LLC Semiconductor device with deep trench and manufacturing process thereof
US20230065066A1 (en) * 2021-08-30 2023-03-02 Polar Semiconductor, Llc Transistor with single termination trench having depth more than 10 microns

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9321819D0 (en) * 1993-10-22 1993-12-15 Zetex Plc Mos/bipolar device
US6727527B1 (en) * 1995-07-31 2004-04-27 Ixys Corporation Reverse blocking IGBT
US5698454A (en) 1995-07-31 1997-12-16 Ixys Corporation Method of making a reverse blocking IGBT
DE102004017723B4 (de) 2003-04-10 2011-12-08 Fuji Electric Co., Ltd In Rückwärtsrichtung sperrendes Halbleiterbauteil und Verfahren zu seiner Herstellung
JP4747260B2 (ja) * 2003-04-16 2011-08-17 富士電機株式会社 逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法
JP4292964B2 (ja) * 2003-08-08 2009-07-08 三菱電機株式会社 縦型半導体装置
US7157785B2 (en) 2003-08-29 2007-01-02 Fuji Electric Device Technology Co., Ltd. Semiconductor device, the method of manufacturing the same, and two-way switching device using the semiconductor devices
DE102004060210A1 (de) 2004-12-14 2006-06-29 eupec Europäische Gesellschaft für Leistungshalbleiter mbH Verfahren zur Herstellung einer Trenndiffusionszone
JP4930894B2 (ja) * 2005-05-13 2012-05-16 サンケン電気株式会社 半導体装置
DE102006036347B4 (de) * 2006-08-03 2012-01-12 Infineon Technologies Austria Ag Halbleiterbauelement mit einer platzsparenden Randstruktur
JP5748188B2 (ja) 2009-09-29 2015-07-15 富士電機株式会社 半導体装置
JP5195816B2 (ja) 2010-05-17 2013-05-15 富士電機株式会社 半導体装置の製造方法
JP5218474B2 (ja) * 2010-05-27 2013-06-26 富士電機株式会社 半導体装置
US8558308B1 (en) * 2012-06-14 2013-10-15 Infineon Technologies Austria Ag Method of manufacturing a semiconductor device using a contact implant and a metallic recombination element and semiconductor
US9343528B2 (en) * 2014-04-10 2016-05-17 Semiconductor Components Industries, Llc Process of forming an electronic device having a termination region including an insulating region
US9324784B2 (en) * 2014-04-10 2016-04-26 Semiconductor Components Industries, Llc Electronic device having a termination region including an insulating region
US9293527B1 (en) * 2014-12-03 2016-03-22 Force Mos Technology Co., Ltd. Super-junction trench MOSFET structure
US9391135B1 (en) * 2015-03-23 2016-07-12 Semiconductor Components Industries, Llc Semiconductor device

Also Published As

Publication number Publication date
CN107665922A (zh) 2018-02-06
US20180033627A1 (en) 2018-02-01
US10276708B2 (en) 2019-04-30
US9741570B1 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
US10276708B2 (en) Reverse-blocking IGBT having a reverse-blocking edge termination structure
EP1145326B1 (en) Cellular trench-gate field-effect transistors
US9136324B2 (en) Power semiconductor device and method for manufacturing the same
KR100816253B1 (ko) 트렌치 게이트 전계 효과 트랜지스터 및 그의 제조 방법
TWI396240B (zh) 製造功率半導體元件的方法
US8187941B2 (en) Method of manufacturing semiconductor device
US8940606B2 (en) Method for fabricating trench type power transistor device
US20150145028A1 (en) Semiconductor Device with Cell Trench Structures and Contacts and Method of Manufacturing a Semiconductor Device
US11393736B2 (en) Method of manufacturing a semiconductor device having an integrated pn diode temperature sensor
US20170207334A1 (en) Electronic device of vertical mos type with termination trenches having variable depth
CN105321824B (zh) 半导体装置的制造方法
CN108292682B (zh) 半导体装置以及半导体装置的制造方法
US10672901B2 (en) Power transistor with terminal trenches in terminal resurf regions
JP2013012568A (ja) 半導体装置およびその製造方法
US20040018705A1 (en) Semiconductor structure and method for processing such a structure
KR20150030799A (ko) 반도체 소자 및 그 제조 방법
US8492221B2 (en) Method for fabricating power semiconductor device with super junction structure
US6207974B1 (en) Process for manufacture of a p-channel MOS gated device with base implant through the contact window
US5923065A (en) Power MOSFET device manufactured with simplified fabrication processes to achieve improved ruggedness and product cost savings
US11705506B2 (en) Lateral trench transistor device
KR20180104236A (ko) 전력 반도체 소자의 제조 방법
WO2006082618A1 (ja) 半導体装置およびその製造方法
JP2020038938A (ja) 半導体装置および半導体装置の製造方法
US11417761B1 (en) Transistor structure and method for fabricating the same
KR101483721B1 (ko) 오목한 셀 구조를 갖는 파워 모스펫 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination