CN115246631A - 一种同心三角结构硒化钨纳米片的制备方法及应用 - Google Patents

一种同心三角结构硒化钨纳米片的制备方法及应用 Download PDF

Info

Publication number
CN115246631A
CN115246631A CN202111576764.1A CN202111576764A CN115246631A CN 115246631 A CN115246631 A CN 115246631A CN 202111576764 A CN202111576764 A CN 202111576764A CN 115246631 A CN115246631 A CN 115246631A
Authority
CN
China
Prior art keywords
gas
temperature
wse
substrate
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111576764.1A
Other languages
English (en)
Inventor
刘相红
路国才
张军
郑威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202111576764.1A priority Critical patent/CN115246631A/zh
Publication of CN115246631A publication Critical patent/CN115246631A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明属于气体传感器技术领域,涉及一种同心三角结构硒化钨纳米片的制备方法及应用,以三氧化钨和硒粉为原料并结合熔盐法,通过化学气相沉积法在SiO2衬底上生长同心三角结构WSe2纳米片,通过控制生长条件制备出了表面具有大量气体吸附位点的同心三角结构WSe2纳米片,得到的同心三角结构WSe2纳米片适合制备针对有毒有害气体具有高灵敏度、快的响应速度和恢复速度的气体传感器,对于气敏材料的设计和气体传感器的应用具有重要价值。

Description

一种同心三角结构硒化钨纳米片的制备方法及应用
技术领域:
本发明属于气体传感器技术领域,涉及一种用于二氧化氮、氨气和三乙胺检测的硒化钨(WSe2)纳米片的化学气相沉积制备方法,特别是一种同心三角结构WSe2纳米片的制备方法及应用。
背景技术:
二氧化氮是氮氧化物之一,室温下有刺激性气味,吸入后对肺组织具有强烈的刺激性和腐蚀性,同时二氧化氮易溶于水,是工业合成硝酸的中间产物,也是一种主要的大气污染物。氨气是无色有刺激性恶臭的气体,能灼伤皮肤、眼睛、呼吸系统的粘膜,吸入导致的慢性中毒会引起慢气肿等呼吸系统疾病,吸入过多能引起肺肿胀以致死亡。三乙胺是具有强烈的氨臭的无色透明液体,对呼吸道有强烈的刺激性,而且易燃易爆具有很大的安全隐患。因而,对二氧化氮、氨气和三乙胺的检测具有重要的应用价值。
在日常生产生活中,易燃、易爆和有毒有害气体的监控和检测都可以通过气体传感器来实现。其中传统的以半导体金属氧化物为传感材料的气体传感器由于其较高的工作温度和低特异性等缺点限制了它们未来的发展。二维纳米材料的发现使传感器领域取得了重大的进展,尤其二维材料的室温工作、柔性可操作、优异的导电性、大的比表面积等特点在气体传感器领域引起了广泛关注。
目前,二维材料可以通过机械剥离和液相剥离等方法制备,但产率较低且很难与其它材料相复合,化学气相沉积法虽然产率较高且容易生产高质量的二维材料,但是化学气相沉积法不同生长条件会导致生长的二维材料大不相同,因而,迫切需要开发一种稳定的化学沉积方法,使二维材料具有高的表面活性位点,更适用于气体传感器。
发明内容:
本发明的目的在于克服现有技术存在的缺点,设计制备一种同心三角结构WSe2纳米片的制备方法,利用化学气相沉积法制备WSe2纳米片,制备的纳米片因其丰富的围墙状结构而展现出大的比表面积,从而实现在室温下对各类有毒有害气体的检测。
为了实现上述发明目的,本发明以三氧化钨和硒粉为原料并结合熔盐法(氯化钠降低三氧化钨的熔点),通过化学气相沉积法在SiO2衬底上生长同心三角结构WSe2,具体包含以下几个步骤:
(1)将300nm SiO2氧化层的衬底切成1cm×1cm大小,并依次用丙酮、乙醇和去离子水超声清洗10min,最后用氮气吹干得到干净SiO2衬底;
(2)将双温区管式炉的管内壁依次用去离子水和无水乙醇清洗干净,烘干管壁后将过量的硒粉通过磁石推拉装置置于上游温区,称量0.2gWO3和0.04gNaCl混合均匀后放于瓷舟中,将清洗好的SiO2衬底倒扣在瓷舟中,并置于下游温区;
(3)将双温区管式炉封闭,并将100sccm氩气和10sccm氢气通入双温区管式炉30min,以排尽管式炉内的空气,并通过尾气处理装置检测整个系统气密性;
(4)将上游温区设置为50min升到350℃,并保持15min;下游温区设置为50min升到860℃,并保持15min,开始加热时将氢气速率改为5sccm,氩气速率改为40sccm,加热到设定温度后保温15min并自然冷却降温,最后将样品取出,得到同心三角结构的WSe2纳米片。
本发明将制备的WSe2纳米片用于组装气体传感器,具体过程为:在铜网的辅助下在WSe2纳米片上镀上铬、金电极,并在电极上连接银丝引线,烘干之后即可通入气体进行测试。
本发明与现有的制备方法相比,通过控制生长条件制备出了表面具有大量气体吸附位点的同心三角结构WSe2,适合制备针对有毒有害气体具有高灵敏度、快的响应速度和恢复速度的气体传感器,对于气敏材料的设计和气体传感器的应用具有重要价值。
附图说明:
图1为本发明实施例制备的同心三角结构WSe2的透射电镜照片。
图2为本发明实施例制备的同心三角结构WSe2的AFM照片。
图3为本发明实施例制备的同心三角结构WSe2的拉曼图像。
图4为本发明实施例制备的同心三角结构WSe2气体传感器在紫外光照射下对室温下NO2的动态电阻变化。
图5为本发明实施例制备的同心三角结构WSe2气体传感器在紫外光照射下对室温下三乙胺的动态电阻变化。
图6为本发明实施例制备的同心三角结构WSe2气体传感器在紫外光照射下对室温下NH3的动态电阻变化。
具体实施方式:
下面通过具体实施例并结合附图做进一步说明。
实施例:
本实施例将洁净的SiO2衬底倒置于装有WO3和NaCl的瓷舟上,并将瓷舟置于双温区管式炉的下游加热区,将过量的Se粉通过推拉装置置于双温区管式炉的上游非加热区,然后用100sccm氩气和10sccm氢气通入管式炉30min,以排尽管式炉内的空气,同时设置上游温区和下游温区的加热速率及温度,其中将上游温区设置为50min升到350℃,并保持15min;下游温区设置为50min升到860℃,并保持15min,在开始加热时将氢气速率改为5sccm,氩气速率改为40sccm,待双温区管式炉的上游温区和下游温区的温度分别上升到350℃、860℃后,将处于上游非加热区的过量Se粉通过推拉装置将其置于上游加热区,两个温区同时保温15min;保温结束后将过量Se粉撤离上游加热区,等待自然冷却降温,最后将样品取出,得到同心三角结构的WSe2纳米片。
本实施例对制备的WSe2纳米片的形貌和性能进行测定,其透射电镜照片如如1所示,拉曼图像如图2所示,WSe2的AFM照片如图3所示,从图中可以看出明显的多层同心三角结构,这种多层凸起的围墙状结构暴露出更多的气体吸附位点,提高了材料对气体的吸附性能,而且WSe2作为一种光电材料,一些光的激发往往也能提高其气敏性能,图4、图5和图6是同心三角结构WSe2在紫外光照射下对室温下NO2、三乙胺、NH3的动态电阻变化,可以看出该传感器在室温下对三种气体表现出优异的响应,恢复性能。

Claims (2)

1.一种同心三角结构硒化钨纳米片的制备方法,其特征在于,具体制备过程为:
(1)将镀有厚度300nm SiO2氧化层的衬底切成1cm×1cm大小,并依次用丙酮、乙醇和去离子水超声清洗10min,最后用氮气吹干得到干净SiO2衬底;
(2)将双温区管式炉的管内壁依次用去离子水和无水乙醇清洗干净,烘干管壁后将过量的硒粉通过磁石推拉装置置于上游温区,称量0.2gWO3和0.04gNaCl混合均匀后放于瓷舟中,将清洗好的SiO2衬底倒扣在瓷舟中,并置于下游温区;
(3)将双温区管式炉封闭,并将100sccm氩气和10sccm氢气通入双温区管式炉30min,以排尽管式炉内的空气,并通过尾气处理装置检测整个系统气密性;
(4)将上游温区设置为50min升到350℃,并保持15min;下游温区设置为50min升到860℃,并保持15min,开始加热时将氢气速率改为5sccm,氩气速率改为40sccm,加热到设定温度后保温15min并自然冷却降温,最后将样品取出,得到同心三角结构的WSe2纳米片。
2.一种如权利要求1所述同心三角结构硒化钨纳米片的应用,其特征在于,能用于组装气体传感器,具体过程为:在铜网的辅助下在WSe2纳米片上镀上铬、金电极,并在电极上连接银丝引线,烘干之后能通入气体进行测试。
CN202111576764.1A 2021-12-22 2021-12-22 一种同心三角结构硒化钨纳米片的制备方法及应用 Pending CN115246631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111576764.1A CN115246631A (zh) 2021-12-22 2021-12-22 一种同心三角结构硒化钨纳米片的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111576764.1A CN115246631A (zh) 2021-12-22 2021-12-22 一种同心三角结构硒化钨纳米片的制备方法及应用

Publications (1)

Publication Number Publication Date
CN115246631A true CN115246631A (zh) 2022-10-28

Family

ID=83698387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111576764.1A Pending CN115246631A (zh) 2021-12-22 2021-12-22 一种同心三角结构硒化钨纳米片的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115246631A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法
WO2016190818A1 (en) * 2015-05-26 2016-12-01 Nanyang Technological University Synthesis and application of tungsten chalcogenide hetero-structured nanomaterials
CN108118395A (zh) * 2017-12-15 2018-06-05 北京科技大学 一种化学气相沉积制备二硒化钨单晶薄膜的方法
CN108193277A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 制备大面积单层二硒化钨单晶的方法
CN109183156A (zh) * 2018-11-08 2019-01-11 西北工业大学 一种二硫化物单晶及其制备方法和用途
CN109809372A (zh) * 2019-03-26 2019-05-28 湘潭大学 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN110416065A (zh) * 2019-07-29 2019-11-05 湖南大学 二硫化钼/二硒化钨垂直异质结的制备方法
CN111304738A (zh) * 2020-03-16 2020-06-19 华中科技大学 熔融盐辅助化学气相沉积生长多层二硒化钨单晶的方法
CN113501505A (zh) * 2021-08-19 2021-10-15 河北大学 一种二维硒化钨纳米材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190818A1 (en) * 2015-05-26 2016-12-01 Nanyang Technological University Synthesis and application of tungsten chalcogenide hetero-structured nanomaterials
CN105624643A (zh) * 2016-01-06 2016-06-01 天津大学 一种大面积硒掺杂二硫化钼薄膜材料的制备方法
CN108118395A (zh) * 2017-12-15 2018-06-05 北京科技大学 一种化学气相沉积制备二硒化钨单晶薄膜的方法
CN108193277A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 制备大面积单层二硒化钨单晶的方法
CN109183156A (zh) * 2018-11-08 2019-01-11 西北工业大学 一种二硫化物单晶及其制备方法和用途
CN109809372A (zh) * 2019-03-26 2019-05-28 湘潭大学 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN110416065A (zh) * 2019-07-29 2019-11-05 湖南大学 二硫化钼/二硒化钨垂直异质结的制备方法
CN111304738A (zh) * 2020-03-16 2020-06-19 华中科技大学 熔融盐辅助化学气相沉积生长多层二硒化钨单晶的方法
CN113501505A (zh) * 2021-08-19 2021-10-15 河北大学 一种二维硒化钨纳米材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
向斌, 中国原子能出版社 *

Similar Documents

Publication Publication Date Title
Li et al. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application
Chen et al. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor
Drmosh et al. Zinc oxide‐based acetone gas sensors for breath analysis: a review
Zeng et al. Hydrothermal synthesis of hierarchical flower-like SnO2 nanostructures with enhanced ethanol gas sensing properties
Van Hieu et al. A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application
Qin et al. Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic
San et al. Flower-like NiO hierarchical microspheres self-assembled with nanosheets: Surfactant-free solvothermal synthesis and their gas sensing properties
Oh et al. High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation
CN104677879B (zh) 一种基于半导体性单壁碳纳米管的柔性、透明气体传感器
Guo et al. Fe2O3 nanomaterials derived from Prussian blue with excellent H2S sensing properties
CN102180518B (zh) 一种五氧化二铌纳米线膜的大面积制备方法及其氢敏元件
CN212301395U (zh) 可自加热的激光诱导石墨烯柔性no2气体传感器
Geng et al. The self-assembly of octahedral CuxO and its triethylamine-sensing properties
Dong et al. Rational construction and triethylamine sensing performance of foam shaped α-MoO3@ SnS2 nanosheets
Lei et al. Heterogeneous Co3O4/AgO nanorods for conductometric triethylamine sensing at 90° C
Van Duy et al. Urea mediated synthesis and acetone-sensing properties of ultrathin porous ZnO nanoplates
Liu et al. High-performance PANI-based ammonia gas sensor promoted by surface nanostructuralization
Geng et al. Multi-layer ZnO architectures: Polymer induced synthesis and their application as gas sensors
Chang et al. A lead-free K2CuBr3 microwires-based humidity sensor realized via QCM for real-time breath monitoring
Jiao et al. Fabrication of new C/ZnO/ZnO composite material and their enhanced gas sensing properties
CN110687185A (zh) 基于SnO2@Fe2O3纳米异质结构敏感材料的低功耗丙酮气体传感器及其制备方法
Yang et al. Highly responsive and selective NO2 gas sensors based on titanium metal organic framework (Ti-MOF) with pyromellitic acid
CN115246631A (zh) 一种同心三角结构硒化钨纳米片的制备方法及应用
CN109900745A (zh) 一种基于rGO-SnS2复合物的NO2传感器及其制备方法
CN107402242B (zh) 表面修饰二氧化钛薄膜气体传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination