CN115364847B - 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用 - Google Patents

具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用 Download PDF

Info

Publication number
CN115364847B
CN115364847B CN202210932854.8A CN202210932854A CN115364847B CN 115364847 B CN115364847 B CN 115364847B CN 202210932854 A CN202210932854 A CN 202210932854A CN 115364847 B CN115364847 B CN 115364847B
Authority
CN
China
Prior art keywords
bivo
photocatalytic
tetragonal phase
catalyst
reduction performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210932854.8A
Other languages
English (en)
Other versions
CN115364847A (zh
Inventor
王朋
戴杜鹃
黄柏标
王泽岩
郑昭科
刘媛媛
程合锋
张倩倩
张晓阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210932854.8A priority Critical patent/CN115364847B/zh
Publication of CN115364847A publication Critical patent/CN115364847A/zh
Application granted granted Critical
Publication of CN115364847B publication Critical patent/CN115364847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用,制备方法,包括如下步骤:将硝酸铋与偏钒酸铵的混合溶液水热反应,在FTO玻璃衬底上外延生长制得四方相BiVO4;通过原位光沉积的方式,将Ag和MnOx助催化剂分别负载于BiVO4材料的还原晶面和氧化晶面上,制得具有光催化CO2还原性能的四方相BiVO4材料。利用衬底SnO2层与外延生长的BiVO4之间的晶格失配应变有效地改变了四方相BiVO4的CB边能级,从而实现了在无牺牲剂存在条件下光催化CO2还原为CO。此外,通过光负载的方式成功制备了Ag‑MnOx共修饰的BiVO4材料。双助催化剂的存在不仅可以促进光生载流子的空间定向分离,还可以充当催化反应活性位点,进一步增强光催化CO2还原性能。

Description

具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和 应用
技术领域
本发明属于光催化技术领域,具体属于光催化CO2还原技术领域,涉及一种具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
过量排放二氧化碳(CO2)导致的温室效应正在加速全球变暖的趋势。各国科学家已经提出了多种降低CO2排放的新策略,例如减少化石燃料消耗、开发绿色清洁能源以及将CO2转化为高附加值化学品(CO和碳氢化合物)等。其中,利用可持续的太阳能通过光催化技术将CO2转化为CO被认为是实现CO2“碳达峰”和“碳中和”的有效途径。到目前为止,各种光催化剂已被开发用于光催化CO2还原,例如TiO2、ZnO、g-C3N4以及CdS等。但在以上述材料作为光催化CO2还原催化剂体系中,空穴牺牲剂是必不可少的,然而牺牲剂的使用会导致额外的能源消耗。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用。利用衬底SnO2层与外延生长的BiVO4之间的晶格失配应变有效地改变了四方相BiVO4的CB边能级,从而实现了在无牺牲剂存在条件下光催化CO2还原为CO。此外,通过光负载的方式成功制备了Ag-MnOx共修饰的BiVO4材料。双助催化剂的存在不仅可以促进光生载流子的空间定向分离,还可以充当催化反应活性位点,进一步增强光催化CO2还原性能。因此,该催化剂材料在实际应用中有着巨大的指导意义。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明提供了一种具有光催化CO2还原性能的四方相BiVO4材料的制备方法,包括如下步骤:
将硝酸铋与偏钒酸铵的混合溶液水热反应,在FTO玻璃衬底上外延生长制得四方相BiVO4
通过原位光沉积的方式,将Ag和MnOx助催化剂分别负载于BiVO4材料的还原晶面和氧化晶面上,制得具有光催化CO2还原性能的四方相BiVO4材料。
第二方面,本发明提供一种具有光催化CO2还原性能的四方相BiVO4材料,由所述制备方法制备而成。
上述本发明的一种或多种实施例取得的有益效果如下:
BiVO4虽然具有优异的稳定性以及无毒、低成本、合适的能带结构以及优异的水氧化性能等特点,然而对于铋基材料而言,相对较正的导带电位(CB>0V,vs.NHE)以及快速复合的光生载流子严重限制了其光催化CO2还原的应用。本发明利用衬底SnO2与外延生长的BiVO4之间的晶格失配,使得BiVO4材料具有光催化CO2还原性能。通过光沉积的方式分别将Ag、MnOx选择性地负载于BiVO4的还原晶面和氧化晶面上,制得具有光生电荷空间定向分离的光催化材料。
本发明制备的双助催化剂修饰的四方相BiVO4光催化剂,同时得益于空间上分离的氧化还原位点以及增强的光生载流子分离效率,在无牺牲剂存在的光催化CO2还原测试过程中展示出最佳的催化活性,在全光照射下,CO生成速率达到了2.08μmol g-1h-1,是未修饰BiVO4材料性能的3.1倍。
本发明的合成方法便捷,通过简单的水热、光沉积等过程即可得到双助催化剂修饰的BiVO4光催化材料。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的XRD和Raman;
图2为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的SEM;
图3为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的X射线光电子能谱(XPS)分析图谱,其中,a为XPS全图谱,b为Bi 4f XPS图谱,c为V 2p XPS图谱,d为O1sXPS图谱,e为Ag 3d XPS图谱,f为Mn 2p XPS图谱;
图4为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的漫反射(DRS)光谱以及XPS价带能谱,其中,a为DRS光谱,b为XPS价带能谱;
图5为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的光电流响应图,阻抗图,LSV图,PL谱和TRPL谱,其中a为光电流响应图,b为EIS Nyquist图,c为LSV图,d为荧光发射光谱,e为TRPL衰减光谱;
图6为实施例1和对比例制备的不同助催化剂修饰的BiVO4光催化剂的光催化性能测试,其中,a为不同Ag负载量性能对比,b为不同助催化剂对性能的影响,c为实施例1循环稳性测试,d为不同测试条件性能对比。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
第一方面,本发明提供了一种具有光催化CO2还原性能的四方相BiVO4材料的制备方法,包括如下步骤:
将硝酸铋与偏钒酸铵的混合溶液水热反应,在FTO玻璃衬底上外延生长制得四方相BiVO4
通过原位光沉积的方式,将Ag和MnOx助催化剂分别负载于BiVO4材料的还原晶面和氧化晶面上,制得具有光催化CO2还原性能的四方相BiVO4材料。
Ag作为一种有效的光催化二氧化碳还原助催化剂,具有优异的产CO选择性和活性,而MnOx作为一种氧化物助催化剂,有利于水氧化反应的发生,二者同时负载可以有效促进光生载流子分离,减少光生电子空穴对的复合以及加速载流子向反应位点处迁移以发生光催化反应。
BiVO4上负载的Ag纳米颗粒与MnOx不仅可以促进光催化剂中的光生载流子分离,还可以促进光生电子和空穴向活性位点迁移,加速表面反应的发生,从而提高二氧化碳还原性能。
在一些实施例中,负载Ag助催化剂时,是在乙醇溶液中进行,AgNO3的浓度为1-10mg mL-1,光沉积时间为5-15min。
优选的,AgNO3的浓度为5mg mL-1,光沉积时间为10min。
优选的,乙醇溶液的浓度为18-22vol%,优选为20vol%。具体可以为:18vol%、19vol%、20vol%、21vol%、22vol%。
优选的,在四方相BiVO4上负载的Ag纳米颗粒的质量分数为1-5wt%,优选为3wt%。具体可以为1wt%、2wt%、3wt%、4wt%、5wt%。光催化剂中Ag助催化剂的质量占比影响还原CO2时活性位点数量,进而对光催化材料的催化性能产生影响。
在一些实施例中,负载MnOx氧化助催化剂时,是在KIO3溶液中进行,Mn(NO3)2的浓度为1-5mg mL-1,光沉积时间为1-10min。
优选的,KIO3溶液的浓度为0.03-0.07M,进一步优选为0.05M。
优选的,Mn(NO3)2的浓度为3mg mL-1,光沉积时间为5min。
助催化剂在光沉积过程中定向沉积到反应位点,促进更高效的光催化反应。
在一些实施例中,还包括将助催化剂负载后得到的物质进行洗涤的步骤。光沉积后用去离子水与无水乙醇进行洗涤并烘干,以去除表面残留的可溶性物质。
第二方面,本发明提供一种具有光催化CO2还原性能的四方相BiVO4材料,由所述制备方法制备而成。
第二方面,本发明提供了所述双助催化剂修饰的BiVO4(Ag-MnOx-BVO)催化剂的制备方法,包括如下步骤:以BiVO4光催化剂为基体,首先在乙醇溶液中(20%vol%),加入AgNO3溶液作为前驱体,光照10min,进行光沉积还原助催化剂Ag;然后在KIO3溶液中,加入Mn(NO3)2溶液,光照过程5min中进行光沉积氧化助催化剂MnOx;最后将所得光催化剂用去离子水和乙醇冲洗干净并烘干。
下面结合实施例对本发明作进一步说明。
实施例1
一种双助催化剂修饰的四方相BiVO4光催化剂及其制备方法,包括如下步骤:
(1)将3mmol的Bi(NO3)3·5H2O溶解于60mL HNO3(2M)溶液中,再在溶液中加入3mmol的C10H14N2Na2O8,并剧烈搅拌30min,得到溶液A;
(2)将3mmol的NH4VO3溶解于60mL NaOH(2M)溶液中,再在溶液中加入3mmol的C10H14N2Na2O8,并剧烈搅拌30min,得到溶液B;
(3)将上述A,B溶液混合搅拌30min后,洁净的FTO玻璃被放入其中,随后160℃水热12h得到四方相BiVO4
(4)将外延生长得到的BiVO4置于乙醇溶液中(20%vol%),加入AgNO3溶液作为前驱体,光照过程10min中进行光沉积还原助催化剂Ag;然后在KIO3溶液中,加入Mn(NO3)2溶液,光照5min过程中进行光沉积氧化助催化剂MnOx;最后将所得光催化剂用去离子水和乙醇冲洗干净并烘干,得到双助催化剂修饰的四方相BiVO4样品。
对比例1
与实施例1不同的是,仅单独加入AgNO3溶液进行光负载。
对比例2
与实施例1不同的是,仅单独加入Mn(NO3)2溶液进行光负载。
对比例3
纯BiVO4的制备,与实施例1不同的是水热得到后的样品不再进行光负载。
对于实施例1、对比例1、对比例2和对比例3所制备样品的光电化学测试采用标准的三电极体系,以0.1M磷酸盐缓冲液(pH=7)溶液为电解质,旋涂有催化剂的FTO玻璃作为工作电极,Ag/AgCl和Pt片分别作为参比电极和对电极。一个配有AM1.5截止滤波片300W的氙灯被作为测试光源。线性扫描伏安法的扫描速率为10mV·s-1,在0V的工作电压下测试电化学阻抗。不同气氛下的LSV曲线在测试前高纯Ar和CO2分别排气30min以去除电解液中溶解的O2
光催化CO2还原测试:
1、试验方法:
光催化CO2还原反应以气-固异相反应模式进行。首先将光催化剂(10mg)分散到带石英盖的反应器中,随后向反应器中加入1mL的纯水以提供水蒸气作为电子供体。最后用高纯度CO2吹扫反应器20min后密封反应器。使用300W氙灯(PLS-SXE300)在紫外-可见光照射下进行光催化测试,反应系统连接冷却循环水,使系统温度保持在298K。每隔1小时从反应器中抽出0.2mL产物气体,并使用配备有火焰离子化检测器(FID)的色谱仪(GC-7920)检测产物。
2、试验结果:
实施例1和各对比例制备的不同助催化剂修饰的BiVO4光催化剂的XRD和Raman如图1所示。可以看到实施例和各对比例得到的产品均保持着相似晶体结构。
实施例1和各对比例制备的纯BiVO4和制备的不同助催化剂修饰的BiVO4光催化剂的扫描电镜(SEM)如图2所示,可以看到Ag和MnOx分别选择性地负载于BiVO4的顶面和侧面。
实施例1和各对比例制备的纯BiVO4和制备的不同助催化剂修饰的BiVO4光催化剂的光电子能谱(XPS)如图3所示。根据XPS光谱结果,可以推断Ag和MnOx均负载在与BiVO4样品中,证明双助催化剂修饰的BiVO4样品的成功制备。
图4为实施例1和各对比例制备的不同助催化剂修饰的BiVO4光催化剂的漫反射(DRS)光谱以及XPS价带能谱。其中图4a描绘了所制备样品的紫外可见漫反射光谱(DRS),由于Ag和MnOx沉积在BiVO4的表面,吸收边缘没有变化,位于440nm附近。然而,对于Ag-BVO和Ag-MnOx-BVO样品,在450-800nm范围内有明显的吸收尾,这是由于沉积的Ag纳米颗粒增强了光吸收。根据Tauc曲线公示可以计算得到BVO的带隙为2.86eV(图4a的插图)。此外,如图4b所示样品的价带最大值(VBM)为2.01eV。因此,通过公式E=φ+x-4.44(x是VBM的接触电势,φ是仪器功函数,为4.54eV),确认VBM vs.NHE的值为2.11eV。另外,根据公式Eg=EVB-ECB(EVB:价带电位,ECB:导带电位),估计Ag-MnOx-BVO的CB位置为-0.75eV。因此,所制备的四方Ag-MnOx-BVO具有利用H2O作为电子供体光催化还原CO2的能力。
为了探究催化性能提高的原因,首先对实施例1和各对比例所制备的样品进行了光电化学测试。如图5a所示,Ag-MnOx-BVO的光电流响应显着高于BVO和单个助催化剂Ag或MnOx负载的BVO样品,表明Ag-MnOx-BVO样品在辐照下具有更有效的电荷载流子分离效率。如图5b所示,电化学阻抗谱(EIS)测试表明,Ag-MnOx-BVO的电荷转移电阻在BVO基样品中最小,以最小的半圆半径表示。这些结果表明,Ag和MnOx助催化剂的协同作用是光催化剂主体中有效光生载流子分离的原因。同时,与Ar气氛相比,Ag-MnOx-BVO样品在CO2气氛中具有更高的光电流,表明Ag-MnOx-BVO优异的光电相应性能源于CO2还原(图5c)。此外,光致发光(PL)和时间分辨PL(TRPL)测量可用于揭示光激发下光生载流子的分离能力。在图5d中检测到不同样品的PL光谱。Ag-BVO、MnOx-BVO和Ag-MnOx-BVO样品的荧光强度比BVO弱,表明助催化剂有利于抑制光生载流子的复合并促进电荷分离。如图5e所示,Ag-MnOx-BVO样品的平均寿命为0.60ns,低于纯的BiVO4和其他单个助催化剂改性样品的平均寿命。较短的载流子寿命表明助催化剂有利于电荷载流子向反应位点快速迁移以参与表面催化反应。
BVO、Ag-BVO、MnOx-BVO和Ag-MnOx-BVO样品的光催化性能在300W Xe灯照射下以水蒸气为电子供体进行了评估。如图6a所示,由于本体光催化剂中严重的光生载流子复合,纯的BVO样品的光催化CO2还原性能较差(0.67μmol g-1h-1)。负载Ag纳米粒子后,样品表现出更高的CO生成率,其中3%Ag-BVO达到最佳的CO2还原性能(1.81μmol g-1h-1),表明Ag纳米粒子作为助催化剂可以捕获光生电子并增强CO2还原效率。此外,如图6b所示,与纯的BVO相比,负载MnOx亦可以提高光催化CO2还原性能,尽管不如Ag纳米粒子那么明显。然而,在同时沉积Ag纳米颗粒和MnOx后,CO生成率进一步提高到2.08μmol g-1h-1,这可归因于双助催化剂的协同效应导致光生载流子的有效分离和定向转移。此外,还进行了循环测试以评估催化剂的稳定性。图5c为Ag-MnOx-BVO样品经过4个循环后的光稳定性测试结果,辐照16h后没有明显的活性衰减。在对照实验中(图5d),在没有辐照或Ag-MnOx-BVO样品的情况下几乎没有检测到产物,表明CO2还原需要光催化剂和光照同时存在,这证实了该光催化过程的发生。此外,高纯Ar置换反应体系中的CO2时,产物中检测到产生的微量CO,这可能是由于反应体系中CO2置换不完全所致。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种具有光催化CO2还原性能的四方相BiVO4材料在光催化CO2还原中的应用,其特征在于:所述四方相BiVO4材料的制备方法包括如下步骤:
将硝酸铋与偏钒酸铵的混合溶液水热反应,在FTO玻璃衬底上外延生长制得四方相BiVO4
通过原位光沉积的方式,将Ag和MnOx助催化剂分别负载于BiVO4材料的还原晶面和氧化晶面上,制得具有光催化CO2还原性能的四方相BiVO4材料;
负载Ag助催化剂时,是在乙醇溶液中进行,AgNO3的浓度为1-10 mg mL-1,光沉积时间为5-15 min;
负载MnOx氧化助催化剂时,是在KIO3溶液中进行,Mn(NO3)2的浓度为1-5 mg mL-1,光沉积时间为1-10 min;
在四方相BiVO4上负载的Ag纳米颗粒的质量分数为1-5 wt%。
2.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料在光催化CO2还原中的应用,其特征在于:AgNO3的浓度为5 mg mL-1,光沉积时间为10 min。
3.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:乙醇溶液的浓度为18-22 vol%。
4.根据权利要求3所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:乙醇溶液的浓度为20 vol%。
5.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:在四方相BiVO4上负载的Ag纳米颗粒的质量分数为为3 wt%。
6.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:KIO3溶液的浓度为0.03-0.07 M。
7.根据权利要求6所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:KIO3溶液的浓度为0.05 M。
8.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:Mn(NO3)2的浓度为3 mg mL-1,光沉积时间为5 min。
9.根据权利要求1所述的具有光催化CO2还原性能的四方相BiVO4材料的制备方法,其特征在于:还包括将助催化剂负载后得到的物质进行洗涤的步骤。
CN202210932854.8A 2022-08-04 2022-08-04 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用 Active CN115364847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210932854.8A CN115364847B (zh) 2022-08-04 2022-08-04 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210932854.8A CN115364847B (zh) 2022-08-04 2022-08-04 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115364847A CN115364847A (zh) 2022-11-22
CN115364847B true CN115364847B (zh) 2023-07-28

Family

ID=84062866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210932854.8A Active CN115364847B (zh) 2022-08-04 2022-08-04 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115364847B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824243A (zh) * 2017-01-25 2017-06-13 东南大学 Z型BiVO4‑Au/g‑C3N4光催化材料的制备及其光催化还原CO2的应用
CN108855077A (zh) * 2018-05-30 2018-11-23 陕西科技大学 Ag-BiVO4晶面/MnOx晶面BiVO4光催化剂及其制备方法
CN110721698B (zh) * 2019-11-29 2020-11-13 中南大学 一种钒酸铋/钒酸铜复合光催化剂及其制备方法和应用
CN111001407B (zh) * 2019-12-28 2022-09-16 泉州师范学院 一种ZnO/Au/MnOx光催化剂的制备方法
CN112516992B (zh) * 2020-12-14 2022-04-22 三峡大学 一例基于钒酸铋复合材料的制备方法及应用
CN113600210B (zh) * 2021-06-23 2023-09-19 淮北师范大学 一种原位生长的三元复合光催化剂及其制备方法和应用
CN114452969B (zh) * 2022-01-21 2023-05-30 山东大学 一种双助催化剂负载的光催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN115364847A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Maeda Metal‐complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Guan et al. CdS@ Ni 3 S 2 core–shell nanorod arrays on nickel foam: a multifunctional catalyst for efficient electrochemical catalytic, photoelectrochemical and photocatalytic H 2 production reaction
CN110947376B (zh) 单原子贵金属锚定缺陷型WO3/TiO2纳米管、其制备和应用
CN112521618B (zh) 一种铋基金属有机框架材料及其制备方法和应用
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
CN109174144B (zh) Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN112675831A (zh) Mof衍生的氧化锌复合二氧化钛异质结的制备方法及光电分解水应用
CN111348728B (zh) 一种MOF和HrGO共修饰的钒酸铋电极及其制备方法和应用
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
Li et al. Rare earth perovskite modified cobalt disulfide catalysts controlled by reaction solvent synthesis to form a pn heterojunction
Selvaratnam et al. TiO2-MgO mixed oxide nanomaterials for solar energy conversion
Pan et al. Enhanced photocatalytic CO 2 conversion over LaPO 4 by introduction of CoCl 2 as a hole mediator
Jiang et al. ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production
Chen et al. Porous TiWO3/SrWO4 with high titanium molar ratio for efficient photoelectrocatalytic nitrogen reduction under mild conditions
Shi et al. Improved photocatalytic activity of Bi2MoO6 by modifying the halogen ions (Cl−, Br−, or I−) for photoreduction of N2 into NH3
CN113600221A (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用
CN115364847B (zh) 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用
CN108855222B (zh) ZCS@Ni-MOF纳米复合材料及其制备和应用
CN111330568A (zh) 碳布负载原位生长非贵金属Bi修饰BiVO4柔性易回收光催化材料、制备方法及其应用
CN114452969B (zh) 一种双助催化剂负载的光催化剂及其制备方法与应用
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
CN113403642B (zh) BiVO4/Co1-XS复合光电极的制备方法及其应用
CN113413907B (zh) 一种复配型近红外光光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant