CN112516992B - 一例基于钒酸铋复合材料的制备方法及应用 - Google Patents

一例基于钒酸铋复合材料的制备方法及应用 Download PDF

Info

Publication number
CN112516992B
CN112516992B CN202011466684.6A CN202011466684A CN112516992B CN 112516992 B CN112516992 B CN 112516992B CN 202011466684 A CN202011466684 A CN 202011466684A CN 112516992 B CN112516992 B CN 112516992B
Authority
CN
China
Prior art keywords
composite material
bismuth
vanadate
solution
bismuth vanadate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011466684.6A
Other languages
English (en)
Other versions
CN112516992A (zh
Inventor
侯东芳
黄磊
甘生龙
乔秀清
李东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202011466684.6A priority Critical patent/CN112516992B/zh
Publication of CN112516992A publication Critical patent/CN112516992A/zh
Application granted granted Critical
Publication of CN112516992B publication Critical patent/CN112516992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明是基于钒酸铋复合材料的制备方法及其应用,采用一锅法制备含钒酸铋和氧化铋的纳米复合材料,公开了一例基于钒酸铋的多功能型光催化剂的制备方法及其在CO2吸附及还原得到太阳能燃料、重金属离子Cr(VI)还原和气相NO去除中的应用。属于纳米材料制备技术及能源环保领域。本发明采用溶剂热法,利用五水合硝酸铋和钒酸铵为原料,通过一锅法合成桑葚状的钒酸铋与氧化铋的复合材料。得到的纳米复合材料结构良好,很好地提升了其对CO2的吸附性能,并且实现了光生载流子的加速迁移和有效空间分离。该纳米复合材料在能源及环境光催化中显示出优异的催化活性。

Description

一例基于钒酸铋复合材料的制备方法及应用
技术领域
本发明属于纳米材料制备技术及能源和环境保护应用领域,具体涉及钒酸铋基复合材料的制备方法及其在光催化CO2还原、六价铬离子还原及氮氧化合物去除中的应用。
背景技术
化石燃料过度消耗会释放出大量CO2,导致了严重的能源危机和环境问题,如气温升高。全球气候变暖被认为是人类最急需解决的环境问题之一。六价铬Cr(Ⅵ)化合物在各个不同的工业领域和生产过程中都有着非常广泛的应用,譬如颜料生产、制革、金属表面处理、电镀等,使得有毒有害Cr(Ⅵ)可能被残留到环境中来。随着社会的发展,居民汽车拥有量不断增加,汽车尾气中的氮氧化物的大量排放,会使人出现刺激反应,出现上眼睛等部位的健康问题。所有这些能源与环境的问题正在逐渐威胁着人类自身的生存,亟待寻找高效、方便、绿色的方法来应对。太阳能取之不尽、用之不竭,基于开发高效低成本的催化剂的光催化技术是解决能源危机和全球变暖问题的一种很有前途的优选方案。高效催化剂,可以有效提高CO2光还原为太阳燃料(如CH4和CO等)的整体效率,同时也能够提高光催化去除NO和光催化还原六价铬的活性。钒酸铋由地球储量丰富的元素组成,禁带宽度约为2.4 eV的n型半导体,由于其在可见光下的高活性是非常有吸引力的光催化材料,然而由于其本身的电荷载流子复合,原始的钒酸铋光催化活性仍不理想,亟待提高。基于钒酸铋构筑结构合理的p-n异质结构,在两者间形成内建电场,能够促使光生载流子的快速传输和有效的空间分离,从而促进还原或氧化反应的进行,使得复合催化剂的光催化性能得到显著改善。是一种具有极大前景的光催化材料。为同时解决不同的能源和环境问题,从实际应用的角度考虑,单一功能的材料不利于成本的降低,社会急需要多功能型复合材料,可以同时兼具优异的还原性能和氧化性能,以应用于不同的领域。
发明内容
针对上述问题,本发明提供了一例基于钒酸铋的复合材料的制备方法,并将其应用于光催化还原CO2、六价铬和去除氮氧化合物反应。通过氧化铋的协同作用,增加催化剂的吸附位点和活性位点,提高光生载流子的分离和运输效率,从而提高钒酸铋的光催化性能。除此之外,钒酸铋基复合光催化剂的合成方法比较简单,并且所制备的催化剂相对稳定,具有优异的光催化性能。
本发明以钒酸铋和氧化铋为候选材料,合成了一系列的BiVO4-Bi2O3纳米复合材料。
为实现上述目的,本发明采用的技术方案为:
本实验采用一步溶剂热方法得到BiVO4-Bi2O3复合纳米材料。通过控制Bi与V不同的摩尔比例合成了不同比例的BiVO4-Bi2O3。从而得到新型BiVO4-Bi2O3复合光催化剂,其中,五水合硝酸铋、钒酸铵的摩尔比为(1-1.5):1,优选方案为1.2:1。
本发明所述的具有优异光催化性能的BiVO4-Bi2O3纳米复合光催化剂的制备方法包括以下几个步骤:
(1)称取钒酸铵分散于水中,搅拌至完全溶解,记为溶液A;再称取不同质量的五水合硝酸铋分散在乙二醇中,标记为溶液B,Bi/V的摩尔比例为(1-1.5):1,将其搅拌至完全溶解。将B溶液逐滴滴入溶液A中,搅拌至完全混合均匀,将混合溶液转移至聚四氟乙烯反应釜内衬中。
(2)将步骤(1)中得到的均匀混合溶液加盖密封加热晶化,产物高速离心收集,得到产物BiVO4-Bi2O3为大小均匀的桑葚状椭球体,长轴长约为2.7 μm,短轴长约为600 nm。
(3)将步骤(2)得到的材料用去离子水和无水乙醇交替洗涤多次,然后在真空干燥箱中干燥,收集产物待用。
本发明还提供三种将BiVO4-Bi2O3纳米复合催化剂应用于光催化还原和氧化的研究方法,包括以下三种:
(1)本发明提供一种将BiVO4-Bi2O3纳米复合催化剂应用于光催化CO2还原上的应用,具体方法包括如下:在可见光照射下,在封闭石英反应系统中进行了光催化CO2转化的实验,通过冷却循环水将反应体系的温度保持在30 ℃,反应前,将反应器用高纯的CO2连续吹扫15min以确保完全除去空气,以420 nm滤光片(CEL-HXF300)的300 W氙弧光灯为光源,采用气相色谱法(岛津,GC-2014)进行气相产物分析。CH4和CO的最大产量分别为13.16 μmol/g/4h和1.54 μmol/g/4h。
(2)本发明提供一种将BiVO4-Bi2O3纳米复合催化剂应用于光催化Cr(VI)还原上的应用。具体步骤包括如下:Cr(VI)的光催化还原实验是利用重铬酸钾(K2Cr2O7)溶液(浓度为30 mg/L)模拟含Cr(VI)的工业废水,反应器外部有循环冷却水套将反应温度维持在室温,在可见光波段>420 nm) 对水中Cr(VI)进行光催化还原。在光照50 min后还原比例就达到了100%。
(3)本发明将提供一种将BiVO4-Bi2O3纳米复合催化剂应用于光催化去除氮氧化合物(NO)上的应用。具体步骤包括如下:将浓度为50 ppm的NO(N2平衡)气体通入光催化反应器中并稀释至600 ppb或以下,气体流速控制在1000 ml/min,反应器出口连接到NOx分析仪。反应器出口的NOx分析仪每隔1min进行采样检测并记录,待数据稳定后,即NO浓度达到平衡,以可见光波段对其进行辐照。反应器中的气流会经过NOx检测仪,记录NO和NOx的浓度,活性最佳的样品在光照十分钟后就去除了60%,每克催化剂约去除了1.35 ml NO气体。
反应机理:本发明的技术方案采用的桑葚状BiVO4-Bi2O3复合p-n结材料在光催化CO2还原中表现出优异的光催化活性。氧化铋的引入对材料的光催化性能的提升起到了至关重要的作用。通过Bi2O3的协同作用,扩大了光催化剂材料对CO2的吸附量,同时,提高光生载流子的分离效率与运输效率。此外,氧化铋的引入大大缩短了光生电子-空穴对的迁移时间,大幅度提高了光生载流子的传输效率和分离效率,提高了光催化Cr(VI)还原及光催化去除NO的活性。因此,本工作为设计低成本,高活性的多功能型光催化材料提供了可鉴之本。
此外,BiVO4-Bi2O3光催化剂在可见光照射下具有很好的稳定性和良好的可回收性。
附图说明
图1为实施例1制得的基于钒酸铋的复合光催化剂的X射线衍射图。
图2为实施例1制得的基于钒酸铋的复合光催化剂的扫描电镜图。
图3为实施例1制得的基于钒酸铋的复合光催化剂的透射电镜图。
图4为实施例1制得的基于钒酸铋的复合光催化剂的紫外-可见漫反射光谱图。
图5为实施例1制得的基于钒酸铋的复合光催化剂的CO2吸附图谱。
图6为实施例1制得的基于钒酸铋的复合光催化剂的光电流图。
图7为实施例1制得的基于钒酸铋的复合光催化剂的交流-阻抗图。
图8为实施例1制得的基于钒酸铋的复合光催化剂的光催化CO2还原性能柱状图。
图9为实施例1制得的基于钒酸铋的复合光催化剂的光催化六价铬还原性能图。
图10为实施例1制得的基于钒酸铋的复合光催化剂的光催化去除氮氧化合物性能图。
具体实施方式
下面结合具体实施案列,进一步阐述本发明,应理解这些实施案例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
(1)分别称取7份等量的(0.234 g)钒酸铵,将其分别分散在10 ml的去离子水中,搅拌30 min至溶液完全成透明状,并将其记为溶液A;再称取7份不同质量的五水合硝酸铋,使得Bi/V的摩尔比例分别为1:1,1.05:1,1.1:1,1.15:1,1.2:1,1.3:1,1.5:1,将其分别溶解于20 ml的乙二醇中,充分搅拌30 min至完全溶解,将其记为溶液B。
(2)将步骤(1)得到的溶液B分别用滴管逐滴加入到溶液A中,待滴加完成后,分别将其继续高速搅拌30 min以确保溶液A和溶液B混合均匀,将得到的悬浮液转移到50 mL的聚四氟乙烯反应釜内衬中,于160℃烘箱中加热晶化24 h。待冷却至室温,分别用去离子水和无水乙醇交替洗涤多次,以确保将杂质和有机物残留洗涤干净,然后在80℃真空干燥箱中干燥,收集产物并将其研磨为粉末状。样品分别记为BVO-1、BVO-2、BVO-3、BVO-4、BVO-5、BVO-6、BVO-7。图1为合成材料的X射线衍射图,可以看出,复合材料中有明显的钒酸铋的衍射峰,在BVO-2、BVO-3和BVO-4中很难找到氧化铋的衍射峰,因为氧化铋的引入量很少。随着铋钒比的增大,BVO-5中Bi2O3的衍射峰首先在32.8°处出现,峰的强度随着Bi/V的增大而增大,说明复合材料确为钒酸铋与氧化铋的复合材料,另外,复合材料中钒酸铋特征峰与纯钒酸铋一致,说明氧化铋的加入并没有改变钒酸铋原本的晶格结构。图2-3为合成材料的扫描电镜图及透射电镜图,可知复合材料为明显的椭球体并且呈现出桑葚状,其中其长轴长约为2.7μm,短轴长约为600 nm。图3透射图中明显看出复合材料是由一些不规则的颗粒聚集成为的椭球体,且由高分辨可知氧化铋的晶格间距为0.32 nm,这对应于氧化铋的(111)晶面,可进一步验证成功引入了氧化铋,即本方案成功合成了BiVO4-Bi2O3复合材料。图4为实施例1制得的基于钒酸铋的复合光催化剂的紫外-可见漫反射光谱图,图中,从上到下的曲线依次是BVO-2、BVO-1、BVO-3、 BVO-4、BVO-5、BVO-6、BVO-7,从图4中可以看出图4为所合成材料的紫外-可见漫反射光谱图,可以看出BiVO4比例的增加,整体吸收边缘显示了蓝移的趋势,钒酸铋的吸收边为520 nm,是几乎所有催化剂中最大的,表明其吸收可见光显示一个下降的趋势,但下降的范围并不大,并且影响二氧化碳光催化还原性能主要因素在于材料对二氧化碳的吸附和活化。因此复合材料的吸光性降低,对材料的光催化性能影响很小。同时,实验结果表明,Bi2O3和BiVO4的复合是成功的。
实施例2
(1)将实施例1中得到的复合材料催化剂进行可见光的光催化CO2还原实验。
(2)在可见光照射下,在封闭石英反应器中进行了光还原CO2实验,通过外加循环水系统将整个反应系统的反应温度始终保持在30 ℃,将20 mg催化剂分散在直径为30 mm的玻璃培养皿中,加入2 ml的去离子水,将其超声均匀,并在80 ℃下进行干燥,使得催化剂均匀的平铺于培养皿底部。将催化剂置于反应器中的玻璃圆柱台上,并在反应器底部加入1ml的去离子水。将反应器完全密封,用高纯的CO2(99.999%)吹扫反应器15 min,以确保反应器内完全充满CO2并且空气被完全排空,所用反应器的容积为300 ml,完全充满高纯度CO2。反应过程中不添加任何牺牲剂和光敏剂。以420 nm滤光片(CEL-HXF300)的300 W氙弧光灯为光源,采用气相色谱法(岛津,GC-2014)进行产物分析。
图5为实施例1制得的基于钒酸铋的复合光催化剂的CO2吸附图谱。从图中可以看出,复合之后材料的CO2最大吸附量为1.29 cm3/g,有了明显的提升,约为纯的钒酸铋的2.3倍。
图6为实施例1制得的基于钒酸铋的复合光催化剂的光电流图。图中从上到下依次是BVO-1、BVO-5;图7为实施例1制得的基于钒酸铋的复合光催化剂的交流-阻抗图。图中从外到内依次是BVO-1、BVO-2、BVO-3、BVO-7、BVO-6、BVO-4、BVO-5,从图中可以看出,采用光电化学方法对所合成材料进行表征,可以看出,引入氧化铋后,光生载流子分离效率明显提高,从而使得光催化性能提高,各种表征结果皆与图8,图9,图10的性能图相对应。
光照开始后,每隔1小时取样一次,得到图8所示CO2转化性能柱状图。可以得出,当Bi与V的摩尔比例为1.2:1时,甲烷的产量为13.16μmol/g/4h,这比纯的钒酸铋高出约47倍,CO的产量为1.54μmol/g/4h,这比纯的钒酸铋高出约25.7倍。
实施例3
(1)将实施例1中得到的复合材料催化剂进行可见光的光催化Cr(VI)还原实验。
(2)在可见光照射下,在反应器中进行了光还原Cr(VI)实验,通过外加循环水系统将整个反应系统的反应温度始终保持在室温,将40mg催化剂分散在50 mL 重铬酸钾(K2Cr2O7)溶液(质量浓度为30 mg/L)中,辐照前,将悬浮液在黑暗中搅拌80 min,直到达到吸附解吸平衡。可见光光源采用500 W氙灯和420 nm的截止滤波器。在一定的时间间隔内,从反应槽中取出3 ml的悬浮液,离心去除光催化剂,在540 nm处用紫外可见光谱法测定Cr(VI)浓度。得到图9所示六价铬还原性能图,实验测得活性最佳样品(Bi:V=1.2)仅在50 min就可将六价铬100%还原。
实施例4
(1)将实施例1中得到的复合材料催化剂进行可见光的光催化降解氮氧化合物(NO)实验。
(2)通过在连续流反应器中降解低浓度的氮氧化合物(NO)评价材料的光催化降解氮氧化合物(NO)的性能。将浓度为50 ppm的NO(N2平衡)气体通入光催化反应器中并稀释至将浓度为600 ppb,流速为1000 ml/min接入反应器中,反应器出口连接有NOx分析仪。将100mg复合光催化剂置于4.5 L长方体光催化反应器中,待NO的浓度达到平衡,打开光源,采用可见光进行辐照,记录NO和NOx的浓度,得到图10所示NO降解性能图,图中从外到内依次是BVO-1、BVO-2、BVO-3、BVO-4、BVO-7、BVO-6、BVO-5。

Claims (3)

1.钒酸铋复合材料BiVO4-Bi2O3在光催化还原CO2产CO及甲烷上的应用,其特征在于,钒酸铋复合材料的制备方法,包括如下步骤:
称取钒酸铵加入水中,超声至分散均匀,记为溶液A,再称取五水合硝酸铋加入乙二醇溶液中,记为溶液B,五水合硝酸铋、钒酸铵的摩尔比为1-1.5:1;
将溶液B逐滴加入至溶液A中,使其混合均匀,将混合均匀的溶液转移至聚四氟乙烯反应釜内衬中,在150-180 ℃下溶剂热反应12-36 h,反应产物经冷却、水和乙醇交替清洗、干燥得到基于钒酸铋复合材料,所述的复合材料为BiVO4-Bi2O3复合材料。
2.根据权利要求1所述的应用,其特征在于,在可见光照射下,将复合材料分散于含有去离子水的玻璃培养皿中,将其烘干成膜后置于反应器中下进行光催化CO2还原反应,反应器底部添加有去离子水。
3.根据权利要求1所述的应用,其特征在于,五水合硝酸铋、钒酸铵的摩尔比为1.2 :1。
CN202011466684.6A 2020-12-14 2020-12-14 一例基于钒酸铋复合材料的制备方法及应用 Active CN112516992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011466684.6A CN112516992B (zh) 2020-12-14 2020-12-14 一例基于钒酸铋复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011466684.6A CN112516992B (zh) 2020-12-14 2020-12-14 一例基于钒酸铋复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112516992A CN112516992A (zh) 2021-03-19
CN112516992B true CN112516992B (zh) 2022-04-22

Family

ID=74999491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011466684.6A Active CN112516992B (zh) 2020-12-14 2020-12-14 一例基于钒酸铋复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112516992B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115364847B (zh) * 2022-08-04 2023-07-28 山东大学 具有光催化CO2还原性能的四方相BiVO4材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772134A (zh) * 2015-03-31 2015-07-15 浙江师范大学 一种大量制备介孔BiVO4/Bi2O3复合微棒p-n结光催化剂的方法
CN110354840A (zh) * 2019-08-02 2019-10-22 重庆大学 一种制备β-Bi2O3/BiVO4复合光催化材料的新方法
CN110368924A (zh) * 2019-07-22 2019-10-25 中山大学 一种钛酸铋/铋/钒酸铋复合物光催化剂及其在光热催化净化有机气体污染物中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772134A (zh) * 2015-03-31 2015-07-15 浙江师范大学 一种大量制备介孔BiVO4/Bi2O3复合微棒p-n结光催化剂的方法
CN110368924A (zh) * 2019-07-22 2019-10-25 中山大学 一种钛酸铋/铋/钒酸铋复合物光催化剂及其在光热催化净化有机气体污染物中的应用
CN110354840A (zh) * 2019-08-02 2019-10-22 重庆大学 一种制备β-Bi2O3/BiVO4复合光催化材料的新方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"One-pot Hydrothermal Synthesis of Bi2O3/BiVO4 Composites with Highly Efficient Visible-light Photocatalytic Activity";Wentao Yi et al;《Advances in Engineering Research》;20181231;第1124页 *
"钒酸铋及其复合物可见光催化剂的合成与光催化性能的研究";程亚飞;《中国优秀硕士学位论文全文数据库》;20160615;第35页 *

Also Published As

Publication number Publication date
CN112516992A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Sun et al. Ag and TiO2 nanoparticles co-modified defective zeolite TS-1 for improved photocatalytic CO2 reduction
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
Gong et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Zhang et al. Boosted photocatalytic nitrogen fixation by bismuth and oxygen vacancies in Bi 2 MoO 6/BiOBr composite structures
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
Wang et al. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B
Xin et al. Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method
CN109317137B (zh) 一种水滑石与钼酸铋异质结复合光催化剂及其制备方法和应用
Dai et al. Magnetic ZnFe2O4@ ZnSe hollow nanospheres for photocatalytic hydrogen production application
Huang et al. In-situ fabrication of novel BiOCl/Bi5O7I 2D/3D heterostructures with enhanced photocatalytic activity
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
CN110624566B (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
Han et al. An ion exchange strategy to BiOI/CH3COO (BiO) heterojunction with enhanced visible-light photocatalytic activity
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
CN112516992B (zh) 一例基于钒酸铋复合材料的制备方法及应用
Liu et al. Ternary photocatalysts based on MOF-derived TiO 2 co-decorated with ZnIn 2 S 4 nanosheets and CdS nanoparticles for effective visible light degradation of organic pollutants
Qu et al. A new visible-light-induced Z-scheme photocatalytic system: Er3+: Y3Al5O12/(MoS2/NiGa2O4)-(BiVO4/PdS) for refractory pollutant degradation with simultaneous hydrogen evolution
Shi et al. Improved photocatalytic activity of Bi2MoO6 by modifying the halogen ions (Cl−, Br−, or I−) for photoreduction of N2 into NH3
CN109772394A (zh) 磷掺杂碳/氧化亚铜复合催化剂及其制备方法和应用
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
CN111715287B (zh) Zif-67/go光催化-光热复合薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant