CN115287308A - 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法 - Google Patents

利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法 Download PDF

Info

Publication number
CN115287308A
CN115287308A CN202211136016.6A CN202211136016A CN115287308A CN 115287308 A CN115287308 A CN 115287308A CN 202211136016 A CN202211136016 A CN 202211136016A CN 115287308 A CN115287308 A CN 115287308A
Authority
CN
China
Prior art keywords
fermentation
butyl butyrate
trichoderma asperellum
clostridium
lignocellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211136016.6A
Other languages
English (en)
Inventor
信丰学
陆家声
姜岷
姜万奎
蒋羽佳
章文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202211136016.6A priority Critical patent/CN115287308A/zh
Publication of CN115287308A publication Critical patent/CN115287308A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法,包括将活化的棘孢木霉接种至以木质纤维素为碳源的发酵培养基中好氧发酵48‑120 h;将活化的丙酮丁醇梭菌和酪丁酸梭菌接种至好氧发酵的发酵液中并转厌氧发酵;向厌氧发酵的发酵液中添加脂肪酶表面展示大肠杆菌的发酵液或菌体沉淀,合成丁酸丁酯,发酵完毕后萃取得到丁酸丁酯产品。该方法是目前利用微晶纤维素为唯一碳源时混菌发酵得到的最高丁酸丁酯产量,同时,该方法还可以应用到直接以木质纤维素为原料合成丁酸丁酯的发酵过程中,在以玉米芯为底物的发酵培养基中进行发酵,可产生1.35 g/L的丁酸丁酯,极大降低了工业生产丁酸丁酯的底物成本,具有重要的应用价值。

Description

利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法
技术领域
本发明属于微生物发酵领域,具体涉及一种利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法。
背景技术
丁酸丁酯是一种应用广泛的短链脂肪酸酯,作为溶剂广泛用于有机合成过程;此外,丁酸丁酯在低温下具有与航空柴油相似的理化性质,可直接用作航空燃料,是一种更高附加值的燃料添加剂。丁酸丁酯天然存在于菠萝、香蕉和草莓等水果中,然而含量非常低。传统生产工艺以丁酸和丁醇为原料、浓硫酸为催化剂,通过酯化反应合成,该工艺虽然技术成熟、产品收率高,但存在副反应多、设备腐蚀严重、“三废”排放量大等弊端。利用脂肪酶催化合成丁酸丁酯,产品纯度高,然而收率较低、底物和酶成本较高,限制了其大规模应用。因此,迫切需要开发新型生产工艺,实现丁酸丁酯的高效合成。生物发酵法合成丁酸丁酯能以可再生的生物质为原料,具有反应条件温和、产品纯度高、过程绿色环保等优势;且生物发酵合成的丁酸丁酯更受消费者青睐(约1100元/千克),其价格要远远高于化学合成的丁酸丁酯(约 60元/千克),因此,在食用香精和日化香料等领域具有更广泛的市场。
木质纤维素类生物质是继煤炭、石油、天然气等化石能源之后最重要的可应用能源之一,被认为世界第四大能源。随着开采型不可再生资源的日趋枯竭,木质纤维素类生物质原料的资源优势愈发显现。棘孢木霉是可以直接利用木质纤维素为碳源进行生长发酵的丝状真菌。棘孢木霉能够在发酵1~2天内迅速的生长,并分泌大量纤维素酶、半纤维素酶和β-葡萄糖苷酶,可以高效降解未经任何化学或生物处理的玉米芯等木质纤维素类原料,在木质纤维素降解方面有着极高的应用价值。
混菌发酵是指采用两种或多种微生物的协同作用共同完成某发酵过程的一种新型发酵技术,可通过菌株间的“劳动分工”实现复杂代谢任务。目前对于具有合作关系的菌株筛选和组合还是一个随机的过程,缺乏有效的理论指导,而且对于已经应用的混菌培养体系也不能有效地协调菌株间的关系,使其达到最佳生态水平,发挥最大效应,这严重阻碍了混菌发酵的发展和应用。通过“师法自然”策略,从自然界中筛选可以直接利用木质纤维素合成丁酸、丁醇的天然菌群,并通过对其中核心功能菌株的筛选,构建跨种属的功能互补混菌发酵体系,有助于提升菌群间的有效合作,提高通过一体化生物加工过程利用木质纤维素类原料直接合成丁酸丁酯的合成效率。
发明内容
本发明的目的在于提供通过微生物混菌体系实现从木质纤维素从头合成丁酸丁酯的方法。
为实现上述目的,本发明采用如下技术方案:
一种利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法,包括:
(1)将活化的棘孢木霉接种至以木质纤维素为碳源的发酵培养基中好氧发酵48-120 h;
(2)将活化的丙酮丁醇梭菌和酪丁酸梭菌接种步骤(1)得到的发酵液中厌氧发酵;
(3)向步骤(2)得到的发酵液中添加脂肪酶表面展示大肠杆菌的发酵液或菌体沉淀,合成丁酸丁酯,发酵完毕后萃取得到丁酸丁酯产品;
其中,所述脂肪酶表面展示大肠杆菌为将脂肪酶lipA的编码基因和锚定蛋白estA的编码基因克隆到表达载体上后,转化至大肠杆菌BL21感受态细胞,挑选得到的阳性克隆。
作为一种优选的实施方式,所述棘孢木霉为棘孢木霉(Trichoderma asperellum)LYS1;所述丙酮丁醇梭菌为丙酮丁醇梭菌(Clostridium acetobutylicum)ATCC 824;所述酪丁酸梭菌为酪丁酸梭菌(Clostridium tyrobutyricum)ATCC 25755。棘孢木霉LYS1菌株能够在发酵1~2天内迅速的生长,并分泌大量纤维素酶、半纤维素酶和β-葡萄糖苷酶,其中β-葡萄糖苷酶酶活优于里氏木霉,能有效弥补目前商业菌株β-葡萄糖苷酶分泌不足的问题,高效降解微晶纤维素;而且基于较高的半纤维素酶分泌能力,该菌株还能高效降解未处理的玉米芯等木质纤维素类原料,在木质纤维素降解方面有着极高的应用价值。丙酮丁醇梭菌ATCC 824是ABE发酵中典型的高产丁醇菌株的代表,其整个发酵过程可以分为产酸产溶剂两阶段,其在产酸阶段消耗24-40 %的糖,生成4-6 g/L有机酸(乙酸、丁酸)。当发酵液pH值下降到时一定值时,酸开始向溶剂转化,虽然溶剂(丁醇、乙醇)不断生成,但是酸的浓度基本维持不变。其可在ABE发酵后期可合成高浓度的丁醇(18.65 g/L),酶活检测发现,菌株可内源性表达脂肪酶。酪丁酸梭菌属于革兰氏阳性芽孢杆菌,有机化能专性厌氧型。以五碳糖或六碳糖作为碳源底物发酵时,其主要产物为丁酸,同时生成乙酸、二氧化碳和氢气等副产物。对强酸、高温、高盐等恶劣环境具有较高的耐受性,生命力较强,并且具有培养条件相对简单,丁酸产量、得率、纯度相对较高、发酵稳定性较好等优点,此外其发酵副产物氢气也是一种清洁、高效的绿色能源,因此被认为是最具商业化开发潜力的产丁酸菌株。
作为一种优选的实施方式,厌氧发酵24 h后添加所述菌体沉淀。
作为一种优选的实施方式,好氧发酵48-72 h后接种活化的丙酮丁醇梭菌和酪丁酸梭菌。更进一步地优选为发酵40小时,将活化的丙酮丁醇梭菌和酪丁酸梭菌接种到步骤(1)得到的发酵液中,发酵液中有一定量葡萄糖,且纤维素酶和β-葡萄糖苷酶的活性较高,能够持续降解微晶纤维素为葡萄糖,而丙酮丁醇梭菌和酪丁酸梭菌可以利用降解得到的葡萄糖生产丁酸丁酯。接种时间过早(24 h),纤维素酶的酶活较低,不利用后续微晶纤维素的降解;接种时间过晚(棘孢木霉发酵72-120 h),则会导致棘孢木霉培养时间过长,纤维素酶和β-葡萄糖苷酶分泌量减少,酶系的酶活下降,且部分降解得到的葡萄糖也被棘孢木霉利用,从而减少了丁酸丁酯的碳流量,最终导致丁酸丁酯产量降低。因此,丙酮丁醇梭菌和酪丁酸梭菌的接种时间是混菌发酵生产丁酸丁酯极为关键的步骤。
作为一种优选的实施方式,所述木质纤维素浓度为60-120 g/L。
作为一种优选的实施方式,所述木质纤维素来源为玉米芯或微晶纤维素。
作为一种优选的实施方式,所述活化的棘孢木霉的接种量为发酵培养基体积的1-5%。
作为一种优选的实施方式,所述活化的丙酮丁醇梭菌和酪丁酸梭菌的接种量为发酵液体积的1-10%。
作为一种优选的实施方式,所述棘孢木霉活化方式为:
取棘孢木霉菌液涂覆于PDA固体培养基中培养72-120 h,取培养基上菌落接种于活化培养基,于28-35 ℃活化24-96 h;
所述活化培养基配方为:0.1-0.5 g/L尿素,1.0-2.0 g/L (NH4)2SO4,1.0-3.0 g/LKH2PO4,0.1-0.6 g/L CaCl2,0.1-0.6 g/L MgSO4·7H2O,0.002-0.008 g/L FeSO4·7H2O,0.001-0.003 g/L MnSO4·H2O,0.001-0.003 g/L ZnSO4·7H2O,0.001-0.003 g/L CoCl2,10-20 g/L葡萄糖,溶剂为水。
作为一种优选的实施方式,所述发酵培养基的成分为:木质纤维素,0.1-0.5 g/L尿素,1.0-2.0 g/L (NH4)2SO4,1.0-3.0 g/L KH2PO4,0.1-0.6 g/L CaCl2,0.1-0.6 g/LMgSO4·7H2O,0.002-0.008 g/L FeSO4·7H2O,0.001-0.003 g/L MnSO4·H2O,0.001-0.003g/L ZnSO4·7H2O,0.001-0.003 g/L CoCl2,溶剂为水。
作为一种优选的实施方式,所述(1)中发酵条件为:发酵温度28-35 ℃,发酵时间为24-120 h,发酵pH为5.0-6.0,转速0-120 rpm。
本发明发现木霉菌属的棘孢木霉和羧菌属的丙酮丁醇梭菌、酪丁酸梭菌可实现混菌发酵,从而运用混菌发酵的手段,首次实现了直接从木质纤维素从头合成丁酸丁酯,且不需要外源添加脂肪酶和前体(丁醇、丁酸),很大程度上降低了生物法生产丁酸丁酯的成本,且使用的是可再生和可持续原料的天然底物组分制成的天然酯,具有重要的应用价值,可实现丁酸丁酯的绿色经济合成,丰富和发展丁酸丁酯生物合成的理论和实践,也为其他短链脂肪酸的合成提供了指导。
附图说明
图1不同混菌方式对丁酸丁酯产量的影响;
图2不同混菌时间对丁酸丁酯产量的影响;
图3不同微晶纤维素浓度对最终丁酸丁酯产量的影响;
图4玉米芯浓度为80 g/L时丁酸丁酯发酵曲线。
具体实施方式
实施例使用的丙酮丁醇梭菌分类命名为丙酮丁醇梭菌(Clostridium acetobutylicum),菌株号为ATCC 824,商业菌株。
酪丁酸梭菌分类命名为酪丁酸梭菌(Clostridium tyrobutyricum),菌株号为ATCC 25755,商业菌株。
表面展示脂肪酶大肠杆菌是将脂肪酶lipA基因(WP_034581463.1)基因和锚定蛋白estA基因(NC_002516.2)克隆到pET29a表达载体上,构建得重组质粒;再转化大肠杆菌BL21感受态细胞,挑选阳性克隆,获得大肠杆菌表达菌株,命名为E. coli BL21- pET-29a(+)-LE。
上述表面展示脂肪酶大肠杆菌的具体构建方式及丙酮丁醇梭菌、酪丁酸梭菌已于申请人的在先申请CN114317623A中公开。
棘孢木霉分类命名为棘孢木霉(Trichoderma asperellum),菌株号为LYS1,已于申请人的在先申请CN114214206A中公开。
实施例1不同混菌方式对丁酸丁酯产量的影响
(1)取1 mL棘孢木霉菌液涂覆于PDA固体培养基(46 g/L马铃薯葡萄糖琼脂培养基,20 g/L琼脂)中于30 ℃培养120 h,用1 mL无菌水冲洗PDA固体培养基中的菌落,并接种于活化培养基,于30 ℃活化48 h,活化培养基配方为:0.3 g/L尿素,1.4 g/L (NH4)2SO4,2.0 g/L KH2PO4,0.3 g/L CaCl2,0.3 g/L MgSO4·7H2O,0.005 g/L FeSO4·7H2O,0.00156g/L MnSO4·H2O,0.0014 g/L ZnSO4·7H2O,0.002 g/L CoCl2,10 g/L葡萄糖,溶剂为水,调节pH至5.5;
(2)将丙酮丁醇梭菌和酪丁酸梭菌各以接种量5% v/v接种到活化培养基中,37℃、120 rpm活化60 h,每隔12 h调节pH至5.5;活化培养基配方为:1 g/L NaCl,0.75 g/LK2HPO4,0.75 g/L KH2PO4,3 g/L 酵母粉,0.5 g/L MgCl2•6H2O,0.3 g/L NH4Cl,0.015 g/LCaCl2•2H2O,1.5 g/L FeCl2·4H2O,0.3 g/L KCl,葡萄糖60 g/L,溶剂为水,调节pH至5.5;
(3)将脂肪酶大肠杆菌表面展示菌株按1%的接种量接种于含30 μg/mL卡那霉素的LB液体培养基中,于37℃试管培养至对数生长期,制备种子液;将上述种子液按1%的接种量接种于含30 μg/mL卡那霉素的LB液体培养基中,于37℃摇瓶培养至OD=0.6~0.8/3.5h,再按0.2%的添加量加入IPTG,于20℃,摇瓶条件下诱导培养24 h;
(4)将活化的棘孢木霉以4% v/v接种量接种到摇瓶或者厌氧瓶(不封丁基塞)发酵培养基中,30 ℃、120 rpm发酵48 h,得到发酵液;发酵培养基配方为:0.3 g/L尿素,1.4 g/L (NH4)2SO4,2.0 g/L KH2PO4,0.3 g/L CaCl2,0.3 g/L MgSO4·7H2O,0.005 g/L FeSO4·7H2O,0.00156 g/L MnSO4·H2O,0.0014 g/L ZnSO4·7H2O,0.002 g/L CoCl2,微晶纤维素浓度为60 g/L,溶剂为水,pH调至5.5,121 ℃灭菌20 min。
(5)将活化好的丙酮丁醇梭菌和酪丁酸梭菌各以10% v/v接种到步骤(4)得到的发酵液中,并将发酵体系转入厌氧瓶;37℃,200 rpm;
(6)在接入丙酮丁醇梭菌和酪丁酸梭菌的24 h后,将加入步骤(3)中所得脂肪酶表面展示大肠杆菌发酵菌液5-10 mL,或同体积发酵菌液离心后收集所得菌体沉淀,发酵合成丁酸丁酯;
(7)向步骤(6)的发酵液中加入萃取剂十二烷萃取丁酸丁酯,萃取剂:发酵液=1:2(v/v);
培养过程中,每隔24 h取样并测定其丁酸丁酯产量。棘孢木霉为好氧菌,丙酮丁醇梭菌和酪丁酸梭菌为严格厌氧菌。当发酵体系经历由摇瓶转为厌氧瓶时(有氧-厌氧),体系中微晶纤维素降解明显,最终丁酸丁酯产量能达到1.56 g/L;当发酵体系经历由厌氧瓶(不加丁基塞)转为厌氧瓶时(微氧-厌氧),体系中微晶纤维素基本未降解,推测可能是前期棘孢木霉没有得到充足的氧气因此无法为后续发酵提供充足的糖,丁酸丁酯产量只达到0.2g/L;当发酵体系一直为微氧环境,基本不产丁酸丁酯,原因也是前期棘孢木霉没有得到充足的氧气因此无法为后续发酵提供充足的糖,并且梭菌严格厌氧,环境中的部分氧气导致生长情况不好,见图1。
实施例2不同木质纤维素降解的木霉菌对最终丁酸丁酯产量的影响
方法同实施例1,其中将棘孢木霉替代为里氏木霉(Trichoderma reesei ATCC26921),比较其在混菌体系中木质纤维素降解效果和丁酸丁酯生产产量。发现以里氏木霉为降解菌时,丁酸丁酯的产量仅为0.13 g/L,而棘孢木霉为降解菌时为1.56 g/L。推测在混菌体系中加入里氏木霉,其在产酶生产还原糖的同时会利用部分还原糖,而丙酮丁醇梭菌和酪丁酸梭菌的活性竞争不过里氏木霉,导致可利用还原糖太少,后续两梭菌菌株无法存活。
实施例3不同混菌时间对丁酸丁酯产量的影响
方法同实施例1,其中混菌策略为有氧转厌氧;不同的是步骤(4)中设置5组实验,发酵时间分别为24 h,48 h,72 h,96 h,120 h。
培养过程中,每隔24 h取样并测定其丁酸丁酯产量。当棘孢木霉培养了72 h时加入丙酮丁醇梭菌和酪丁酸梭菌,丁酸丁酯产量最高,达到2.94 g/L(图2)。在此体系中,棘孢木霉分泌的纤维素酶有效地降解了微晶纤维素,此后,在混菌体系中,纤维素酶和β-葡萄糖苷酶仍具有较高的酶活,能够源源不断降解微晶纤维素为葡萄糖,而丙酮丁醇梭菌和酪丁酸梭菌可以利用降解木质纤维素得到的葡萄糖生产丁酸丁酯。接种时间过早(24 h),纤维素酶活较低,不利用后续微晶纤维素的降解,而接种过晚(72-120 h),则会导致棘孢木霉培养时间过长,纤维素酶和β-葡萄糖苷酶酶活下降,且部分降解得到的葡萄糖也被棘孢木霉利用,从而减少了丁酸丁酯合成的碳流量,最终导致丁酸丁酯产量降低。
实施例4不同微晶纤维素浓度对最终丁酸丁酯产量的影响
方法同实施例1,其中丙酮丁醇梭菌和酪丁酸梭菌的接种时间为72 h,接种方法是以接种量各10% v/v接种到步骤(4)得到的发酵液中,混菌方式为有氧转厌氧;不同的是步骤(4)中设置4组实验,发酵培养基中微晶纤维素浓度分别为60 g/L,80 g/L,100 g/L,120g/L。
当微晶纤维素浓度为60 g/L时,丁酸丁酯产量为2.94 g/L(图3);当微晶纤维素浓度为80 g/L时,混菌发酵得到的丁酸丁酯浓度最高,混菌发酵得到的丁酸丁酯浓度为3.12g/L;当微晶纤维素浓度为100 g/L时,丁酸丁酯浓度为2.24 g/L,当微晶纤维素浓度为120g/L时,丁酸丁酯浓度为2.19 g/L。实验证明丙酮丁醇梭菌和酪丁酸梭菌无法直接利用微晶纤维素进行发酵,而使用功能互补的混菌体系时,80 g/L微晶纤维素可生产3.12 g/L丁酸丁酯,如图3。
实施例5不同玉米芯浓度对最终丁酸丁酯产量的影响
方法同实施例4,不同的是步骤(4)中设置4组实验,以玉米芯替代发酵培养基中的微晶纤维素,玉米芯浓度分别为60 g/L,80 g/L,100 g/L,120 g/L。
培养过程中,每隔24 h取样测定其丁酸丁酯产量。当玉米芯浓度为60 g/L时,丁酸丁酯产量为1.18 g/L;当玉米芯浓度为80 g/L时,混菌发酵得到的丁酸丁酯浓度最高,混菌发酵得到的丁酸丁酯浓度为1.35 g/L(图4);当玉米芯浓度为100 g/L时,丁酸丁酯浓度为0.98 g/L,当玉米芯浓度为120 g/L时,丁酸丁酯浓度为0.44 g/L。
实验证明使用混菌体系时,80 g/L玉米芯可生产1.35 g/L丁酸丁酯,证明四菌体系可直接从木质纤维素原料到丁酸丁酯合成的可行性,有望实现发酵原料成本的降低。

Claims (10)

1.一种利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法,其特征在于,包括:
(1)将活化的棘孢木霉接种至以木质纤维素为碳源的发酵培养基中好氧发酵48-120h;
(2)将活化的丙酮丁醇梭菌和酪丁酸梭菌接种步骤(1)得到的发酵液中厌氧发酵;
(3)向步骤(2)得到的发酵液中添加脂肪酶表面展示大肠杆菌的发酵液或菌体沉淀,合成丁酸丁酯,发酵完毕后萃取得到丁酸丁酯产品;
其中,所述脂肪酶表面展示大肠杆菌为将脂肪酶lipA的编码基因和锚定蛋白estA的编码基因克隆到表达载体上后,转化至大肠杆菌BL21感受态细胞,挑选得到的阳性克隆。
2. 根据权利要求1所述的方法,其特征在于,所述棘孢木霉为棘孢木霉(Trichoderma asperellum)LYS1;所述丙酮丁醇梭菌为丙酮丁醇梭菌(Clostridium acetobutylicum)ATCC 824;所述酪丁酸梭菌为酪丁酸梭菌(Clostridium tyrobutyricum)ATCC 25755。
3. 根据权利要求1所述的方法,其特征在于,厌氧发酵24 h后添加所述菌体沉淀。
4. 根据权利要求1所述的方法,其特征在于,好氧发酵48-72 h后接种活化的丙酮丁醇梭菌和酪丁酸梭菌。
5. 根据权利要求1所述的方法,其特征在于,所述木质纤维素浓度为60-120 g/L。
6.根据权利要求1或5所述的方法,其特征在于,所述木质纤维素来源为玉米芯或微晶纤维素。
7.根据权利要求1所述的方法,其特征在于,所述活化的棘孢木霉的接种量为发酵培养基体积的1-5%。
8.根据权利要求1所述的方法,其特征在于,所述活化的丙酮丁醇梭菌和酪丁酸梭菌的接种量为发酵液体积的1-10%。
9.根据权利要求1所述的方法,其特征在于,所述棘孢木霉活化方式为:
取棘孢木霉菌液涂覆于PDA固体培养基中培养72-120 h,取培养基上菌落接种于活化培养基,于28-35℃活化24-96 h;
所述活化培养基配方为:0.1-0.5 g/L尿素,1.0-2.0 g/L (NH4)2SO4,1.0-3.0 g/LKH2PO4,0.1-0.6 g/L CaCl2,0.1-0.6 g/L MgSO4·7H2O,0.002-0.008 g/L FeSO4·7H2O,0.001-0.003 g/L MnSO4·H2O,0.001-0.003 g/L ZnSO4·7H2O,0.001-0.003 g/L CoCl2,10-20 g/L葡萄糖,溶剂为水。
10. 根据权利要求1所述的方法,其特征在于,所述发酵培养基的成分为:木质纤维素,0.1-0.5 g/L尿素,1.0-2.0 g/L (NH4)2SO4,1.0-3.0 g/L KH2PO4,0.1-0.6 g/L CaCl2,0.1-0.6 g/L MgSO4·7H2O,0.002-0.008 g/L FeSO4·7H2O,0.001-0.003 g/L MnSO4·H2O,0.001-0.003 g/L ZnSO4·7H2O,0.001-0.003 g/L CoCl2,溶剂为水。
CN202211136016.6A 2022-09-19 2022-09-19 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法 Pending CN115287308A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211136016.6A CN115287308A (zh) 2022-09-19 2022-09-19 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211136016.6A CN115287308A (zh) 2022-09-19 2022-09-19 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法

Publications (1)

Publication Number Publication Date
CN115287308A true CN115287308A (zh) 2022-11-04

Family

ID=83834649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211136016.6A Pending CN115287308A (zh) 2022-09-19 2022-09-19 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法

Country Status (1)

Country Link
CN (1) CN115287308A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976122A (zh) * 2023-01-10 2023-04-18 四川轻化工大学 一种二元混菌产酯发酵体系及其生产酯化液的方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976122A (zh) * 2023-01-10 2023-04-18 四川轻化工大学 一种二元混菌产酯发酵体系及其生产酯化液的方法和应用
CN115976122B (zh) * 2023-01-10 2024-07-23 四川轻化工大学 一种二元混菌产酯发酵体系及其生产酯化液的方法和应用

Similar Documents

Publication Publication Date Title
Sun et al. Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15
Kawaguchi et al. H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus
Wang et al. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch
Sinha et al. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03
Akroum-Amrouche et al. Biohydrogen production by dark and photo-fermentation processes
CN110106223B (zh) 一种促进玉米秸秆光合产氢的方法
Khaswal et al. Current status and applications of genus Geobacillus in the production of industrially important products—a review
CN1204260C (zh) 一种微生物微氧发酵生产1,3-丙二醇的方法
CN101805759B (zh) 一种以木薯粉为原料生产l-乳酸的方法
WO2010031793A2 (en) Thermophilic fermentative bacterium producing butanol and/or hydrogen from glycerol
CN115287308A (zh) 利用混菌体系实现木质纤维素从头合成丁酸丁酯的方法
US20240191274A1 (en) Recombinant endoxylanases and related compositions and methods of use
CN106399204B (zh) 一种发酵生产1,3-丙二醇的微生物混合菌群及发酵方法
Ai et al. Butyric Acid Fermentation from Rice Straw with Undefined Mixed Culture: Enrichment and Selection of Cellulolytic Butyrate-Producing Microbial Community.
CN110724654A (zh) 一株生产5-羟甲基-2呋喃甲酸的铜绿假单胞菌及其应用
CN112481316B (zh) 一种强化厌氧混合菌群发酵秸秆制备丁酸的阴极电发酵方法
Sivagurunathan et al. Biohydrogen production from wastewaters
CN110004202B (zh) 一种微生物共培养催化碳水化合物合成己酸的方法
CN103952447A (zh) 一种利用厌氧条件下发酵生产丁二酸的方法
CN114807098B (zh) 用于生产胞外纤维素降解酶系的培养方法
CN107299120B (zh) 一种提高厌氧细菌产丁醇活性的方法
CN111206057B (zh) 一种微生物混菌发酵与原位萃取相结合生产丁酸丁酯的方法
CN114686531B (zh) 一种生物转化制备1,3-丙二醇的方法
CN115197977A (zh) 一种利用功能互补的真菌-细菌混菌体系实现木质纤维素合成乳酸的方法
Laikova et al. Biohydrogen Production by Mono-Versus Co-and Mixed Cultures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination