CN115216468A - 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 - Google Patents
一种可塑型酶@金属有机框架凝胶及其制备方法与应用 Download PDFInfo
- Publication number
- CN115216468A CN115216468A CN202210790428.5A CN202210790428A CN115216468A CN 115216468 A CN115216468 A CN 115216468A CN 202210790428 A CN202210790428 A CN 202210790428A CN 115216468 A CN115216468 A CN 115216468A
- Authority
- CN
- China
- Prior art keywords
- enzyme
- metal organic
- organic framework
- zif
- acp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/08—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
- C12N11/089—Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N11/00—Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
- C12N11/02—Enzymes or microbial cells immobilised on or in an organic carrier
- C12N11/04—Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0032—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
- C12N9/0034—Sarcosine oxidase (1.5.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0065—Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0093—Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2468—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
- C12N9/2471—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/03—Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
- C12Y101/03004—Glucose oxidase (1.1.3.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/03—Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
- C12Y101/03006—Cholesterol oxidase (1.1.3.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/03—Oxidoreductases acting on the CH-NH group of donors (1.5) with oxygen as acceptor (1.5.3)
- C12Y105/03001—Sarcosine oxidase (1.5.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y111/00—Oxidoreductases acting on a peroxide as acceptor (1.11)
- C12Y111/01—Peroxidases (1.11.1)
- C12Y111/01007—Peroxidase (1.11.1.7), i.e. horseradish-peroxidase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y117/00—Oxidoreductases acting on CH or CH2 groups (1.17)
- C12Y117/03—Oxidoreductases acting on CH or CH2 groups (1.17) with oxygen as acceptor (1.17.3)
- C12Y117/03002—Xanthine oxidase (1.17.3.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01023—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2387/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2487/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/162—Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
本发明属于生物材料技术领域,具体涉及一种可塑型酶@金属有机框架凝胶及其制备方法与应用。在该凝胶的制备流程中,首先将酶原位封装于多孔金属有机框架内,然后通过Ca2+离子与海藻酸钠‑聚丙烯酸的双重交联聚合制备出形貌可控的复合凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合凝胶可以有效解决酶@金属有机框架微晶材料加工性能差、可塑性差等技术瓶颈,进一步设计成便携式的原位传感器。
Description
技术领域
本发明属于生物材料技术领域。更具体地,涉及一种可塑型酶@金属有机框架凝胶及其制备方法与应用。
背景技术
酶作为一种天然的生物催化剂,具有高催化活性、高选择性的特点,但是它同时还存在对环境变化敏感的缺点,如高温、强酸性或碱性等条件下容易酶变、失活。为了解决酶的稳定性问题,现有技术常用金属有机框架(MOF)作为酶结构固定化的理想载体,得到的酶@MOF复合材料能够有效提高酶对温度、pH、溶剂等的耐受能力。如中国专利申请提供了一种耐酸改性有机金属框架固定化酶的方法,该方法以柠檬酸或柠檬酸钠修饰2-甲基咪唑,再向其中掺杂纳米二氧化硅、锌离子水溶液和蛋白酶,离心,所得沉淀即为固定化酶;采用水相溶液混合法制备耐酸改性有机金属框架,以掺杂纳米二氧化硅作为载体,共同使得固定化脂肪酶的催化活性、pH耐受性、重复利用率显著提升,但是该方法得到的酶@MOF材料是微晶态的,难以对其进行加工和塑型,极大地限制了酶@MOFs材料在大规模工业化中的应用,并且稳定性也仍有待提高。
发明内容
本发明要解决的技术问题是克服现有酶@MOF复合材料为微晶态难以加工塑性,稳定性有待提高的缺陷和不足,提供一种稳定性好的可塑型酶@金属有机框架凝胶。
本发明的目的是提供所述可塑型酶@金属有机框架凝胶的制备方法。
本发明另一目的是提供所述可塑型酶@金属有机框架凝胶的应用。
本发明上述目的通过以下技术方案实现:
一种可塑型酶@金属有机框架凝胶的制备方法,具体包括以下步骤:
S1、将酶加入2-甲基咪唑溶液中,再加入锌盐溶液,混合均匀,静置,取沉淀,后处理,得酶@金属有机框架;
S2、取步骤S1所得酶@金属有机框架置于2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)溶液中分散均匀,边搅拌边加入海藻酸钠,混合均匀,得混合液;
S3、将步骤S2所得混合液塑性成不同的形状,浸没于钙盐和聚丙烯酸的混合溶液中,聚合完全,即得。
本发明中,先将酶封装于由锌离子与2-甲基咪唑配位组装的金属有机框架(ZIF-8)上,再采用简单的混合法将获得的酶@金属有机框架微晶材料与海藻酸钠溶液混合均匀,并将该混合液注入含Ca2+离子的聚丙烯酸交联剂溶液中,快速聚合塑型得到可塑型酶@金属有机框架凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合水凝胶可以有效解决酶@金属有机框架微晶材料的加工性能差、可塑性差等技术瓶颈,可进一步设计成便携式的原位传感器。
进一步地,步骤S1中,所述酶选自葡萄糖氧化酶、辣根过氧化物酶、胆固醇氧化酶、肌氨酸氧化酶、黄嘌呤氧化酶、β-半乳糖苷酶、脲酶、尿激酶、漆酶、脂肪酶、乙醇脱氢酶、乙酰胆碱酯酶、过氧化氢酶、乳酸氧化酶、β-葡萄糖醛苷酸酶、细胞色素C、尿酸酶、超氧化物歧化酶中的一种或多种。
优选地,步骤S1中,所述酶为葡萄糖氧化酶-辣根过氧化物酶、胆固醇氧化酶-辣根过氧化物酶、肌氨酸氧化物酶-辣根过氧化物酶、黄嘌呤氧化酶-辣根过氧化物酶、β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶中的一种。
更优选地,步骤S1中,所述酶为两种酶的组合时,两种酶的质量比为1:1,两者之间存在级联反应。例如,选择葡萄糖氧化酶和辣根过氧化物酶制备可塑型酶@金属有机框架凝胶,当葡萄糖存在的时候,会触发酶级联反应,并产生的可视化的颜色信号;结合可通过RGB模式识别颜色的智能手机APP对该颜色信号进行快速识别及数据处理,可实现葡萄糖的原位监测;进一步结合对照,可以测定葡萄糖的含量大小,并且不会受到其他杂质的影响,专一性强。
更进一步地,步骤S1中,所述锌盐为乙酸锌或硝酸锌。
进一步地,步骤S1中,所述酶的添加量为0.1~2mg/mL。
更进一步地,步骤S1中,所述2-甲基咪唑与乙酸锌的摩尔比为4:1~12:1。
进一步地,步骤S1中,所述静置的时间为30min~12h。
更进一步地,步骤S1中,所述后处理为依次用水洗沉淀2~4次,乙醇洗涤1~2次,干燥。
进一步地,步骤S2中,所述ABTS溶液的浓度为1~20mM。
更进一步地,步骤S2中,所述酶@金属有机框架的添加量为0.5~100mg/mL。
进一步地,步骤S2中,所述海藻酸钠的添加量为5~80mg/mL。
更进一步地,步骤S3中,所述钙盐为氯化钙、硝酸钙、氯酸钙、高氯酸钙、碳酸氢钙或磷酸二氢钙。
进一步地,步骤S3中,所述钙盐和聚丙烯酸的混合溶液中,所述钙盐的浓度为20~120mol/L,聚丙烯酸的浓度为0.01~2mol/L。
另外的,本发明还提供了一种可塑型酶@金属有机框架凝胶,所述可塑型酶@金属有机框架凝胶由所述制备方法制备得到。
另外的,本发明还要求保护所述可塑型酶@金属有机框架凝胶在传感、生物催化、药物合成、食物加工、含酶洗涤剂、生物燃料中的应用。
本发明具有以下有益效果:
本发明制备了一种可塑型酶@金属有机框架凝胶。在该凝胶的制备流程中,首先将酶原位封装于多孔金属有机框架内,然后通过Ca2+离子与海藻酸钠-聚丙烯酸的双重交联聚合制备出形貌可控的复合凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合水凝胶可以有效解决酶@金属有机框架微晶材料的加工性能差、可塑性差等技术瓶颈,可进一步设计成便携式的原位传感器。
附图说明
图1为本发明实施例1、2的流程示意图。
图2为本发明实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料以及海藻酸钙凝胶(ACP)的扫描电镜图,其中,图2(a)为GH@ZIF-8,图2(b)为海藻酸钙凝胶,图2(c)为GH@ZIF-8-ACP。
图3为本发明实施例1所得GH@ZIF-8和GH@ZIF-8-ACP的X射线衍射图,其中,图3(a)为GH@ZIF-8-ACP、GH@ZIF-8、ZIF-8的对比,图3(b)为GH@ZIF-8-ACP和ACP的对比。
图4为本发明实验例1中游离酶(GOx:HRP=1:1,enzyme)、ZIF-8、GH@ZIF-8、GH@ZIF-8-ACP与ACP的傅里叶变换红外光谱图。
图5为本发明实验例1中ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的热重分析图。
图6为本发明实验例1中ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的N2吸附-解吸等温线,其中,图6(a)为ZIF-8、图6(b)为GH@ZIF-8、图6(c)为ACP、图6(d)为GH@ZIF-8-ACP。
图7为本发明实验例2中球状(a-1)、线状(b-1)、片状(c-1)的GH@ZIF-8-ACP的颜色R值随时间的变化曲线图与球状(a-2)、线状(b-2)、片状(c-2)的GH@ZIF-8-ACP随时间的显色情况。
图8为本发明实验例2中球状、线状与片状GH@ZIF-8-ACP,在保证相同含酶量的前提下,不同时间下显色效果图。
图9为本发明实验例3中片状GH@ZIF-8-ACP在不同葡萄糖浓度下显色15分钟后,R值变化的标准曲线图。
图10为本发明实验例4中GH@ZIF-8-ACP显色的抗干扰实验的对比图。
图11为本发明实验例5中GH@ZIF-8-ACP显色的交叉反应实验的对比图。
图12为本发明实验例6中GH@ZIF-8-ACP的储藏稳定性探究结果统计图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1一种可塑型酶@金属有机框架凝胶
所述可塑型酶@金属有机框架凝胶的制备方法包括以下步骤:
S1、分别配制40mM的乙酸锌溶液和160mM的2-甲基咪唑溶液,称取20mg葡萄糖氧化酶(GOx)与20mg辣根过氧化物酶(HPR),一起溶于20mL 160mM的2-甲基咪唑溶液中,再加入20mL 40mM的乙酸锌溶液,静置4小时;离心,舍去上清液,水洗3次,乙醇洗涤1次,真空干燥,研磨,得GH@ZIF-8;
S2、称取40mg步骤S1所得GH@ZIF-8,加入1mL 5mM ABTS溶液,将GH@ZIF-8在ABTS溶液中超声分散均匀;分散后,将悬浊液进行磁力搅拌,在搅拌的过程中加入20mg海藻酸钠,保证混合均匀后,获得混合液;
S3、将步骤S2所得混合液装入注射器,小心滴入或直接注入到包含60mol/LCaCl2和0.05mol/L的聚丙烯酸溶液中,聚合10min形成球状或线状复合凝胶GH@ZIF-8-ACP。
实施例2一种可塑型酶@金属有机框架凝胶
所述可塑型酶@金属有机框架凝胶的制备方法包括以下步骤:
S1、分别配制40mM的乙酸锌溶液和160mM的2-甲基咪唑溶液,称取20mg葡萄糖氧化酶(GOx)与20mg辣根过氧化物酶(HPR),一起溶于20mL 160mM的2-甲基咪唑溶液中,再加入20mL 40mM的乙酸锌溶液,静置4小时;离心,舍去上清液,水洗3次,乙醇洗涤1次,真空干燥,研磨,得GH@ZIF-8;
S2、称取40mg步骤S1所得GH@ZIF-8,加入1mL 5mM ABTS溶液,将GH@ZIF-8在ABTS溶液中超声分散均匀;分散后,将悬浊液进行磁力搅拌,在搅拌的过程中加入20mg海藻酸钠,保证混合均匀后,获得混合液;
S3、以玻璃板为衬底,在涂膜机上将步骤S2所得混合液在玻璃板上涂布均匀,厚度设置为40μm,将上述涂覆混合液的玻璃板浸没在包含60mol/L CaCl2和0.05mol/L的聚丙烯酸溶液中,聚合10min形成片状的复合凝胶GH@ZIF-8-ACP。
实施例1、实施例2的流程示意图参见图1。
实施例3一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例3将酶替换为胆固醇氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例4一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例4将酶替换为肌氨酸氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例5一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例5将酶替换为黄嘌呤氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例6一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例6将酶替换为β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶,其中,β-半乳糖苷酶、葡萄糖氧化酶、辣根过氧化物酶的质量比为2:1:1其余参数及操作参考实施例1。
以下以实施例1、2所得可塑型酶@金属有机框架凝胶作为示例,测定其结构表征及性能等参数,其余实施例效果类似。
实验例1可塑型酶@金属有机框架凝胶的结构表征
1、对实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料和海藻酸钙凝胶(ACP)进行电镜扫描,结果参见图2。由图可见,本发明和实施例1制备所得GH@ZIF-8-ACP材料中,GH@ZIF-8均匀地分散在ACP中。
2、对实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料进行X射线衍射测试,结果参见图3。由图可见,GH@ZIF-8和GH@ZIF-8-ACP均与标准ZIF-8的PXRD图谱一致,证明制备的复合材料具有高度结晶的ZIF-8结构;同时,该结果也证实GH@ZIF-8被包被在ACP中。
3、采用傅里叶变换红外光谱仪对混合的游离酶(GOx:HRP=1:1,enzyme)、ZIF-8、GH@ZIF-8、GH@ZIF-8-ACP与ACP这5种样品的结构进行表征,测定结果如图4所示。由图可见,ZIF-8在1580cm-1(C=N)和1350~1500cm-1处(咪唑环的特征峰)具有特征的红外吸收带,而酶(GOx+HRP)则在1400~1500cm-1和1500~1600cm-1处具有特征的吸收带,分别归属于蛋白质骨架的酰胺II和I带的红外特征吸收峰;此外,GH@ZIF-8既出现了酶的红外特征吸收带,也出现了ZIF-8的特征吸收带,说明酶被成功封装到ZIF-8中。
4、采用热重分析对ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP进行表征,结果如图5所示。由图可见,在220~500℃处,GH@ZIF-8的失重比ZIF-8快,这可以归因于GH@ZIF-8中包被的酶高温被分解;对比GH@ZIF-8与GH@ZIF-8-ACP,可以发现二者失重趋势类似,但GH@ZIF-8-ACP失重要多一些,这与ACP的分解有关;对比ACP与GH@ZIF-8-ACP可以发现,GH@ZIF-8-ACP失重要少一些,这与GH@ZIF-8-ACP中包含了ZIF-8-ACP有关。
5、测定ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的N2吸附-解吸等温线,结果如图6所示。由图可见,ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的比表面积分别为1289.6725m2/g、4.0912m2/g、1.6866m2/g、16.8725m2/g;其中,相比于ZIF-8,GH@ZIF-8的比表面积大幅度减小,证明ZIF-8的空隙被酶占据,也说明了酶被包埋在材料中。
实验例2 GH@ZIF-8-ACP与GH@ZIF-8的葡萄糖识别能力对比
在保证相同酶含量的前提下,分别对比单纯的GH@ZIF-8与球状、片状的GH@ZIF-8-ACP(注:为了方便性能对比,这里的GH@ZIF-8-ACP均没有预先包封ABTS)对葡萄糖(1mM)的识别能力,方式如下:
分别将一定质量的球状、线状与片状GH@ZIF-8-ACP加入96孔板中,同时以相应质量的GH@ZIF-8作为对照;在各测试组中分别加入5mM ABTS,并加入1mM葡萄糖,每间隔1min用手机摄像头对各测试组进行拍摄,并通过取色器APP的RGB模式对颜色进行识别,绘制颜色R值随时间变化的曲线,结果参见图7和图8。
由图可见,球状、线状和片状的GH@ZIF-8-ACP均比单纯的GH@ZIF-8具有更高的ΔR值;制成凝胶材料的GH@ZIF-8-ACP显色能力相较于游离在溶液中的GH@ZIF-8更强,说明GH@ZIF-8-ACP有助于提高对葡萄糖的识别灵敏度。
实验例3 GH@ZIF-8-ACP对葡萄糖的定量分析
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取27片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在不同GH@ZIF-8-ACP片上分别滴加1μL浓度为0mM、0.05mM、0.1mM、0.25mM、0.5mM、1mM、2mM、3mM、4mM的葡萄糖溶液,每组平行测试3次,15min后摄影并提取颜色R值,绘制葡萄糖浓度对ΔR值的曲线图,结果参见图9。
由图可见,GH@ZIF-8-ACP对葡萄糖具有分段性的线性响应范围,第一段为0~0.25mM,第二段为0.25~4mM,在相应的浓度范围内均具有良好的线性关系;上述测试结果证明了GH@ZIF-8-ACP可以通过与智能手机颜色识别软件联用,实现葡萄糖的准确定量,并且该方法具有简易便携的优点,可应用于葡萄糖的原位监测。
实验例4基于GH@ZIF-8-ACP的葡萄糖检测的抗干扰实验
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取36片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在GH@ZIF-8-ACP片上分别滴加1μL果糖、木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸、BSA、尿素、组氨酸、精氨酸、谷氨酸和丙氨酸溶液(上述浓度均为10mM),另外分别滴加1μL浓度为1mM的葡萄糖溶液以及1μL去离子水作为对比,每组平行测试3次,15min后摄影,并提取颜色R值,结果参见图10。
由图可见,在果糖、木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸、BSA和尿素溶液的浓度均10倍高于葡萄糖的情况下,只有滴加了葡萄糖的GH@ZIF-8-ACP片的R值的变化明显,说明本发明制备所得GH@ZIF-8-ACP对葡萄糖具有专一性。
实验例5 GH@ZIF-8-ACP显色的交叉反应实验
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取36片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在GH@ZIF-8-ACP片上滴加1μL含1mM葡萄糖和10mM木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸或BSA的混合液(即溶液中葡萄糖浓度为1mM,其他任一干扰物质的浓度为10mM),每组平行测试3次,15min后摄影,并提取颜色R值,结果参见图11。
由图可见,混合溶液总体上R值变化和单纯葡萄糖溶液相近,说明在高浓度干扰物存在下,GH@ZIF-8-ACP仍对葡萄糖具有准确的识别能力。
实验例6 GH@ZIF-8-ACP的储藏稳定性考察
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;将GH@ZIF-8-ACP方片常温放置,每隔一段时间取出3个方片,在每个方片中心滴加5μL 1mM的葡萄糖,15min后摄影,并提取颜色R值,通过计算放置不同时间后的GH@ZIF-8-ACP方片对葡萄糖识别的颜色R值变化的平均值,评估其储藏稳定性,结果参见图12。
由图可见,本发明制备的GH@ZIF-8-ACP常温储存30天后,ΔR值是原始数据的85.88%±10.30%,说明GH@ZIF-8-ACP具有优异的储存稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种可塑型酶@金属有机框架凝胶的制备方法,其特征在于,具体包括以下步骤:
S1、将酶加入2-甲基咪唑溶液中,再加入锌盐溶液,混合均匀,静置,取沉淀,后处理,得酶@金属有机框架;
S2、取步骤S1所得酶@金属有机框架置于ABTS溶液中分散均匀,边搅拌边加入海藻酸钠,混合均匀,得混合液;
S3、将步骤S2所得混合液塑性成不同的形状,浸没于钙盐和聚丙烯酸的混合溶液中,聚合完全,即得。
2.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述酶选自葡萄糖氧化酶、辣根过氧化物酶、胆固醇氧化酶、肌氨酸氧化酶、黄嘌呤氧化酶、β-半乳糖苷酶、脲酶、尿激酶、漆酶、脂肪酶、乙醇脱氢酶、乙酰胆碱酯酶、过氧化氢酶、乳酸氧化酶、β-葡萄糖醛苷酸酶、细胞色素C、尿酸酶、超氧化物歧化酶中的一种或多种。
3.根据权利要求2所述制备方法,其特征在于,步骤S1中,所述酶为葡萄糖氧化酶-辣根过氧化物酶、胆固醇氧化酶-辣根过氧化物酶、肌氨酸氧化酶-辣根过氧化物酶、黄嘌呤氧化酶-辣根过氧化物酶、β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶中的一种。
4.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述锌盐为乙酸锌或硝酸锌。
5.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述酶的添加量为0.1~2mg/mL。
6.根据权利要求1所述制备方法,其特征在于,步骤S2中,所述酶@金属有机框架的添加量为0.5~100mg/mL。
7.根据权利要求1所述制备方法,其特征在于,步骤S2中,所述海藻酸钠的添加量为5~80mg/mL。
8.根据权利要求1所述制备方法,其特征在于,步骤S3中,所述钙盐为氯化钙、溴化钙、硝酸钙、氯酸钙、高氯酸钙、碳酸氢钙或磷酸二氢钙。
9.一种可塑型酶@金属有机框架凝胶,其特征在于,所述可塑型酶@金属有机框架凝胶由权利要求1~8任一所述制备方法制备得到。
10.权利要求9所述可塑型酶@金属有机框架凝胶在传感、生物催化、药物合成、食物加工、含酶洗涤剂、生物燃料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210790428.5A CN115216468A (zh) | 2022-07-06 | 2022-07-06 | 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210790428.5A CN115216468A (zh) | 2022-07-06 | 2022-07-06 | 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115216468A true CN115216468A (zh) | 2022-10-21 |
Family
ID=83610425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210790428.5A Pending CN115216468A (zh) | 2022-07-06 | 2022-07-06 | 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115216468A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115819832A (zh) * | 2023-02-15 | 2023-03-21 | 北京理工大学 | 一种Zr基金属有机骨架UiO-66的制备方法及成型工艺 |
CN115819165A (zh) * | 2022-12-20 | 2023-03-21 | 郑州大学 | 叠氮化铜复合起爆药块体材料及其制备方法 |
CN117625572A (zh) * | 2024-01-25 | 2024-03-01 | 山东理工大学 | 一种制备固定化半乳糖氧化酶的方法及应用 |
-
2022
- 2022-07-06 CN CN202210790428.5A patent/CN115216468A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115819165A (zh) * | 2022-12-20 | 2023-03-21 | 郑州大学 | 叠氮化铜复合起爆药块体材料及其制备方法 |
CN115819832A (zh) * | 2023-02-15 | 2023-03-21 | 北京理工大学 | 一种Zr基金属有机骨架UiO-66的制备方法及成型工艺 |
CN117625572A (zh) * | 2024-01-25 | 2024-03-01 | 山东理工大学 | 一种制备固定化半乳糖氧化酶的方法及应用 |
CN117625572B (zh) * | 2024-01-25 | 2024-05-03 | 山东理工大学 | 一种制备固定化半乳糖氧化酶的方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115216468A (zh) | 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 | |
Tan et al. | Glucose biosensor based on glucose oxidase immobilized in sol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode | |
Wang et al. | Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor | |
Yang et al. | Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes | |
Qiu et al. | A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix | |
CN110129290B (zh) | 金属有机框架材料固定化漆酶及其制备方法和应用 | |
Kurokawa et al. | Immobilization of enzyme onto cellulose–titanium oxide composite fiber | |
CN113406168B (zh) | 分子印迹检测氯霉素的电化学传感器及其制备方法和应用 | |
Li et al. | Dopamine-polyethyleneimine co-deposition cellulose filter paper for α-Glucosidase immobilization and enzyme inhibitor screening | |
CN102181422A (zh) | 大孔载体“同步法”共价交联-固载木瓜蛋白酶聚体及方法 | |
Satvekar et al. | A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide | |
Orrego et al. | Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method | |
CN111948269A (zh) | 牛奶淀粉样蛋白分子印迹电化学传感器及其制法与应用 | |
CN112034025B (zh) | 用于氯霉素检测的复合修饰电极及其构建和检测方法 | |
CN109959684B (zh) | 双识别型毒死蜱传感器的制备、检测蔬菜中毒死蜱残留的方法及检测装置 | |
Chen et al. | Amperometric Biosensor for Hydrogen Peroxide Based on Sol‐Gel/Hydrogel Composite Thin Film | |
Zheng et al. | Co‐Encapsulating Enzymes and Carbon Dots in Metal–Organic Frameworks for Highly Stable and Sensitive Touch‐Based Sweat Sensors | |
Qiu et al. | Preparation of Three‐Dimensional Ordered Macroporous Prussian Blue Film Electrode for Glucose Biosensor Application | |
CN116376892A (zh) | 一种基于亲水中空层状双金属氢氧化物原位封装酶的方法 | |
Ding et al. | Glucose oxidase immobilized in alginate/layered double hydroxides hybrid membrane and its biosensing application | |
CN100359324C (zh) | 含剥层二氧化锰的生物传感器酶功能敏感膜及其制备方法 | |
CN110066399B (zh) | 一种壳聚糖修饰的微孔聚合物纳米材料的制备及其应用 | |
Wang et al. | Novel glucose oxidase interlocked prussian blue/polysulfone stereo-structure and its application in amperometric glucose biosensor | |
CN113740540A (zh) | 一种用于丝素蛋白检测的有机电化学晶体管的制备方法 | |
Ge et al. | A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |