CN115350717A - 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法 - Google Patents

磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法 Download PDF

Info

Publication number
CN115350717A
CN115350717A CN202211003893.6A CN202211003893A CN115350717A CN 115350717 A CN115350717 A CN 115350717A CN 202211003893 A CN202211003893 A CN 202211003893A CN 115350717 A CN115350717 A CN 115350717A
Authority
CN
China
Prior art keywords
molybdenum disulfide
cadmium ferrite
magnetic
ferrite nano
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211003893.6A
Other languages
English (en)
Inventor
张娅
季平
王宏归
雍紫馨
杨馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202211003893.6A priority Critical patent/CN115350717A/zh
Publication of CN115350717A publication Critical patent/CN115350717A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公一种磁性二硫化钼‑铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法,本发明首要目的是提出一种具有可见光光催化性能的磁性二硫化钼‑铁酸镉纳米复合物的制备方法。本发明另一目的是磁性二硫化钼‑铁酸镉纳米复合物在可见光下催化降解抗生素提供了一种有效的途径。本发明中二硫化钼的用量过高过低都不利于光催化降解抗生素。本发明,通过搅拌,将二硫化钼分散在含硝酸铁和硝酸铬的溶液中;将制备好的悬浮液转移到高压釜中反应;离心分离后用乙醇和去离子水清洗;烘干得到二硫化钼‑铁酸镉成品;取磁性二硫化钼‑铁酸镉纳米复合物分散在去离子水和抗生素混合液中,磁力搅拌分散后,打开带有紫外滤光片的氙灯。

Description

磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降 解抗生素效率的方法
技术领域
本发明公一种磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法,涉及磁性二硫化钼-铁酸镉复合物的制备技术领域,还涉及可见光下磁性二硫化钼-铁酸镉复合材料高效降解抗生素技术。
背景技术
随着对肉类、牛奶、蛋类的需求不断增加,磺胺嘧啶和土霉素等,被广泛且频繁地用于畜牧业、家禽业和水产养殖业。环境中的抗生素残留可能通过诱导耐药细菌和耐药基因的增殖、流行和持久性,以及抗生素耐药性,对生态环境构成潜在威胁,导致最常见的抗生素不再有效地控制传染病,可以从环境隔间转移到饮用水源,因此,对人类健康造成了严重威胁。此外,大多数抗生素代谢不良,被治疗的人和动物吸收,残留的母体化合物或其代谢物最终排入水环境,造成重大的环境和健康风险。因此,抗生素的清除已受到相当关注。
具有超强磁性和可见光响应的尖晶石铁氧体(NiFe2O4, CoFe2O4, CdFe2O4等)已作为光催化剂被广泛研究。低价带位置的铁酸镉表现出强氧化性以及光生空穴的能力。此外,铁酸镉的良好磁性使其能够使用磁铁很容易与水悬浮液分离。因此,铁酸镉具有潜在的磁性分离可见光光催化剂。到目前为止,一些已经构建了铁酸镉基光催化剂。然而,光催化铁酸镉基材料的活性受到其低电势的严重限制,电子导电性差和快充重合率,异质界面可以加速空穴电子分离并减少电荷复合。在这项工作中,采用两步水热法制备了磁性二硫化钼-铁酸镉复合材料。二硫化钼的存在有效地改善了铁酸镉的光吸收,具有较高的可见光下催化降解抗生素的效率。
发明内容
本发明的目的在于针对现有技术中所存在的问题,提供一种磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法。
本发明的目的是这样实现的:本发明首要目的是提出一种具有可见光光催化性能的磁性二硫化钼-铁酸镉纳米复合物的制备方法。包括以下步骤:
(1)称取钼酸钠0.2~0.4克、硫代乙酰胺0.4~0.6克溶于去离子水中并搅拌均匀;
(2)将聚乙烯吡咯烷酮0.1~0.3克加入步骤(1)所得的混合液中;
(3)将步骤(2)的混合物转移至高压反应釜中,在170~200℃下反应;
(4)分离步骤(3)的产物,洗涤,烘干,即得二硫化钼纳米材料;
(5)分别称取步骤(4)所得的二硫化钼、四水合硝酸铬0.2~0.4克、九水合硝酸铁0.7~0.9克溶于无水乙醇中并搅拌均匀;
(6)将步骤(5)的混合物转移至高压反应釜中,在170~200℃下反应;
(7)分离步骤(6)的产物,洗涤,烘干,即得磁性二硫化钼-铁酸镉纳米复合物。
本发明另一目的是磁性二硫化钼-铁酸镉纳米复合物在可见光下催化降解抗生素提供了一种有效的途径。检测的操作过程如下:
a)称取3~9毫克盐酸四环素加入到去离子水中,搅拌混匀;
b)称取10~40毫克磁性二硫化钼-铁酸镉纳米复合物加入步骤a)所得的溶液中;
c)将步骤b)所得混合液放入光催化反应仪器中,黑暗搅拌分散均匀;
d)打开带有紫外滤光片的氙灯光源,打开冷凝循环水系统,使得温度稳定;
e)在给定的辐照时间间隔内,提取适量反应悬液,通过滤膜过滤去除颗粒物;
f)将步骤e)所得的液体放入紫外-可见分光光度计在特定波长下读数;
g)通过由步骤f)得到的数据,获得磁性二硫化钼-铁酸镉纳米复合物降解四环素的效率。
其中,步骤(3)所述的反应时间为15~25小时。
步骤(4)中,洗涤时,溶液离心条件为6000~9000转/分,10~30分钟;烘干时,烘干温度为60~80℃,时间为8~12小时。
步骤(5)中,所述称取的二硫化钼质量为0.05~0.3克;搅拌时间为20~40分钟。
步骤(6)中,所述的反应时间为15~25小时。
步骤(7)中,洗涤时,离心速率为5000~10000转/分,5~20分钟;烘干时,烘干温度为50~80℃,时间为4~8小时。
步骤a)中,去离子水30~70毫升。
步骤c)中,搅拌为磁力搅拌,磁力搅拌转速为600~1000转/分。
步骤d)中,氙灯光源功率为200~500 W,反应温度为15~30℃。
步骤e)中,辐照时间间隔为15~45分钟,提取反应悬液3~8毫升,滤膜孔径大小为0.1~0.3微米。
步骤f)中,紫外-可见分光光度计设定波长为300~700纳米。
步骤g)中,抗生素包括四环素、环丙沙星、阿莫西林、磺胺嘧啶等抗生素。
相对于现有技术,本发明取得了以下有益效果:
1、步骤(5)的二硫化钼的用量过高过低都不利于光催化降解抗生素。本发明制得的磁性二硫化钼-铁酸镉纳米复合物:二硫化钼质量约占整体质量的百分之六十,具有优异的光催化降解性能。
2、步骤
Figure 90740DEST_PATH_IMAGE002
的混合液密封于高压反应釜中,随着温度升高至170~200℃,反应釜内产生高压,硫代乙酰胺与钼酸钠在高温高压的物理化学环境下能充分分散在水溶液中,反应15~25小时后能确保不完全硫化形成二硫化钼/铁酸镉的异质结构,获得更多的反应位点并提供电荷传输的性能。
3、步骤a)和步骤b)中,磁性二硫化钼-铁酸镉纳米复合物添加量约为25毫克/50毫升,磁性二硫化钼-铁酸镉纳米复合物的光催化降解四环素的效率最高。
通过本发明,包括如下步骤:将钼酸钠和硫代乙酰胺溶解于去离子水中,并在磁力搅拌下进一步混合;然后,将聚乙烯吡咯烷酮加入上述溶液中继续搅拌;将得到的溶液转移到高压釜中反应,冷却至室温,离心洗涤用去离子水和乙醇多次;干燥过夜得到纯二硫化钼。
通过搅拌,将二硫化钼分散在含硝酸铁和硝酸铬的溶液中;将制备好的悬浮液转移到高压釜中反应;离心分离后用乙醇和去离子水清洗;烘干得到二硫化钼-铁酸镉成品;取磁性二硫化钼-铁酸镉纳米复合物分散在去离子水和抗生素混合液中,磁力搅拌分散后,打开带有紫外滤光片的氙灯。结果证明在可见光下,该磁性二硫化钼-铁酸镉纳米复合物电荷转移和分离效率提高,光催化降解抗生素效率增高,而且复合物本身具有磁性,能重复利用。
通过本发明,采用两步水热法制备了磁性二硫化钼-铁酸镉复合材料,它能够高效的在可见光下降解抗生素,并且由于其本身的具有磁性特点,能够十分轻易的从水溶液中回收进行重复利用。
附图说明
图1为本发明实施例1的磁性二硫化钼-铁酸镉复合物的扫描透射电镜图。
图2为本发明实施例2的磁性二硫化钼-铁酸镉复合物的X射线衍射图。
图3为本发明实施例3的磁性二硫化钼-铁酸镉复合物的磁滞回线图。
图4为本发明实施例4的磁性二硫化钼-铁酸镉复合物在可见光下的四环素降解效率图。
具体实施方式
结合具体实施例进一步说明磁性二硫化钼-铁酸镉复合物的制备。
实施例1:
(1)称取钼酸钠0.33克、硫代乙酰胺0.48克溶于去60毫升去离子水中并搅拌均匀;
(2)将聚乙烯吡咯烷酮0.12克加入步骤(1)所得的混合液中;
(3)将步骤(2)的混合物转移至高压反应釜中,在180℃下反应;
(4)对步骤(3)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得二硫化钼纳米材料;
(5)分别称取步骤(4)所得的二硫化钼、四水合硝酸铬0.3085克、九水合硝酸铁0.8080克溶于60毫升无水乙醇中并搅拌均匀;
(6)将步骤(5)的混合物转移至高压反应釜中,在180℃下反应;
(7)对步骤(6)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得磁性二硫化钼-铁酸镉纳米复合物;
图1为本发明制备的磁性二硫化钼-铁酸镉纳米复合物的扫描透射电镜图。
实施例2:
(1)称取钼酸钠0.33克、硫代乙酰胺0.48克溶于去60毫升去离子水中并搅拌均匀;
(2)将聚乙烯吡咯烷酮0.12克加入步骤(1)所得的混合液中;
(3)将步骤(2)的混合物转移至高压反应釜中,在180℃下反应;
(4)对步骤(3)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得二硫化钼纳米材料;
(5)分别称取步骤(4)所得的二硫化钼、四水合硝酸铬0.3085克、九水合硝酸铁0.8080克溶于60毫升无水乙醇中并搅拌均匀;
(6)将步骤(5)的混合物转移至高压反应釜中,在180℃下反应;
(7)对步骤(6)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得磁性二硫化钼-铁酸镉纳米复合物。
所得的磁性二硫化钼-铁酸镉纳米复合物的晶型结构如图2所示,由图可以确定该复合物是由二硫化钼和铁酸镉组成。
实施例3:
(1)称取钼酸钠0.33克、硫代乙酰胺0.48克溶于去60毫升去离子水中并搅拌均匀;
(2)将聚乙烯吡咯烷酮0.12克加入步骤⑴所得的混合液中;
(3)将步骤(2)的混合物转移至高压反应釜中,在180℃下反应;
(4)对步骤(3)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得二硫化钼纳米材料;
(5)分别称取步骤
Figure 834312DEST_PATH_IMAGE004
所得的二硫化钼、四水合硝酸铬0.3085克、九水合硝酸铁0.8080克溶于60毫升无水乙醇中并搅拌均匀;
(6)将步骤(5)的混合物转移至高压反应釜中,在180℃下反应;
(7)对步骤(6)的反应产物进行离心分离去除水分后,先用乙醇清洗去除未反应的有机物,再用去离子水清洗去除未反应的无机离子,将清洗后的反应产物置于真空烘箱中80℃烘干,即得磁性二硫化钼-铁酸镉纳米复合物。
所得的磁性二硫化钼-铁酸镉纳米复合物的磁滞回线测试如图3所示,由图可以确定该复合物具有磁性。
结合具体实施例进一步说明本发明中磁性二硫化钼-铁酸镉纳米复合材料具有光催化降解作用的方法。
实施例4:
将实施例2制备的磁性二硫化钼-铁酸镉纳米复合物25毫克,放入50毫升盐酸四环素(25ppm)溶液中,在黑暗下磁力搅拌75分钟,达到吸附解吸平衡之后,打开带有紫外滤光片(>420nm)的氙灯光源,在两小时内间隔半小时取样5毫升,过滤后在357nm用紫外可见分光光度计检测,其降解性能如图4所示。
从图4中可以看出:磁性二硫化钼-铁酸镉纳米复合物光催化降解盐酸四环素的效率约为87%。与其他光催化复合材料相比,磁性二硫化钼-铁酸镉纳米复合物在可见光下具有相对较高的效率。

Claims (9)

1.一种磁性二硫化钼-铁酸镉纳米复合物的制备方法,其特征在于,包括以下步骤:
(1)称取钼酸钠0.2~0.4克、硫代乙酰胺0.4~0.6克溶于去离子水中并搅拌均匀;
(2)将聚乙烯吡咯烷酮0.1~0.3克加入步骤(1)所得的混合液中;
(3)将步骤(2)所得的混合物转移至高压反应釜中,在170~200℃下反应;
(4)分离经步骤(3)得到的产物,洗涤,烘干,即得二硫化钼纳米材料;
(5)分别称取步骤(4)所得的二硫化钼0.05~0.3克、四水合硝酸铬0.2~0.4克、九水合硝酸铁0.7~0.9克溶于无水乙醇中并搅拌均匀;
(6)将步骤(5)得到的混合物转移至高压反应釜中,在170~200℃下反应;
(7)分离经步骤(6)得到的产物,洗涤,烘干,即得磁性二硫化钼-铁酸镉纳米复合物。
2.根据权利要求1所述的一种磁性二硫化钼-铁酸镉纳米复合物的制备方法,其特征在于,步骤(3)中,反应时间为15~25小时。
3.根据权利要求1所述一种磁性二硫化钼-铁酸镉纳米复合物的制备方法,其特征在于,步骤(4)中,洗涤时,溶液离心条件为6000~9000转/分;烘干时,10~30分钟,烘干温度为60~80℃,时间为8~12小时。
4.根据权利要求1所述的光催化降解作用,其特征在于,步骤(5)中,搅拌时间为20~40分钟。
5.根据权利要求1所述的光催化降解作用,其特征在于,步骤(6)中,反应时间为15~25小时。
6.根据权利要求1所述的光催化降解作用,其特征在于,步骤(7)中,洗涤时,离心速率为5000~10000转/分,5~20分钟;烘干时,烘干温度为50~80℃,时间为4~8小时。
7.一种检测磁性二硫化钼-铁酸镉纳米复合物在可见光下催化降解抗生素效率的方法,其特征在于,检测的操作过程如下:
a)称取3~9毫克盐酸四环素加入到去离子水中,搅拌混匀,得到盐酸四环素溶液;
b)称取10~40毫克磁性二硫化钼-铁酸镉纳米复合物加入步骤a)所得的盐酸四环素溶液中;
c)将步骤b)所得混合液放入光催化反应仪器中,黑暗搅拌分散均匀;
d)打开带有紫外滤光片的氙灯光源,打开冷凝循环水系统,使得温度稳定;
e)在给定的辐照时间间隔内,提取适量反应悬液,通过滤膜过滤去除颗粒物;
f)将步骤e)所得的液体放入紫外-可见分光光度计在特定波长下读数;
g)通过由步骤f)得到的数据,获得磁性二硫化钼-铁酸镉纳米复合物降解抗生素的效率。
8.根据权利要求7所述的方法,其特征在于,步骤a)中,去离子水30~70毫升;
步骤c)中,搅拌采用的是磁力搅拌,磁力搅拌转速为600~1000rpm;
步骤d)中,氙灯光源功率为200~500W,反应温度为15~30℃;
步骤e)中,辐照时间间隔为15~45分钟,提取反应悬液3~8毫升,滤膜孔径大小为0.1~0.3微米;
步骤f)中,紫外-可见分光光度计设定波长为300~700纳米。
9.根据权利要求7所述的方法,特征在于,抗生素包括四环素、环丙沙星、阿莫西林、磺胺嘧啶抗生素。
CN202211003893.6A 2022-08-22 2022-08-22 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法 Pending CN115350717A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211003893.6A CN115350717A (zh) 2022-08-22 2022-08-22 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211003893.6A CN115350717A (zh) 2022-08-22 2022-08-22 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法

Publications (1)

Publication Number Publication Date
CN115350717A true CN115350717A (zh) 2022-11-18

Family

ID=84002520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211003893.6A Pending CN115350717A (zh) 2022-08-22 2022-08-22 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法

Country Status (1)

Country Link
CN (1) CN115350717A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289660A (zh) * 2015-10-27 2016-02-03 江苏大学 一种铁酸镁/硫化钼异质结纳米线的合成方法和用途
CN110038598A (zh) * 2019-03-27 2019-07-23 平顶山学院 一种铁酸锌/二硫化钼复合光催化材料的制造方法及其应用
WO2019181723A1 (ja) * 2018-03-19 2019-09-26 Dic株式会社 モリブデン硫化物、その製造方法及び水素発生触媒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289660A (zh) * 2015-10-27 2016-02-03 江苏大学 一种铁酸镁/硫化钼异质结纳米线的合成方法和用途
WO2019181723A1 (ja) * 2018-03-19 2019-09-26 Dic株式会社 モリブデン硫化物、その製造方法及び水素発生触媒
CN110038598A (zh) * 2019-03-27 2019-07-23 平顶山学院 一种铁酸锌/二硫化钼复合光催化材料的制造方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李远勋、季甲, 成都:西南交通大学出版社 *

Similar Documents

Publication Publication Date Title
Lu et al. Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline
Xia et al. A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite
Kumar et al. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@ calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin
Jasrotia et al. Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co 0.6 Zn 0.4 Fe 2 O 4 nanoferrites
Wang et al. Synthesis of rectorite/Fe3O4/ZnO composites and their application for the removal of methylene blue dye
Ma et al. Design of Z-scheme g-C3N4/BC/Bi25FeO40 photocatalyst with unique electron transfer channels for efficient degradation of tetracycline hydrochloride waste
CN109621997B (zh) NiCo2S4/C微球纳米复合材料、其制备方法以及其应用
CN109806900B (zh) 一种分子印迹型Ag/Ag3VO4/CN纳米片复合光催化剂的制备方法及应用
CN108579786B (zh) Fe3O4@g-C3N4/RGO复合光催化剂及制备方法
CN107243348B (zh) 一种抑菌性光催化剂的生物辅助合成方法
CN110560092A (zh) 一种MoS2/BiVO4异质结复合光催化剂的制备方法及其应用
CN108126718B (zh) 一种In2S3/BiPO4异质结光催化剂的制备方法及其应用
Arunpandian et al. Development of novel Nd 2 WO 6/ZnO incorporated on GO nanocomposite for the photocatalytic degradation of organic pollutants and biological studies
CN112337459A (zh) 一种钨酸铋复合光催化剂的制备方法
CN102774847A (zh) 一种新型磁性分子筛吸附剂材料的制备及使用方法
Boruah et al. Magnetic mixed metal oxide nanomaterials derived from industrial waste and its photocatalytic applications in environmental remediation
CN108927172B (zh) 一种负载金纳米粒子的磁性生物质碳材料的制备及其应用
CN107876099A (zh) 一种Fe‑BiOBr/MOF‑SO3@TiO2光催化剂的制备方法
Guo et al. Efficient adsorption-photocatalytic removal of tetracycline hydrochloride over octahedral MnS
CN110550709A (zh) 一种负载银颗粒的杀菌生物炭及其制备方法
Chen et al. Photocatalytic degradation of tetracycline wastewater through heterojunction based on 2D rhombic ZrMo2O8 nanosheet and nano-TiO2
CN112371104B (zh) 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用
Zheng et al. Magnetically recyclable nanophotocatalysts in photocatalysis-involving processes for organic pollutant removal from wastewater: current status and perspectives
CN115350717A (zh) 磁性二硫化钼-铁酸镉纳米复合物制备及其在光检测催化降解抗生素效率的方法
CN116920947A (zh) 一种降解四环素的Ni-MOF/BiOCl复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221118

RJ01 Rejection of invention patent application after publication