CN115305374A - 一种具有优良高温强度的低钽含量钨合金制备方法 - Google Patents

一种具有优良高温强度的低钽含量钨合金制备方法 Download PDF

Info

Publication number
CN115305374A
CN115305374A CN202210788527.XA CN202210788527A CN115305374A CN 115305374 A CN115305374 A CN 115305374A CN 202210788527 A CN202210788527 A CN 202210788527A CN 115305374 A CN115305374 A CN 115305374A
Authority
CN
China
Prior art keywords
tungsten
tantalum
alloy
temperature
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210788527.XA
Other languages
English (en)
Other versions
CN115305374B (zh
Inventor
封范
练友运
王建豹
陈潇
刘翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwestern Institute of Physics
Original Assignee
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwestern Institute of Physics filed Critical Southwestern Institute of Physics
Priority to CN202210788527.XA priority Critical patent/CN115305374B/zh
Publication of CN115305374A publication Critical patent/CN115305374A/zh
Application granted granted Critical
Publication of CN115305374B publication Critical patent/CN115305374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

本发明属于金属材料制备及加工领域,涉及一种具有优良高温强度的低钽含量钨合金制备方法。本方法通过热压烧结制备出钨钽合金圆柱;将烧结坯在氢气气氛下整体加热至1500~1600℃,并通过高能率锻造方法进行热塑性加工,经一道次或二道次锻造加工后使钨材料的变形量超过70%;锻造完成后,将钨坯进行退火处理以消除残余应力,退火温度为1100℃。本发明通过烧结方法及热塑性加工工艺的控制,使得制备好的钨钽合金的高温力学强度得到明显提高(相对纯钨),且制备工艺相对简单。通过本发明所述工艺能得到近全致密的钨钽合金,并且材料具有优良的热导率和高温力学性能,室温热导率大于150W/mK,在500℃温度下拉伸强度仍高于1GPa。

Description

一种具有优良高温强度的低钽含量钨合金制备方法
技术领域
本发明属于金属材料技术领域,涉及一种具有优良高温强度的块体钨钽合金的制备方法。
背景技术
钨具有高的熔点、良好的热导率、低蒸汽压及低溅射率等优点,这使其成为国际热核聚变实验堆及未来聚变装置最有前景的面对等离子体材料之一。但是目前的纯钨及钨合金均存在烧结致密度较低、高温条件下力学强度退化严重等缺点,不能应对未来聚变堆中第一壁材料严酷的使用环境。
合金化是在提高钨材料性能的有效方法,但是,在钨中添加大量的合金元素会对材料的性能产生不利的影响,特别是会导致材料的导热率急剧下降。本发明采用粉末冶金的方法在钨中添加微量或者少量的合金化元素,再通过热塑性加工的方法可以有效的提高钨材料的致密度,在钨材料内部形成层状结构;与商业纯钨相比,制备的钨钽合金的热导率与纯钨接近,材料低温延展性和高温强度则明显提高,制备得到的钨钽合金在100~500℃条件下具有优良的力学强度,室温热导率大于150W/mK。
发明内容
为了解决钨材料在高温条件下力学强度降低较大的问题,本发明的目的是通过一种特殊的钨材料制备工艺制备出具有工程化应用前景的块体钨材料,使钨材料在500℃条件下的拉伸力学强度不低于1GPa。
为了达到上述目的,本发明采用的技术方案为:
一种具有优良高温强度的低钽含量钨合金制备方法,包括以下步骤:
第一步,制备钨钽复合粉末
1.1)通过高能球磨制备母合金粉末,具体的:将钨粉与钽粉等质量比混合后进行高能球磨,以实现钨钽元素的固溶;
1.2)继续通过添加钨粉,并进行低能球磨制备得到钨钽复合粉末,其中钨钽复合粉末中,钽的质量分数为0.5~3%。
第二步,采用真空热压烧结制备出钨钽合金圆柱,即得到钨钽合金烧结坯,所述的钨钽合金烧结坯的致密度大于95%。所述的真空度<5*10-3Pa,烧结压力为30~60MPa,烧结温度为1700~1850℃,保温时间为1~3h。
第三步,将烧结坯在加热炉中整体加热至1350~1550℃,再将其置于高应变速度锻造设备中进行热塑性加工锻打,其中单次变形量不低于40%,经一道次或二道次锻造加工后使钨材料的最终变形量不低于75%。
第四步,锻造完成后,将钨钽合金棒进行退火处理以消除残余应力,防止钨坯在热应力作用下发生开裂。所述的退火温度为1100℃,退火时间为30~60min。
进一步的,所述的第二步中,所述钨材料的热压烧结是将合金粉末放置于真空热压烧结炉(工作真空度<5*10-3Pa)的相应模具中进行烧结,真空热压烧结可有效降低钨材料的烧结温度并提高烧结致密度,高真空度有助于材料中气体杂质的挥发。
进一步的,所述的第二步中,所述钨钽合金柱的直径及高度均应大于20mm,以便于进行后续的热塑性变形加工。
进一步的,所述的第三步中,所述高应变速率塑性加工工艺需将钨烧结坯整体加热至1350~1550℃,在钨钽合金具有较好塑性变形能力的条件下进行加工。
进一步的,所述钨钽合金在经过一道次锻打后温度会迅速下降,如需进行二道次锻打需重新加热至1350~1550℃后再进行锻打。且进行多道次锻造处理时,加热温度应依次降低100~200℃。
本发明的创新点分析为:通过对等比例母合金粉末的高能球磨实现钨钽元素的固溶;通过高真空热压烧结来降低烧结坯中的气体元素杂质含量;最后通过高应变速率的塑性加工实现烧结坯的快速变形,高应变速率可使钨钽合金晶粒破碎形成超细晶从而有效强化钨钽合金的性能。
与现有技术相比,本发明的有益效果为:
本发明能够有效提高钨钽合金的致密度,并有效提高钨合金在100~500℃条件下的拉伸力学强度。通过该工艺制备得到的钨块体材料具备明显的层状结构,可以提高钨合金在RT~500℃条件下的力学性能。该工艺路线是在传统钨材料的制备方法上通过改良提到,适合进行规模化制备。
附图说明
图1为实施例1中W-3%Ta合金经高应变速率变形加工后形成的超细晶结构。
图2为本专利钨合金(椭圆圈出的数据)与其它钨合金在不同温度下的拉伸强度对比图。从图中可以看出,其它钨合金在100~500℃测试条件下,拉伸强度随温度的升高呈明显下降趋势。而本专利中的钨合金在相同条件下拉伸强度没有大的变化,均维持在1GPa以上。这表明本专利中的钨合金与其它钨合金相比具有优良的高温拉伸性能。
具体实施方式
为了更直观更清楚地描述本发明技术方案,以及帮助理解本发明对现有技术的贡献之处,以下结合实施例对本发明进行详细地说明。
一种具有优良高温强度的低钽含量钨合金的制备方法,其特征在于通过高能球磨和普通球磨制备合金粉末,再通过真空热压烧结制备出钨钽合金圆柱;将烧结坯在氢气气氛下整体加热至1350~1550℃,并通过高应变速率塑性加工方法进行热塑性加工,经一道次或二道次锻造加工后使钨材料的变形量达到75%以上;锻造完成后,将钨坯进行退火处理以消除残余应力,退火温度为1100℃。钨钽合金,所述的钨钽合金材料中所添加的钽含量质量分数为0.5~3%。
实施例1
步骤1,通过球磨方法制备出金属钽质量比为3%的W-Ta混合粉末,并在真空热压烧结炉中进行烧结,烧结温度1850℃,烧结压力60MPa,时间1h;烧结坯的致密度为96%;烧结坯尺寸为直径40mm,高度45mm。
步骤2,将钨钽合金烧结坯放入氢气炉中加热,加热温度1550℃,时间30min;然后将加热过的钨钽合金坯放入高应变速率锻造设备上进行一道次的锻打加工,钨钽合金坯被锻打成高度约20mm的圆饼,变形量约为50%。
步骤3,锻造后的合金坯周边如有裂纹需用电火花加工去除掉,随后将合金坯放入氢气炉中加热,加热温度1350℃,时间30min;然后将加热后的钨钽合金坯放入高应变速率锻造设备上进行二道次的锻打加工,钨钽合金坯被锻打成高度约7mm的圆饼,最终变形量约为82%
步骤4,高应变速率锻造工艺完成后,将钨钽合金圆饼放入退火炉中进行去应力退火,在1100℃条件下退火1h。
实施例2
步骤1,通过球磨方法制备出金属钽质量比为0.5%的W-Ta混合粉末,并在真空热压烧结炉中进行烧结,烧结温度1850℃,烧结压力30MPa,时间2h;烧结坯的致密度为96.2%;烧结坯尺寸为直径30mm,高度30mm。
步骤2,将钨钽合金烧结坯放入氢气炉中加热,加热温度1550℃,时间30min;然后将加热过的钨钽合金坯放入高应变速率锻造设备上进行一道次的锻打加工,钨钽合金坯被锻打成高度约7.5mm的圆饼,变形量约为75%。
步骤3,高应变速率锻造工艺完成后,将钨钽合金圆饼放入退火炉中进行去应力退火,在1100℃条件下退火45min。
实施例3
步骤1,通过球磨方法制备出金属钽质量比为1%的W-Ta混合粉末,并在真空热压烧结炉中进行烧结,烧结温度1750℃,烧结压力60MPa,时间3h;烧结坯的致密度为95.5%;烧结坯尺寸为直径25mm,高度25mm。
步骤2,将钨钽合金烧结坯放入氢气炉中加热,加热温度1550℃,时间30min;然后将加热过的钨钽合金坯放入高应变速率锻造设备上进行一道次的锻打加工,钨钽合金坯被锻打成高度约5mm的圆饼,变形量约为80%。
步骤3,高应变速率锻造工艺完成后,将钨钽合金圆饼放入退火炉中进行去应力退火,在1100℃条件下退火30min。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (6)

1.一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,包括以下步骤:
第一步,制备钨钽复合粉末
1.1)将钨粉与钽粉等质量比混合后进行高能球磨,实现钨钽元素的固溶;
1.2)继续添加钨粉,并进行低能球磨制备得到钨钽复合粉末,其中钨钽复合粉末中,钽的质量分数为0.5~3%;
第二步,采用真空热压烧结制备出钨钽合金圆柱,即得到钨钽合金烧结坯,所述的钨钽合金烧结坯的致密度大于95%;
第三步,将烧结坯在加热炉中整体加热至1350~1550℃,再将其置于高应变速度锻造设备中进行热塑性加工锻打,其中单次变形量不低于40%,经一道次或二道次锻造加工后使钨材料的最终变形量不低于75%;
第四步,锻造完成后,将钨钽合金棒进行退火处理以消除残余应力,防止钨坯在热应力作用下发生开裂。
2.根据权利要求1所述的一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,第二步中,所述的钨钽合金柱的直径及高度均应大于20mm。
3.根据权利要求1所述的一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,第二步中,所述的真空度<5*10-3Pa。
4.根据权利要求1所述的一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,第二步中,所述的烧结压力为30~60MPa,烧结温度为1700~1850℃,保温时间为1~3h。
5.根据权利要求1所述的一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,第三步中,在进行多道次锻造处理时,加热温度应依次降低100~200℃,且最终锻造完成后钨棒的变形量应大于70%。
6.根据权利要求1所述的一种具有优良高温强度的低钽含量钨合金制备方法,其特征在于,第四步中,所述的退火温度为1100℃,退火时间为30~60min,以去除内应力,防止钨坯开裂。
CN202210788527.XA 2022-07-06 2022-07-06 一种具有优良高温强度的低钽含量钨合金制备方法 Active CN115305374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210788527.XA CN115305374B (zh) 2022-07-06 2022-07-06 一种具有优良高温强度的低钽含量钨合金制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210788527.XA CN115305374B (zh) 2022-07-06 2022-07-06 一种具有优良高温强度的低钽含量钨合金制备方法

Publications (2)

Publication Number Publication Date
CN115305374A true CN115305374A (zh) 2022-11-08
CN115305374B CN115305374B (zh) 2023-05-16

Family

ID=83857809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210788527.XA Active CN115305374B (zh) 2022-07-06 2022-07-06 一种具有优良高温强度的低钽含量钨合金制备方法

Country Status (1)

Country Link
CN (1) CN115305374B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205206A (ja) * 2001-01-09 2002-07-23 Mitsubishi Materials Corp 高温硬さおよび耐熱塑性変形性のすぐれた超硬合金製スローアウエイ式切削チップ
US20100154589A1 (en) * 2008-12-22 2010-06-24 Soonhyung Hong Method of producing nitride/tungsten nanocomposite powder and nitride/tungsten nanocomposite powder produced using the same
CN102168200A (zh) * 2011-03-29 2011-08-31 西北有色金属研究院 一种高密度铱合金坯及其制备方法
CN102416475A (zh) * 2011-11-24 2012-04-18 西安瑞福莱钨钼有限公司 一种核用功能材料钨钽合金板的制备方法
CN109402541A (zh) * 2017-08-15 2019-03-01 核工业西南物理研究院 一种颗粒弥散强化钨块体材料制备方法
CN113969363A (zh) * 2020-07-23 2022-01-25 核工业西南物理研究院 一种具有低温韧性和高再结晶温度的钨合金的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205206A (ja) * 2001-01-09 2002-07-23 Mitsubishi Materials Corp 高温硬さおよび耐熱塑性変形性のすぐれた超硬合金製スローアウエイ式切削チップ
US20100154589A1 (en) * 2008-12-22 2010-06-24 Soonhyung Hong Method of producing nitride/tungsten nanocomposite powder and nitride/tungsten nanocomposite powder produced using the same
CN102168200A (zh) * 2011-03-29 2011-08-31 西北有色金属研究院 一种高密度铱合金坯及其制备方法
CN102416475A (zh) * 2011-11-24 2012-04-18 西安瑞福莱钨钼有限公司 一种核用功能材料钨钽合金板的制备方法
CN109402541A (zh) * 2017-08-15 2019-03-01 核工业西南物理研究院 一种颗粒弥散强化钨块体材料制备方法
CN113969363A (zh) * 2020-07-23 2022-01-25 核工业西南物理研究院 一种具有低温韧性和高再结晶温度的钨合金的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAN FENG,YOUYUN LIAN: "Effect of High-Energy-Rate Forging on Microstructure and Properties of W-TaC Alloys" *
李小强;辛红伟;胡可;陈维平;李元元;: "高密度W-Ni-Fe合金的研究进展" *

Also Published As

Publication number Publication date
CN115305374B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN100567530C (zh) 一种高性能粉末冶金Mo-Ti-Zr钼合金的制备方法
CN110358941B (zh) 一种钨基合金材料及其制备方法
CN109402541B (zh) 一种颗粒弥散强化钨块体材料制备方法
CN110586824B (zh) 一种利用α′六方马氏体相变细化钛合金晶粒的多向等温锻造方法
CN112941351B (zh) 一种超高疲劳强度的粉末冶金钛及钛合金的制备方法
CN103849788B (zh) 钽坯料或钽合金坯料的制备方法
CN113106310B (zh) 一种高强耐热Al-Cu-Sc变形铝合金及其制备方法
CN111763841B (zh) 粉末冶金钛或钛合金制品及其短流程制备方法
CN101942591A (zh) 一种快速制备钼铜合金的方法
CN114029489A (zh) 一种提高粉末冶金钛合金塑性的方法
CN109554639A (zh) 一种高铌TiAl合金片层结构细化的方法
CN110983152B (zh) 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法
CN112355312A (zh) 一种超细晶纯钼金属材料的活化烧结制备方法
CN115305374B (zh) 一种具有优良高温强度的低钽含量钨合金制备方法
CN115106527B (zh) 基于放电等离子体烧结的高强钛合金零件的多级烧结方法
CN113862507B (zh) 一种高致密高铜含量铜钨复合材料的制备方法
CN102776457A (zh) 热模锻技术提高粉末冶金钒铬钛合金综合力学性能的方法
CN112430763B (zh) 一种Al2O3弥散强化铜基复合材料的制备方法
US3496036A (en) Process of making titanium alloy articles
CN111575542A (zh) 非晶增强铝合金复合材料及其制备方法
CN114990373B (zh) 一种氧化铝弥散强化铜基复合材料的制备方法
CN113564400B (zh) 一种聚变堆用纳米氧化物弥散强化铜合金的制备方法
CN114226730B (zh) 放电等离子烧结制备多区域析出异构铝合金材料的方法
CN114959342B (zh) 一种改善氧化铝弥散强化铜基复合材料加工性能的方法
CN116219216B (zh) 一种Ti3AlC2陶瓷相强韧钼合金的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant