CN115268549A - 降低ldo输入输出电压差的电路和低压差线性稳压器 - Google Patents

降低ldo输入输出电压差的电路和低压差线性稳压器 Download PDF

Info

Publication number
CN115268549A
CN115268549A CN202211190385.3A CN202211190385A CN115268549A CN 115268549 A CN115268549 A CN 115268549A CN 202211190385 A CN202211190385 A CN 202211190385A CN 115268549 A CN115268549 A CN 115268549A
Authority
CN
China
Prior art keywords
circuit
voltage
tube
sampling
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211190385.3A
Other languages
English (en)
Other versions
CN115268549B (zh
Inventor
洪锋明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Xinyi Technology Co ltd
Original Assignee
Chengdu Xinyi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Xinyi Technology Co ltd filed Critical Chengdu Xinyi Technology Co ltd
Priority to CN202211190385.3A priority Critical patent/CN115268549B/zh
Publication of CN115268549A publication Critical patent/CN115268549A/zh
Application granted granted Critical
Publication of CN115268549B publication Critical patent/CN115268549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明公开一种降低LDO输入输出电压差的电路,包括功率输出电路、负载电流采样电路和电压调节电路;功率输出电路包括功率管P和负载电阻RL功率管P的漏极与负载电阻RL和负载电流采样电路连接,功率管P的衬底与电压调节电路和负载电流采样电路连接,负载电阻RL接地;负载电流采样电路与电压调节电路连接,负载电流采样电路接入电源电压VDD;电压调节电路接入电源电压VDD。本发明根据负载电流的变化,线性的调整功率管上的电势差,从而达到动态减小功率管阈值电压,进而降低LDO的输入输出电压差,避免通过增加功率管尺寸降低输入输出电压差影响LDO的环路稳定性和输出响应速度,并减小了芯片的成本,提高了转换效率。

Description

降低LDO输入输出电压差的电路和低压差线性稳压器
技术领域
本发明属于LDO压差降低技术领域,具体涉及一种降低LDO输入输出电压差的电路和低压差线性稳压器。
背景技术
Dropout(输入输出电压差)电压是指随着输入电压减小而输出电压降低到稳定值的约2%时输入电压与输出电压的差值,是LDO(low dropout regulator,低压差线性稳压器)最重要的参数。降低dropout电压有助于降低LDO上的功率损耗,提高转换效率。
现有技术中,常见的降低dropout电压的方法是在功率管沟道长度不变的情况下增加沟道宽度,从而降低功率管的导通电阻,进而达到降低dropout电压的目的,然而,功率管面积增大会导致寄生电容增大,从而影响环路稳定性和输出响应速度,且芯片面积的增大会导致成本较高。
发明内容
本发明的目的是提供一种降低LDO输入输出电压差的电路和低压差线性稳压器,用以解决现有技术中存在的功率管面积增大会导致寄生电容增大,从而影响环路稳定性和输出响应速度,且芯片面积的增大会导致成本较高的技术问题。
为了实现上述目的,本发明采用以下技术方案:
一方面提供一种降低LDO输入输出电压差的电路,包括功率输出电路、负载电流采样电路和电压调节电路;
所述功率输出电路包括功率管P和负载电阻RL,所述功率管P的栅极用于接收LDO的DRV驱动信号,所述功率管P的源极接入电源电压VDD,所述功率管P的漏极分别与负载电阻RL的第一端和所述负载电流采样电路的第一端连接,所述功率管P的衬底分别与所述电压调节电路的第一端和所述负载电流采样电路的第二端连接,所述负载电阻RL的另一端接地;
所述负载电流采样电路的第二端还与所述电压调节电路的第一端连接,所述负载电流采样电路的第三端接入电源电压VDD;所述电压调节电路的第二端接入电源电压VDD;
其中,所述负载电流采样电路用于采样负载电流,并将采样后的负载电流传输至所述电压调节电路,所述电压调节电路用于生成随负载电流变化的线性压降,以便降低LDO的输入输出电压差。
在一种可能的设计中,还包括钳位保护电路,所述钳位保护电路的第一端分别与所述功率管P的衬底、所述负载电流采样电路的第二端以及所述电压调节电路的第一端连接,所述钳位保护电路的第二端接入电源电压VDD;其中,所述钳位保护电路用于对所述功率管P进行漏电保护。
在一种可能的设计中,所述负载电流采样电路包括运算放大器、采样管MP1和放大管MP2;
所述运算放大器的同相输入端与所述功率管P的漏极连接,所述运算放大器的反相输入端分别与所述采样管MP1的漏极和放大管MP2的源极连接,所述运算放大器的输出端与所述放大管MP2的栅极连接;所述采样管MP1的栅极用于接收LDO的DRV驱动信号,所述采样管MP1的源极接入电源电压VDD,所述采样管MP1的衬底与所述电压调节电路的第一端连接,所述采样管MP1的漏极还与所述放大管MP2的源极连接;所述放大管MP2的衬底接入电源电压VDD,所述放大管MP2的漏极与所述电压调节电路的第一端连接;
其中,所述运算放大器与所述放大管MP2构成单位增益负反馈,以使所述采样管MP1的漏极电压与功率管P的漏极电压一致;所述采样管MP1用于采样负载电流,并将采样电流传输至所述电压调节电路。
在一种可能的设计中,所述电压调节电路包括调节电阻R1和电流镜,所述调节电阻的第一端接入电源电压VDD,所述调节电阻的第二端分别与所述功率管P的衬底、所述采样管MP1的衬底以及所述电流镜的第一端连接,所述电流镜的第二端与所述放大管MP2的漏极连接;
其中,所述电流镜用于将采样电流比例镜像至调节电阻R1,以便调节R1上产生与负载电流呈线性比例函数的压降。
在一种可能的设计中,所述电流镜采用双层电流镜。
在一种可能的设计中,所述钳位保护电路采用具有低于预设值的反向击穿电压的二极管,所述二极管的第一端分别与功率管P的衬底、所述采样管MP1的第一端、所述调节电阻R1的第二端以及所述电流镜的第一端连接,所述二极管的第二端接入电源电压VDD,所述二极管用于对所述功率管P的衬底电位和源极电位进行钳位保护。
另一方面提供一种低压差线性稳压器,包括如第一方面任意一种可能的设计中所述的降低LDO输入输出电压差的电路。
本发明相较于现有技术的有益效果是;
本发明通过将功率输出电路与负载电流采样电路和电压调节电路连接,通过负载电流采样电路来精准复制负载电流,并将采样得到的负载电流传输至所述电压调节电路,以便电压调节电路生成负载电流的线性压降,即生成功率管的调节电压,从而可以根据负载电流的变化,线性的调整功率管上的电势差,进而降低LDO的输入输出电压差,避免对功率管本身结构进行改进,增加了电路的环路稳定性和输出响应速度,并减小了芯片的成本;通过设置钳位保护电路来对功率管衬底和源端电压进行钳位保护,从而避免了功率管对衬底漏电,提高了电路运行的安全性。
附图说明
图1为本申请实施例中的降低LDO输入输出电压差的电路的原理图;
图2为本申请实施例中的P型衬底工艺与PMOS相关的寄生PNP;
图3为本申请实施例中的降低LDO输入输出电压差的电路与现有电路的曲线对比图。
其中,1-功率输出电路;2-负载电流采样电路;3-电压调节电路;4-钳位保护电路。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图和实施例或现有技术的描述对本发明作简单地介绍,显而易见地,下面关于附图结构的描述仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在此需要说明的是,对于这些实施例方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
实施例
为了解决现有技术中的功率管面积增大会导致寄生电容增大,从而影响环路稳定性和输出响应速度,且芯片面积的增大会导致成本较高的技术问题,本申请实施例提供了一种降低LDO输入输出电压差的电路,该电路通过将功率输出电路与负载电流采样电路和电压调节电路连接,通过负载电流采样电路来精准复制负载电流,并将采样得到的负载电流传输至所述电压调节电路,以便电压调节电路生成负载电流的线性压降,即生成功率管的调节电压,从而可以根据负载电流的变化,线性的调整功率管的电势差,进而降低LDO的输入输出电压差,增加了电路的环路稳定性和输出响应速度,并减小了芯片的成本。
下面将对本申请实施例提供的降低LDO输入输出电压差的电路进行详细说明。
如图1-图3所示,本申请实施例一方面提供一种降低LDO输入输出电压差的电路,包括功率输出电路1、负载电流采样电路2和电压调节电路3;
所述功率输出电路1包括功率管P和负载电阻RL,所述功率管P的栅极用于接收LDO的DRV驱动信号,所述功率管P的源极接入电源电压VDD,所述功率管P的漏极分别与负载电阻RL的第一端和所述负载电流采样电路2的第一端连接,所述功率管P的衬底分别与所述电压调节电路3的第一端和所述负载电流采样电路2的第二端连接,所述负载电阻RL的另一端接地;
所述负载电流采样电路2的第二端还与所述电压调节电路3的第一端连接,所述负载电流采样电路2的第三端接入电源电压VDD;所述电压调节电路3的第二端接入电源电压VDD;
其中,所述负载电流采样电路2用于采样负载电流,并将采样后的负载电流传输至所述电压调节电路3,所述电压调节电路3用于生成负载电流的线性压降,以便降低LDO的输入输出电压差。
在本实施例中,具体的,LDO输出DRV驱动信号,用于控制功率管P为负载电阻RL提供负载电流,并产生输出电压信号,电流复制电路通过采样功率管的电流,即负载电流,并发送至电压调节电路3来产生调节电压,该调节电压是与负载电流呈线性关系的压降,利用调节电压对功率管的阈值电压进行调节,从而可以减小输入输出电压差,进而避免增加功率管尺寸导致电路的环路稳定性和输出响应速度受到影响,并减小了芯片的成本。
在一种具体的实施方式中,所述功率管P的输入输出电压差
Figure 515610DEST_PATH_IMAGE001
的计算公式如下:
Figure 757105DEST_PATH_IMAGE002
(1)
Figure 655791DEST_PATH_IMAGE003
(2)
Figure 366258DEST_PATH_IMAGE004
(3)
其中,
Figure 110223DEST_PATH_IMAGE005
表示负载电流,
Figure 973268DEST_PATH_IMAGE006
表示功率管P的导通电阻,
Figure 511696DEST_PATH_IMAGE007
表示漏源电压,
Figure 709460DEST_PATH_IMAGE008
表示漏极电流,
Figure 398061DEST_PATH_IMAGE009
Figure 318875DEST_PATH_IMAGE010
均表示工艺参数,
Figure 559363DEST_PATH_IMAGE011
表示功率管P的长宽比,
Figure 978843DEST_PATH_IMAGE012
表示门栅电压,
Figure 579458DEST_PATH_IMAGE013
表示阈值电压,
Figure 197521DEST_PATH_IMAGE014
表示VSB=0V时的阈值电压,
Figure 608911DEST_PATH_IMAGE015
表示P型衬底能级差,
Figure 515687DEST_PATH_IMAGE016
表示体效应系数,
Figure 405145DEST_PATH_IMAGE017
表示功率管S端和B端的电势差。
具体的,通过公式(1)和公式(2)可知,如果要降低LDO的dropout电压,一种方法是增大功率管的宽度(即现有方法),但该方法存在功率管面积增大会导致寄生电容增大,从而影响环路稳定性和输出响应速度,且芯片面积的增大会导致成本较高的技术缺陷;另一种方法则是可以通过增大
Figure 300551DEST_PATH_IMAGE018
的值,从而降低功率管导通电阻,进而降低dropout电压。又通过公式(3)可知,当改变功率管的S端与B端之间的电势差时,可以改变功率管的阈值电压,进而改变
Figure 804214DEST_PATH_IMAGE019
的值,那么,当VSB>0时,则PMOS管的阈值电压绝对值可以变小,从而
Figure 401548DEST_PATH_IMAGE019
的值将增大,进而降低功率管导通电阻,最终降低dropout电压。那么,为了降低PMOS管的阈值电压,本实施例具体提出了以下方案:
在一种具体的实施方式中,所述负载电流采样电路2包括运算放大器、采样管MP1和放大管MP2;
所述运算放大器的同相输入端与所述功率管P的漏极连接其电压设为VO,所述运算放大器的反相输入端分别与所述采样管MP1的漏极和放大管MP2的源极连接其电压设为VFB,根据运算放大器具有“虚短”的功能可知,VFB等于VO,所述运算放大器的输出端与所述放大管MP2的栅极连接;所述采样管MP1的栅极用于接收LDO的DRV驱动信号,所述采样管MP1的源极接入电源电压VDD,所述采样管MP1的衬底与所述电压调节电路3的第一端连接,所述采样管MP1的漏极还与所述放大管MP2的源极连接;所述放大管MP2的衬底接入电源电压VDD,所述放大管MP2的漏极与所述电压调节电路3的第一端连接;
其中,所述运算放大器与所述放大管MP2构成单位增益负反馈,以便所述采样管MP1的漏极电压VFB与功率管P的漏极电压VO相等;所述采样管MP1用于采样负载电流,并将采样电流传输至所述电压调节电路3。
其中,需要说明的是,通过将第一运算放大器的同相输入端连接功率管P的漏极,将运算放大器的反相输入端与采样管MP1的漏极以及放大管MP2的源极连接到一起,并将运算放大器的输出端与放大管MP1的栅极连接到一起,从而构成单位增益负反馈,进而保证采样管MP1的漏极电压与第一功率管P的漏极电压一致,使得采样管MP1能够精准采样得到功率管P的电流,保证了电流传输的准确性,以供后续将采样电流通过传输至所述电压调节电路3进行处理。
在一种具体的实施方式中,所述电压调节电路3包括调节电阻R1和电流镜,所述调节电阻的第一端接入电源电压VDD,所述调节电阻的第二端分别与所述功率管P的衬底、所述采样管MP1的衬底以及所述电流镜的第一端连接,所述电流镜的第二端与所述放大管MP2的漏极连接;其中,所述电流镜用于将采样电流比例镜像至调节电阻R1,以便调节R1上产生与负载电流呈线性比例函数的压降。优选的,所述电流镜采用双层电流镜。
其中,需要说明的是,通过使用双层电流镜,将接收到的采样电流按比例将镜像电流镜像到调节电阻上,并产生调节电压,该调节电压是与负载电流成线性比例函数关系的电压,则在负载电流发生变化时,调节电压也呈现出线性的变化,功率管根据这一线性关系能够实时调节输出电流的大小,以保证输入输出电压差在预设范围内,提高电路性能。
在如图2所示,图中示出了常见的PSUB NWELL CMOS工艺制程中PMOS的做法,即PMOS管的S端、B端以及P型衬底端会形成一个纵向的寄生PNP,如果S端到B端的压降过大,超过一个PN结的导通压降约0.7V,则PMOS管会对衬底形成漏电,进而可能存在闩锁的风险。因此,在一种具体的实施方式中,本申请实施例中的电路还包括钳位保护电路4,所述的钳位保护电路4,所述钳位保护电路4的第一端分别与所述功率管P的衬底、所述负载电流采样电路2的第二端以及所述电压调节电路3的第一端连接,所述钳位保护电路4的第二端接入电源电压VDD;其中,所述钳位保护电路4用于对所述功率管P进行漏电保护;即本申请实施例在调节电阻R1两端同时加入钳位电路,用于防止功率管的S端和B端压降过大造成衬底漏电。优选的,所述钳位保护电路采用具有低于预设值的反向击穿电压的二极管,所述二极管的第一端分别与功率管P的衬底、所述采样管MP1的第一端、所述调节电阻R1的第二端以及所述电流镜的第一端连接,所述二极管的第二端接入电源电压VDD,所述二极管用于对所述功率管P的衬底电位和源极电位进行钳位保护。
如图3所示,图中示出了本申请实施例中的降低LDO输入输出电压差的电路与现有电路的曲线对比图,由图示可知,无论是在轻载还是重载条件下,在输出电流相同时,采用本实施例中的降低LDO输入输出电压差的电路相较于未采用本实施例中电路而言,LDO的输入输出电压差明显降低。
基于上述公开内容,本申请实施例通过将功率输出电路1与负载电流采样电路2和电压调节电路3连接,通过负载电流采样电路2来精准采样负载电流,并将采样得到的负载电流传输至所述电压调节电路3,以便电压调节电路3生成负载电流的线性压降,即生成功率管的调节电压,从而可以根据负载电流的变化,线性的调整功率管上的电势差,线性的调整功率管S(源极)与B(功率管衬底)的电位差,从而达到动态减小功率管阈值电压,进而降低LDO的输入输出电压差,避免对功率管本身结构进行改进导致电路的环路稳定性和输出响应速度受到影响,并减小了芯片的成本,提高了转换效率;通过设置钳位保护电路4对功率管衬底与源端电位进行钳位保护,从而避免了功率管对衬底漏电,提高了电路运行的安全性。
另一方面提供一种低压差线性稳压器,包括如第一方面任意一种可能的设计中所述的降低LDO输入输出电压差的电路。
本实施例另一方面提供的低压差线性稳压器中的降低LDO输入输出电压差的电路的工作过程、工作细节和技术效果,可以参见如上第一方面或第一方面中任意一种可能设计所述的电路,于此不再赘述。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种降低LDO输入输出电压差的电路,其特征在于,包括功率输出电路(1)、负载电流采样电路(2)和电压调节电路(3);
所述功率输出电路(1)包括功率管P和负载电阻RL,所述功率管P的栅极用于接收LDO的DRV驱动信号,所述功率管P的源极接入电源电压VDD,所述功率管P的漏极分别与负载电阻RL的第一端和所述负载电流采样电路(2)的第一端连接,所述功率管P的衬底分别与所述电压调节电路(3)的第一端和所述负载电流采样电路(2)的第二端连接,所述负载电阻RL的另一端接地;
所述负载电流采样电路(2)的第二端还与所述电压调节电路(3)的第一端连接,所述负载电流采样电路(2)的第三端接入电源电压VDD;所述电压调节电路(3)的第二端接入电源电压VDD;
其中,所述负载电流采样电路(2)用于采样负载电流,并将采样后的电流传输至所述电压调节电路(3),所述电压调节电路(3)用于生成随负载电流变化的线性压降,以便降低LDO的输入输出电压差。
2.根据权利要求1所述的降低LDO输入输出电压差的电路,其特征在于,还包括钳位保护电路(4),所述钳位保护电路(4)的第一端分别与所述功率管P的衬底、所述负载电流采样电路(2)的第二端以及所述电压调节电路(3)的第一端连接,所述钳位保护电路(4)的第二端接入电源电压VDD;其中,所述钳位保护电路(4)用于对所述功率管P进行钳位保护。
3.根据权利要求2所述的降低LDO输入输出电压差的电路,其特征在于,所述负载电流采样电路(2)包括运算放大器、采样管MP1和放大管MP2;
所述运算放大器的同相输入端与所述功率管P的漏极连接,所述运算放大器的反相输入端分别与所述采样管MP1的漏极和放大管MP2的源极连接,所述运算放大器的输出端与所述放大管MP2的栅极连接;所述采样管MP1的栅极用于接收LDO的DRV驱动信号,所述采样管MP1的源极接入电源电压VDD,所述采样管MP1的衬底与所述电压调节电路(3)的第一端连接,所述放大管MP2的衬底接入电源电压VDD,所述放大管MP2的漏极与所述电压调节电路(3)的第一端连接;
其中,所述运算放大器与放大管MP2构成单位增益负反馈,以使所述采样管MP1的漏极电压与功率管P的漏极电压一致;所述采样管MP1用于采样负载电流,并将采样电流传输至所述电压调节电路(3)。
4.根据权利要求3所述的降低LDO输入输出电压差的电路,其特征在于,所述电压调节电路(3)包括调节电阻R1和电流镜,所述调节电阻的第一端接入电源电压VDD,所述调节电阻的第二端分别与所述功率管P的衬底、所述采样管MP1的衬底以及所述电流镜的第一端连接,所述电流镜的第二端与所述放大管MP2的漏极连接;
其中,所述电流镜用于将采样电流比例镜像至调节电阻R1,以便调节R1上产生与负载电流呈线性比例函数的压降。
5.根据权利要求4所述的降低LDO输入输出电压差的电路,其特征在于,所述电流镜采用双层电流镜。
6.根据权利要求4所述的降低LDO输入输出电压差的电路,其特征在于,所述钳位保护电路(4)采用具有低于预设值的反向击穿电压的二极管,所述二极管的第一端分别与功率管P的衬底、所述采样管MP1的第一端、调节电阻R1的第二端以及电流镜的第一端连接,所述二极管的第二端接入电源电压VDD,所述二极管用于对所述功率管P的衬底电位和源极电位进行钳位保护。
7.一种低压差线性稳压器,其特征在于,包括如权利要求1-6任意一项所述的降低LDO输入输出电压差的电路。
CN202211190385.3A 2022-09-28 2022-09-28 降低ldo输入输出电压差的电路和低压差线性稳压器 Active CN115268549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211190385.3A CN115268549B (zh) 2022-09-28 2022-09-28 降低ldo输入输出电压差的电路和低压差线性稳压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211190385.3A CN115268549B (zh) 2022-09-28 2022-09-28 降低ldo输入输出电压差的电路和低压差线性稳压器

Publications (2)

Publication Number Publication Date
CN115268549A true CN115268549A (zh) 2022-11-01
CN115268549B CN115268549B (zh) 2023-01-17

Family

ID=83756963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211190385.3A Active CN115268549B (zh) 2022-09-28 2022-09-28 降低ldo输入输出电压差的电路和低压差线性稳压器

Country Status (1)

Country Link
CN (1) CN115268549B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995632A (zh) * 2023-09-28 2023-11-03 江苏帝奥微电子股份有限公司 一种对pvt不敏感的限流保护电路

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280025A (ja) * 2006-04-06 2007-10-25 Seiko Epson Corp 電源装置
CN200979668Y (zh) * 2006-12-01 2007-11-21 华中科技大学 一种双环低压差线性稳压器电路
JP2009075957A (ja) * 2007-09-21 2009-04-09 Renesas Technology Corp 電源回路および半導体装置
CN103368540A (zh) * 2013-07-26 2013-10-23 苏州智浦芯联电子科技有限公司 用于低压差线性稳压器的能够自动恢复的短路保护电路
US20150076906A1 (en) * 2013-09-13 2015-03-19 Rohm Co., Ltd. Power supply circuit, control circuit thereof, and electronic apparatus
US20160291618A1 (en) * 2015-03-30 2016-10-06 Analog Devices Global Dc linear voltage regulator comprising a switchable circuit for leakage current suppression
CN106774595A (zh) * 2017-01-09 2017-05-31 电子科技大学 一种用于低压差线性稳压器的过流保护电路
CN108235744A (zh) * 2017-12-19 2018-06-29 深圳市汇顶科技股份有限公司 低压差线性稳压电路
CN108696142A (zh) * 2018-06-28 2018-10-23 张家港鑫峰机电有限公司 一种变频式开关电源的高频变压器
CN109032241A (zh) * 2018-08-24 2018-12-18 电子科技大学 一种带电流限功能的低压差线性稳压器
US20190011944A1 (en) * 2016-03-25 2019-01-10 Panasonic Intellectual Property Management Co., Ltd. Regulator circuit
CN109709465A (zh) * 2019-01-02 2019-05-03 电子科技大学 一种mosfet漏电电流提取电路
CN110888484A (zh) * 2019-12-23 2020-03-17 南京微盟电子有限公司 一种低待机功耗高电源抑制比的线性稳压器
CN112462838A (zh) * 2020-12-04 2021-03-09 电子科技大学 过流限和折返点可调的低压差线性稳压器过流保护电路
CN113064460A (zh) * 2021-03-24 2021-07-02 成都瓴科微电子有限责任公司 一种高电源抑制比的低压差线性稳压器电路
CN113110694A (zh) * 2021-04-30 2021-07-13 南京邮电大学 一种具有电流浪涌抑制的低压差线性稳压器电路
US11157029B1 (en) * 2020-05-12 2021-10-26 Seeya Optronics Co., Ltd. Voltage regulator and silicon-based display panel
CN114759890A (zh) * 2022-06-15 2022-07-15 成都芯翼科技有限公司 一种差分电压控制电路

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280025A (ja) * 2006-04-06 2007-10-25 Seiko Epson Corp 電源装置
CN200979668Y (zh) * 2006-12-01 2007-11-21 华中科技大学 一种双环低压差线性稳压器电路
JP2009075957A (ja) * 2007-09-21 2009-04-09 Renesas Technology Corp 電源回路および半導体装置
CN103368540A (zh) * 2013-07-26 2013-10-23 苏州智浦芯联电子科技有限公司 用于低压差线性稳压器的能够自动恢复的短路保护电路
US20150076906A1 (en) * 2013-09-13 2015-03-19 Rohm Co., Ltd. Power supply circuit, control circuit thereof, and electronic apparatus
US20160291618A1 (en) * 2015-03-30 2016-10-06 Analog Devices Global Dc linear voltage regulator comprising a switchable circuit for leakage current suppression
US20190011944A1 (en) * 2016-03-25 2019-01-10 Panasonic Intellectual Property Management Co., Ltd. Regulator circuit
CN106774595A (zh) * 2017-01-09 2017-05-31 电子科技大学 一种用于低压差线性稳压器的过流保护电路
CN108235744A (zh) * 2017-12-19 2018-06-29 深圳市汇顶科技股份有限公司 低压差线性稳压电路
CN108696142A (zh) * 2018-06-28 2018-10-23 张家港鑫峰机电有限公司 一种变频式开关电源的高频变压器
CN109032241A (zh) * 2018-08-24 2018-12-18 电子科技大学 一种带电流限功能的低压差线性稳压器
CN109709465A (zh) * 2019-01-02 2019-05-03 电子科技大学 一种mosfet漏电电流提取电路
CN110888484A (zh) * 2019-12-23 2020-03-17 南京微盟电子有限公司 一种低待机功耗高电源抑制比的线性稳压器
US11157029B1 (en) * 2020-05-12 2021-10-26 Seeya Optronics Co., Ltd. Voltage regulator and silicon-based display panel
CN112462838A (zh) * 2020-12-04 2021-03-09 电子科技大学 过流限和折返点可调的低压差线性稳压器过流保护电路
CN113064460A (zh) * 2021-03-24 2021-07-02 成都瓴科微电子有限责任公司 一种高电源抑制比的低压差线性稳压器电路
CN113110694A (zh) * 2021-04-30 2021-07-13 南京邮电大学 一种具有电流浪涌抑制的低压差线性稳压器电路
CN114759890A (zh) * 2022-06-15 2022-07-15 成都芯翼科技有限公司 一种差分电压控制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116995632A (zh) * 2023-09-28 2023-11-03 江苏帝奥微电子股份有限公司 一种对pvt不敏感的限流保护电路
CN116995632B (zh) * 2023-09-28 2023-12-08 江苏帝奥微电子股份有限公司 一种对pvt不敏感的限流保护电路

Also Published As

Publication number Publication date
CN115268549B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN109032241B (zh) 一种带电流限功能的低压差线性稳压器
CN210691138U (zh) 线性稳压器电路
CN111880596B (zh) 一种应用于超低静态电流ldo的动态偏置电路
CN115268549B (zh) 降低ldo输入输出电压差的电路和低压差线性稳压器
CN108646841A (zh) 一种线性稳压电路
CN104615184A (zh) 一种cmos基准电流和基准电压产生电路
CN104753481A (zh) 差动运算放大器以及带隙参考电压产生电路
CN103488235B (zh) 电流限制电路、电压调节器及dc-dc转换器
CN113485514A (zh) 一种ldo过流保护电路
CN108549455A (zh) 一种具有宽输入范围的降压电路
CN114489216B (zh) 一种应用于ldo的保护电路
CN111552343A (zh) 一种低电压小电流偏置电流电路
CN102681580A (zh) 一种电流源电路
CN110879629A (zh) 一种低压差线性稳压电路
CN113064462B (zh) 一种动态功耗快速瞬态响应的ldo电路
CN113031694B (zh) 一种低功耗的低压差线性稳压器及其控制电路
CN108762361A (zh) 低压差线性稳压器
CN116136563A (zh) 功率管的电流采样电路
CN208421674U (zh) 低压差线性稳压器
CN114584082A (zh) 运算放大器的带宽调整电路及带宽调整方法
CN115167603B (zh) 基于动态零点跟随补偿的环路高稳定ldo电路及方法
CN114371757B (zh) 一种高压线性稳压器
CN114815949B (zh) 宽范围快速响应稳压器
CN116225135B (zh) 一种低压差线性稳压器
CN115454186B (zh) 用于供电系统的线性稳压器和供电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant