CN115340647A - 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法 - Google Patents

一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法 Download PDF

Info

Publication number
CN115340647A
CN115340647A CN202210963782.3A CN202210963782A CN115340647A CN 115340647 A CN115340647 A CN 115340647A CN 202210963782 A CN202210963782 A CN 202210963782A CN 115340647 A CN115340647 A CN 115340647A
Authority
CN
China
Prior art keywords
composite material
double
core composite
nanoparticle core
polymer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210963782.3A
Other languages
English (en)
Inventor
岳�文
万李
黄朝晖
秦文波
佘丁顺
闵鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Research Institute China University Of Geosciences Beijing
China University of Geosciences Beijing
Original Assignee
Zhengzhou Research Institute China University Of Geosciences Beijing
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Research Institute China University Of Geosciences Beijing, China University of Geosciences Beijing filed Critical Zhengzhou Research Institute China University Of Geosciences Beijing
Priority to CN202210963782.3A priority Critical patent/CN115340647A/zh
Publication of CN115340647A publication Critical patent/CN115340647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明公开了一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其以双聚物为壳,纳米粒子为制备方法包括下列步骤:(1)对4‑羟基‑偶氮苯(Hab)进行前处理,获得单体(Hab‑HM);(2)单体(Hab‑HM)、甲基丙烯酸丁酯(Bma)、RAFT试剂和引发剂通过可逆加成‑断裂链转移反应制备双聚物;(3)在聚合反应过程中,获得双聚物壳/纳米粒子核复合材料。本发明制备的双聚物壳/纳米粒子核复合材料中双聚物含有液晶光敏基团,通过切换辐射聚合物的光波长,调节纳米粒子核间的声子传输效率,使纳米粒子能够在高热导率和低热导率状态之间可逆切换,扩大可动态调节导热系数复合材料的范围,更好的推进智能导热材料的发展。

Description

一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及 其制备方法
技术领域
本发明涉及材料科学技术领域,特别是一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法。
背景技术
调节热能流对于从能量转换和能量存储设备到微电子设备的众多应用至关重要。能够在高热导率和低热导率状态之间切换的材料将有助于热能的转换和控制。纳米金刚石由于其超高的热导率及稳定的性质,被认为是最优的散热材料之一。纳米金刚石超高的热导率来源于其高效的声子传输效率。为了调节纳米金刚石的声子传输效率,使纳米金刚石能够在高热导率和低热导率状态之间切换,有必要提供一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,在纳米金刚石表面修饰含液晶光敏基团的双聚物,通过切换辐射聚合物的光波长,以此调节声子传输效率。
发明内容
为了可逆调控纳米粒子导热系数,本发明公开了一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,双聚物壳由偶氮苯功能团作为侧链液晶官能团的单体和甲基丙烯酸丁酯单体聚合形成,偶氮苯类侧链液晶官能团为光致结构变化基团,其在绿光(500~560 nm)照射下能够转变为反式(Trans)结构,此时双聚物具有有序的分子链排列配置,在紫外光(190~400nm)照射下能够转变为顺式(Cis)结构,此时双聚物具有无序的分子链排列配置,不同的分子链排列配置会导致纳米粒子具有不同的导热系数,通过改变幅射光的种类,可实现纳米粒子导热系数的调控。该方法主要包括两个部分,即双聚物单体Hab-HM制备和纳米粒子核表面双聚物壳的形成。
其中所述双聚物的单体Hab-HM含偶氮苯液晶光敏官能团侧链。所述单体的合成该方法为:
按一定的实验计划,将无水碳酸钾、碘化钾、6-溴-1-己醇和4-羟基-偶氮苯(Hab)添加到二甲基乙酰胺(DMAc)溶液中;
将混合溶液在预设温度剧烈搅拌预设时间;
将所得混合物冷却至室温并倒入碎冰中,滤出红棕色沉淀;
粗产物用乙醇重结晶,得到中间产物1并命名为Hab-H;
所述碳酸钾、碘化钾、6-溴-1-己醇和Hab物质的量比为45mmol:22.5mmol:45mmol:22.5mmol;
所述DMAc的体积为45mL;
所述预设温度为90℃,预设时间为24小时;
所述碎冰的质量为900g;
所述乙醇的质量为20g;
所述实验计划如下式所示;
Figure BDA0003794137980000021
按一定的实验计划,在冰水浴条件下,将Hab-H和三乙胺添加到无水四氢呋喃(THF) 中配置成混合物溶液;
将甲基丙烯酰氯缓慢滴加到上述混合物溶液中;
将反应混合物溶液在室温下搅拌预定时间;
反应混合物用旋转蒸发仪去除无水四氢呋喃,剩余的固体物溶解在二氯甲烷中,并且依次用饱和氯化钠溶液、稀盐酸和饱和碳酸氢钠溶液洗涤去除杂质;
收集有机层并用旋转蒸发器除去二氯甲烷;
除去溶剂后,粗产物用乙醇重结晶并命名为中间产物2:Hab-HM;
所述Hab-H、三乙胺和无水四氢呋喃的量分别为3g、2g和20mL;
所述甲基丙烯酰氯的质量为2.1g;
所述预设时间为24h;
所述二氯甲烷的体积为3mL;
所述饱和氯化钠溶液、稀盐酸和饱和碳酸氢钠溶液的体积均为200mL;
所述乙醇的质量为20mL;
所述实验计划如下式所示:
Figure BDA0003794137980000022
一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其制备方法为:采用可逆加成-断裂链转移法在纳米粒子核表面聚合形成双聚物壳,具体为:
按一定的实验计划,将一定量的纳米粒子、Hab-HM、甲基丙烯酸丁酯(Bma)、氰基异丙基二硫代苯甲酸酯(CPDB)和2,2-偶氮二异丁腈(AIBN)溶解在苯甲醚中,配置成混合溶液;
混合溶液用四次冷冻-泵-融循环处理并在氮气下密封;
将混合溶液置于预设温度的油浴锅中反应预设时间;
原位聚合后,将含双聚物壳/纳米粒子核复合材料的混合溶液滴加到冷甲醇中进行沉淀;
将沉淀产物重新溶解在二氯甲烷中,滴加到冷甲醇中重沉淀;
沉淀在冷甲醇中重结晶3次,并在真空烘箱中于预设温度干燥预设时间,即获得双聚物壳/纳米粒子核复合材料。
所述纳米粒子、Hab-HM、Bma、CPDB和AIBN的质量比为2.00g:1.97g:0.46g:0.006g:0.006g;
所述苯甲醚的体积为6mL;
所述纳米粒子粒径(或任意维度最大尺寸)为100nm~500nm
所述预设反应温度为68℃,预设时间为24h;
所述甲醇的体积为20mL;
所述二氯甲烷的体积为3mL;
所述预设干燥温度为45℃,预设时间为24h。
所述双聚物壳聚合反应原理如下式所示;
Figure BDA0003794137980000031
附图说明
图1是本发明实施例的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料的双聚物的制备方法流程示意图;
图2是本发明实施例的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料的双聚物的制备方法示意图;
图3是中间产物1(Hab-H)的1H核磁共振谱图;
图4是中间产物2(Hab-HM)的1H核磁共振谱图;
本发明实施例中,提供了一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,采用可逆加成-断裂链转移法在纳米粒子核表面聚合形成双聚物壳,所制备的双聚物含有液晶光敏基团,通过切换辐射聚合物的光波长,调节纳米粒子核间的声子传输效率,使纳米粒子能够在高热导率和低热导率状态之间可逆切换,扩大可动态调节导热系数复合材料的范围,更好的推进智能导热材料的发展。
具体实施方式
为使本发明的上述目的和合成过程更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1所示本发明实施例的一种可光调控导热系数的纳米粒子掺杂的双聚物壳/纳米粒子核复合材料的双聚物的制备方法,该方法为:
将无水碳酸钾(6.21g,45mmol)、碘化钾(22.5mg,0.135mmol)、6-溴-1-己醇(8.175g, 45mmol)和4-羟基-偶氮苯(4.5g,22.5mmol,Hab)添加到二甲基乙酰胺(DMAc,45mL)中的溶液中,配置成混合溶液。然后将反应混合物溶液在90℃剧烈搅拌24h。将所得混合物冷却至室温并倒入900g碎冰中,滤出红棕色沉淀。所得粗产物用乙醇重结晶,获得的产物称为中间产物1或Hab-H。
在冰水浴条件下,将三乙胺(2.025g,20.1mmol)和Hab-H(3g,10.05mmol)溶解在无水 20mL无水四氢呋喃中溶液中,将甲基丙烯酰氯(2.1g,20.1mmol)滴加到上述溶液中,将此反应混合物溶液在室温下保持20h。然后将反应混合物用旋转蒸发仪浓缩,浓缩后的产物溶解在50mL二氯甲烷中,分别用200mL饱和氯化钠溶液、稀盐酸和饱和碳酸氢钠溶液洗涤去除杂质。收集有机层并用旋转蒸发器除去二氯甲烷溶剂。除去溶剂后,粗产物从20mL 乙醇中重结晶,获得的中间产物称为中间产物2或Hab-HM。
双聚物壳是通过可逆加成-断裂链转移在纳米金刚石粒子核表面聚合形成的:将纳米金刚石(2.00g)、Hab-HM(1.97g,5.38mmol)、甲基丙烯酸丁酯(0.765g,5.38mmol)、氰基异丙基二硫代苯甲酸酯(CPDB,6.09mg,0.058mmol)和偶氮二异丁腈(AIBN,6.5mg,0.06mmol) 溶解在苯甲醚(6mL)中。然后,用四次冷冻-泵-融循环处理溶液并在氮气下密封。将聚合体系置于68℃油浴中24h。聚合后,将含双聚物壳/纳米粒子核复合材料的溶液滴加到甲醇(20 mL)中结晶。将沉淀物加入到二氯甲烷中并从甲醇中反复沉淀四次以除去杂质。收集沉淀,在真空烘箱中45℃干燥12h,最终产物命名为双聚物壳/纳米粒子核复合材料。
本发明实施例对制备的中间产物进行了核磁测试,并对测试结果进行了分析,分析结果如下:
图3是本发明实施例中中间产物1(Hab-H)的1H核磁共振谱图,如图2所示:1H NMR(CDCl3,400MHz):δ(ppm)=7.945-7.890(dd,4H,Ar-H),7.535-7.454(dt,3H,Ar-H),7.013-7.032(m,2H,Ar-H),4.059(t,2H,OCH2),3.708-3.659(m,2H,CH2OH),1.881-1.851(m, 2H,OCH2CH2),1.682-1.419(m,6H,OCH2CH2CH2CH2CH2CH2OH);
图4是本发明实施例中中间产物2(Hab-HM)的1H核磁共振谱图,如图3所示:1H NMR(CDCl3,400MHz):δ(ppm):7.943-7.888(dd,4H,Ar-H),7.537-7.456(dt,3H,Ar-H), 7.030-7.012(d,2H,Ar-H),6.250(s,1H,CCH2),5.573(s,1H,CCH2),4.209-4.150(t,2H,OCH2),4.086-4.060(t,2H,CH2O),1.970(s,3H,CH2),1.883-1.853(m,2H,OCH2CH2),1.771-1.706(m, 2H,CH2CH2O),1.591-1.415(m,4H,OCH2CH2CH2CH2CH2CH2O);
对于方法实施例,为了简单描述,本领域的技术人员应该知悉,本发明并不受所描述的操作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例属于优选实施例,所涉及的操作和实验条件并不一定是本发明所必须的。
以上对本发明所提供的一种可光调控导热系数的纳米粒子掺杂的双聚物壳/纳米粒子核复合材料的制备方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

1.一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:制备步骤具体如下:
(1)将纳米粒子、单体(Hab-HM)、甲基丙烯酸丁酯(Bma)、氰基异丙基二硫代苯甲酸酯(CPDB)和2,2-偶氮二异丁腈(AIBN)溶解在苯甲醚中,配置成混合溶液;
(2)混合溶液用四次冷冻-泵-融循环处理并在氮气下密封;
(3)将混合溶液置于预设温度的油浴锅中反应预设时间;
(4)聚合后,将含双聚物壳/纳米粒子核复合材料的混合溶液滴加到冷甲醇中进行沉淀;
(5)将沉淀产物重新分散在二氯甲烷中,滴加到冷甲醇中二次沉淀;
(6)沉淀在冷甲醇中重结晶3次,并在真空烘箱中于预设温度干燥预设时间,即获得双聚物壳/纳米粒子核复合材料。
2.根据权利要求1所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:所述双聚物壳/纳米粒子核复合材料由单体(Hab-HM)、甲基丙烯酸丁酯(Bma)、RAFT试剂和引发剂通过可逆加成-断裂链转移反应制备,n=30~40,m=60~70,其化学结构式如下:
Figure FDA0003794137970000011
3.根据权利要求2所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:所述单体(Hab-HM)的化学结构式如下:
Figure FDA0003794137970000012
4.根据权利要求2所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:单体(Hab-HM)、甲基丙烯酸丁酯、RAFT试剂、引发剂的摩尔比为(80~200):(80~200):1:1。
5.根据权利要求2所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:RAFT试剂为氰基异丙基二硫代苯甲酸酯(CPDB),引发剂为偶氮二异丁腈(AIBN)。
6.根据权利要求1所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:步骤(1)中纳米粒子核包括但不仅限于纳米金刚石、碳纳米管、石墨烯、碳纳米纤维、氮化硼、氮化铝、氧化铋、纳米碳铜箔片等高效导热纳米材料。
7.根据权利要求1所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:步骤(1)中纳米粒子、单体(Hab-HM)、甲基丙烯酸丁酯(Bma)、氰基异丙基二硫代苯甲酸酯(CPDB)和2,2-偶氮二异丁腈(AIBN)的质量比为2.00~3.00g:1.50~2.50g:0.40~0.50g:0.01~0.02g:0.01~0.02g,所述苯甲醚体积为5~10mL。
8.根据权利要求1所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:步骤(1)中纳米粒子粒径(或任意维度最大尺寸)为100nm~500nm。
9.根据权利要求1所述的一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法,其特征在于:步骤(3)中预设反应温度为60~80℃,预设时间为24~36h;甲醇体积为20~30mL;二氯甲烷体积为3~5mL;步骤(6)中预设干燥温度为40~60℃,预设干燥时间为24~36h。
CN202210963782.3A 2022-08-11 2022-08-11 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法 Pending CN115340647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210963782.3A CN115340647A (zh) 2022-08-11 2022-08-11 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210963782.3A CN115340647A (zh) 2022-08-11 2022-08-11 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115340647A true CN115340647A (zh) 2022-11-15

Family

ID=83951375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210963782.3A Pending CN115340647A (zh) 2022-08-11 2022-08-11 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115340647A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112318656A (zh) * 2020-09-08 2021-02-05 北京林业大学 一种具有可控储放热能力的相变储能木材的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112318656A (zh) * 2020-09-08 2021-02-05 北京林业大学 一种具有可控储放热能力的相变储能木材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNGWOO SHIN等: "Light-triggered thermal conductivity switching in azobenzene polymers", 《PNAS》, vol. 116, pages 5973 *

Similar Documents

Publication Publication Date Title
Wang et al. Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods
Peng et al. Morphology control of nanoscale PbS particles in a polyol process
WO2018076588A1 (zh) 一种大批量、多步合成直径可控的超长银纳米线的方法
Prakash et al. Preparation and characterization of nanocrystallite size cuprous oxide
Sun et al. Low-temperature synthesis of hexagonal ZnS nanoparticles by a facile microwave-assisted single-source method
JP5600467B2 (ja) 多分岐高分子の製造方法
CN105399136B (zh) 一种CdS花状自组装结构的制备方法及所得产品
CN101319357B (zh) 微波辅助液相还原法制备铜纳米线
Liu et al. Solvothermal synthesis, photoluminescence and photocatalytic properties of pencil-like ZnO microrods
Mahmoodi et al. Photochromism of azobenzene-thiol-1, 3-diazabicyclo-[3.1. 0] hex-3-ene on silver nanoparticles
Wei et al. Photo-responsive liquid crystalline elastomer with reduced chemically modified graphene oxide
CN103193967B (zh) 一种超支化偶氮聚合物的制备方法及其应用
CN115340647A (zh) 一种可光调控导热系数的双聚物壳/纳米粒子核复合材料及其制备方法
CN109385278A (zh) 一种连续合成稀土上转换发光纳米材料的微反应系统
Chen et al. Microwave synthesis of AgBiS2 dendrites in aqueous solution
Ni et al. Interconnected β-Ni (OH) 2 sheets and their morphology-retained transformation into mesostructured Ni
Liu et al. Facile thermal conversion route synthesis, characterization, and optical properties of rod-like micron nickel borate
Wu et al. Flexible solid-solid phase change materials with high stability for thermal management
Percec et al. Cell membrane as a model for the design of semifluorinated ion-selective nanostructured supramolecular systems
Wang et al. Zn-assisted synthesis of high-performance adsorbent for methylene blue
CN112210056B (zh) 一种多孔共价有机骨架材料及其合成方法和应用
CN110480002B (zh) 一种高长径比银纳米线的合成方法
CN109384869B (zh) 含氟偶氮苯两亲性聚合物、可见光响应的聚合物纳米管及其制备方法
CN104693466A (zh) 一种易去除涂层调控液晶嵌段共聚物薄膜畴区取向的方法
CN109607620B (zh) 一种Cu-Fe-Al-O纳米颗粒材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination