CN115216468A - 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 - Google Patents

一种可塑型酶@金属有机框架凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN115216468A
CN115216468A CN202210790428.5A CN202210790428A CN115216468A CN 115216468 A CN115216468 A CN 115216468A CN 202210790428 A CN202210790428 A CN 202210790428A CN 115216468 A CN115216468 A CN 115216468A
Authority
CN
China
Prior art keywords
enzyme
metal organic
organic framework
zif
acp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210790428.5A
Other languages
English (en)
Inventor
陈国胜
钟宁宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202210790428.5A priority Critical patent/CN115216468A/zh
Publication of CN115216468A publication Critical patent/CN115216468A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • C12N9/0034Sarcosine oxidase (1.5.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0093Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03006Cholesterol oxidase (1.1.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/03Oxidoreductases acting on the CH-NH group of donors (1.5) with oxygen as acceptor (1.5.3)
    • C12Y105/03001Sarcosine oxidase (1.5.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01007Peroxidase (1.11.1.7), i.e. horseradish-peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y117/00Oxidoreductases acting on CH or CH2 groups (1.17)
    • C12Y117/03Oxidoreductases acting on CH or CH2 groups (1.17) with oxygen as acceptor (1.17.3)
    • C12Y117/03002Xanthine oxidase (1.17.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明属于生物材料技术领域,具体涉及一种可塑型酶@金属有机框架凝胶及其制备方法与应用。在该凝胶的制备流程中,首先将酶原位封装于多孔金属有机框架内,然后通过Ca2+离子与海藻酸钠‑聚丙烯酸的双重交联聚合制备出形貌可控的复合凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合凝胶可以有效解决酶@金属有机框架微晶材料加工性能差、可塑性差等技术瓶颈,进一步设计成便携式的原位传感器。

Description

一种可塑型酶@金属有机框架凝胶及其制备方法与应用
技术领域
本发明属于生物材料技术领域。更具体地,涉及一种可塑型酶@金属有机框架凝胶及其制备方法与应用。
背景技术
酶作为一种天然的生物催化剂,具有高催化活性、高选择性的特点,但是它同时还存在对环境变化敏感的缺点,如高温、强酸性或碱性等条件下容易酶变、失活。为了解决酶的稳定性问题,现有技术常用金属有机框架(MOF)作为酶结构固定化的理想载体,得到的酶@MOF复合材料能够有效提高酶对温度、pH、溶剂等的耐受能力。如中国专利申请提供了一种耐酸改性有机金属框架固定化酶的方法,该方法以柠檬酸或柠檬酸钠修饰2-甲基咪唑,再向其中掺杂纳米二氧化硅、锌离子水溶液和蛋白酶,离心,所得沉淀即为固定化酶;采用水相溶液混合法制备耐酸改性有机金属框架,以掺杂纳米二氧化硅作为载体,共同使得固定化脂肪酶的催化活性、pH耐受性、重复利用率显著提升,但是该方法得到的酶@MOF材料是微晶态的,难以对其进行加工和塑型,极大地限制了酶@MOFs材料在大规模工业化中的应用,并且稳定性也仍有待提高。
发明内容
本发明要解决的技术问题是克服现有酶@MOF复合材料为微晶态难以加工塑性,稳定性有待提高的缺陷和不足,提供一种稳定性好的可塑型酶@金属有机框架凝胶。
本发明的目的是提供所述可塑型酶@金属有机框架凝胶的制备方法。
本发明另一目的是提供所述可塑型酶@金属有机框架凝胶的应用。
本发明上述目的通过以下技术方案实现:
一种可塑型酶@金属有机框架凝胶的制备方法,具体包括以下步骤:
S1、将酶加入2-甲基咪唑溶液中,再加入锌盐溶液,混合均匀,静置,取沉淀,后处理,得酶@金属有机框架;
S2、取步骤S1所得酶@金属有机框架置于2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)溶液中分散均匀,边搅拌边加入海藻酸钠,混合均匀,得混合液;
S3、将步骤S2所得混合液塑性成不同的形状,浸没于钙盐和聚丙烯酸的混合溶液中,聚合完全,即得。
本发明中,先将酶封装于由锌离子与2-甲基咪唑配位组装的金属有机框架(ZIF-8)上,再采用简单的混合法将获得的酶@金属有机框架微晶材料与海藻酸钠溶液混合均匀,并将该混合液注入含Ca2+离子的聚丙烯酸交联剂溶液中,快速聚合塑型得到可塑型酶@金属有机框架凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合水凝胶可以有效解决酶@金属有机框架微晶材料的加工性能差、可塑性差等技术瓶颈,可进一步设计成便携式的原位传感器。
进一步地,步骤S1中,所述酶选自葡萄糖氧化酶、辣根过氧化物酶、胆固醇氧化酶、肌氨酸氧化酶、黄嘌呤氧化酶、β-半乳糖苷酶、脲酶、尿激酶、漆酶、脂肪酶、乙醇脱氢酶、乙酰胆碱酯酶、过氧化氢酶、乳酸氧化酶、β-葡萄糖醛苷酸酶、细胞色素C、尿酸酶、超氧化物歧化酶中的一种或多种。
优选地,步骤S1中,所述酶为葡萄糖氧化酶-辣根过氧化物酶、胆固醇氧化酶-辣根过氧化物酶、肌氨酸氧化物酶-辣根过氧化物酶、黄嘌呤氧化酶-辣根过氧化物酶、β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶中的一种。
更优选地,步骤S1中,所述酶为两种酶的组合时,两种酶的质量比为1:1,两者之间存在级联反应。例如,选择葡萄糖氧化酶和辣根过氧化物酶制备可塑型酶@金属有机框架凝胶,当葡萄糖存在的时候,会触发酶级联反应,并产生的可视化的颜色信号;结合可通过RGB模式识别颜色的智能手机APP对该颜色信号进行快速识别及数据处理,可实现葡萄糖的原位监测;进一步结合对照,可以测定葡萄糖的含量大小,并且不会受到其他杂质的影响,专一性强。
更进一步地,步骤S1中,所述锌盐为乙酸锌或硝酸锌。
进一步地,步骤S1中,所述酶的添加量为0.1~2mg/mL。
更进一步地,步骤S1中,所述2-甲基咪唑与乙酸锌的摩尔比为4:1~12:1。
进一步地,步骤S1中,所述静置的时间为30min~12h。
更进一步地,步骤S1中,所述后处理为依次用水洗沉淀2~4次,乙醇洗涤1~2次,干燥。
进一步地,步骤S2中,所述ABTS溶液的浓度为1~20mM。
更进一步地,步骤S2中,所述酶@金属有机框架的添加量为0.5~100mg/mL。
进一步地,步骤S2中,所述海藻酸钠的添加量为5~80mg/mL。
更进一步地,步骤S3中,所述钙盐为氯化钙、硝酸钙、氯酸钙、高氯酸钙、碳酸氢钙或磷酸二氢钙。
进一步地,步骤S3中,所述钙盐和聚丙烯酸的混合溶液中,所述钙盐的浓度为20~120mol/L,聚丙烯酸的浓度为0.01~2mol/L。
另外的,本发明还提供了一种可塑型酶@金属有机框架凝胶,所述可塑型酶@金属有机框架凝胶由所述制备方法制备得到。
另外的,本发明还要求保护所述可塑型酶@金属有机框架凝胶在传感、生物催化、药物合成、食物加工、含酶洗涤剂、生物燃料中的应用。
本发明具有以下有益效果:
本发明制备了一种可塑型酶@金属有机框架凝胶。在该凝胶的制备流程中,首先将酶原位封装于多孔金属有机框架内,然后通过Ca2+离子与海藻酸钠-聚丙烯酸的双重交联聚合制备出形貌可控的复合凝胶。金属有机框架外骨架紧密束缚酶的构象,可以显著提高酶的稳定性;同时,高度亲水的水凝胶微环境可富集酶促反应产物,表现出更高的催化“信号”。此外,该复合水凝胶可以有效解决酶@金属有机框架微晶材料的加工性能差、可塑性差等技术瓶颈,可进一步设计成便携式的原位传感器。
附图说明
图1为本发明实施例1、2的流程示意图。
图2为本发明实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料以及海藻酸钙凝胶(ACP)的扫描电镜图,其中,图2(a)为GH@ZIF-8,图2(b)为海藻酸钙凝胶,图2(c)为GH@ZIF-8-ACP。
图3为本发明实施例1所得GH@ZIF-8和GH@ZIF-8-ACP的X射线衍射图,其中,图3(a)为GH@ZIF-8-ACP、GH@ZIF-8、ZIF-8的对比,图3(b)为GH@ZIF-8-ACP和ACP的对比。
图4为本发明实验例1中游离酶(GOx:HRP=1:1,enzyme)、ZIF-8、GH@ZIF-8、GH@ZIF-8-ACP与ACP的傅里叶变换红外光谱图。
图5为本发明实验例1中ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的热重分析图。
图6为本发明实验例1中ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的N2吸附-解吸等温线,其中,图6(a)为ZIF-8、图6(b)为GH@ZIF-8、图6(c)为ACP、图6(d)为GH@ZIF-8-ACP。
图7为本发明实验例2中球状(a-1)、线状(b-1)、片状(c-1)的GH@ZIF-8-ACP的颜色R值随时间的变化曲线图与球状(a-2)、线状(b-2)、片状(c-2)的GH@ZIF-8-ACP随时间的显色情况。
图8为本发明实验例2中球状、线状与片状GH@ZIF-8-ACP,在保证相同含酶量的前提下,不同时间下显色效果图。
图9为本发明实验例3中片状GH@ZIF-8-ACP在不同葡萄糖浓度下显色15分钟后,R值变化的标准曲线图。
图10为本发明实验例4中GH@ZIF-8-ACP显色的抗干扰实验的对比图。
图11为本发明实验例5中GH@ZIF-8-ACP显色的交叉反应实验的对比图。
图12为本发明实验例6中GH@ZIF-8-ACP的储藏稳定性探究结果统计图。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1一种可塑型酶@金属有机框架凝胶
所述可塑型酶@金属有机框架凝胶的制备方法包括以下步骤:
S1、分别配制40mM的乙酸锌溶液和160mM的2-甲基咪唑溶液,称取20mg葡萄糖氧化酶(GOx)与20mg辣根过氧化物酶(HPR),一起溶于20mL 160mM的2-甲基咪唑溶液中,再加入20mL 40mM的乙酸锌溶液,静置4小时;离心,舍去上清液,水洗3次,乙醇洗涤1次,真空干燥,研磨,得GH@ZIF-8;
S2、称取40mg步骤S1所得GH@ZIF-8,加入1mL 5mM ABTS溶液,将GH@ZIF-8在ABTS溶液中超声分散均匀;分散后,将悬浊液进行磁力搅拌,在搅拌的过程中加入20mg海藻酸钠,保证混合均匀后,获得混合液;
S3、将步骤S2所得混合液装入注射器,小心滴入或直接注入到包含60mol/LCaCl2和0.05mol/L的聚丙烯酸溶液中,聚合10min形成球状或线状复合凝胶GH@ZIF-8-ACP。
实施例2一种可塑型酶@金属有机框架凝胶
所述可塑型酶@金属有机框架凝胶的制备方法包括以下步骤:
S1、分别配制40mM的乙酸锌溶液和160mM的2-甲基咪唑溶液,称取20mg葡萄糖氧化酶(GOx)与20mg辣根过氧化物酶(HPR),一起溶于20mL 160mM的2-甲基咪唑溶液中,再加入20mL 40mM的乙酸锌溶液,静置4小时;离心,舍去上清液,水洗3次,乙醇洗涤1次,真空干燥,研磨,得GH@ZIF-8;
S2、称取40mg步骤S1所得GH@ZIF-8,加入1mL 5mM ABTS溶液,将GH@ZIF-8在ABTS溶液中超声分散均匀;分散后,将悬浊液进行磁力搅拌,在搅拌的过程中加入20mg海藻酸钠,保证混合均匀后,获得混合液;
S3、以玻璃板为衬底,在涂膜机上将步骤S2所得混合液在玻璃板上涂布均匀,厚度设置为40μm,将上述涂覆混合液的玻璃板浸没在包含60mol/L CaCl2和0.05mol/L的聚丙烯酸溶液中,聚合10min形成片状的复合凝胶GH@ZIF-8-ACP。
实施例1、实施例2的流程示意图参见图1。
实施例3一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例3将酶替换为胆固醇氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例4一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例4将酶替换为肌氨酸氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例5一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例5将酶替换为黄嘌呤氧化酶和辣根过氧化物酶,其余参数及操作参考实施例1。
实施例6一种可塑型酶@金属有机框架凝胶
与实施例1不同之处在于,实施例6将酶替换为β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶,其中,β-半乳糖苷酶、葡萄糖氧化酶、辣根过氧化物酶的质量比为2:1:1其余参数及操作参考实施例1。
以下以实施例1、2所得可塑型酶@金属有机框架凝胶作为示例,测定其结构表征及性能等参数,其余实施例效果类似。
实验例1可塑型酶@金属有机框架凝胶的结构表征
1、对实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料和海藻酸钙凝胶(ACP)进行电镜扫描,结果参见图2。由图可见,本发明和实施例1制备所得GH@ZIF-8-ACP材料中,GH@ZIF-8均匀地分散在ACP中。
2、对实施例1所得GH@ZIF-8和GH@ZIF-8-ACP材料进行X射线衍射测试,结果参见图3。由图可见,GH@ZIF-8和GH@ZIF-8-ACP均与标准ZIF-8的PXRD图谱一致,证明制备的复合材料具有高度结晶的ZIF-8结构;同时,该结果也证实GH@ZIF-8被包被在ACP中。
3、采用傅里叶变换红外光谱仪对混合的游离酶(GOx:HRP=1:1,enzyme)、ZIF-8、GH@ZIF-8、GH@ZIF-8-ACP与ACP这5种样品的结构进行表征,测定结果如图4所示。由图可见,ZIF-8在1580cm-1(C=N)和1350~1500cm-1处(咪唑环的特征峰)具有特征的红外吸收带,而酶(GOx+HRP)则在1400~1500cm-1和1500~1600cm-1处具有特征的吸收带,分别归属于蛋白质骨架的酰胺II和I带的红外特征吸收峰;此外,GH@ZIF-8既出现了酶的红外特征吸收带,也出现了ZIF-8的特征吸收带,说明酶被成功封装到ZIF-8中。
4、采用热重分析对ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP进行表征,结果如图5所示。由图可见,在220~500℃处,GH@ZIF-8的失重比ZIF-8快,这可以归因于GH@ZIF-8中包被的酶高温被分解;对比GH@ZIF-8与GH@ZIF-8-ACP,可以发现二者失重趋势类似,但GH@ZIF-8-ACP失重要多一些,这与ACP的分解有关;对比ACP与GH@ZIF-8-ACP可以发现,GH@ZIF-8-ACP失重要少一些,这与GH@ZIF-8-ACP中包含了ZIF-8-ACP有关。
5、测定ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的N2吸附-解吸等温线,结果如图6所示。由图可见,ZIF-8、GH@ZIF-8、ACP、GH@ZIF-8-ACP的比表面积分别为1289.6725m2/g、4.0912m2/g、1.6866m2/g、16.8725m2/g;其中,相比于ZIF-8,GH@ZIF-8的比表面积大幅度减小,证明ZIF-8的空隙被酶占据,也说明了酶被包埋在材料中。
实验例2 GH@ZIF-8-ACP与GH@ZIF-8的葡萄糖识别能力对比
在保证相同酶含量的前提下,分别对比单纯的GH@ZIF-8与球状、片状的GH@ZIF-8-ACP(注:为了方便性能对比,这里的GH@ZIF-8-ACP均没有预先包封ABTS)对葡萄糖(1mM)的识别能力,方式如下:
分别将一定质量的球状、线状与片状GH@ZIF-8-ACP加入96孔板中,同时以相应质量的GH@ZIF-8作为对照;在各测试组中分别加入5mM ABTS,并加入1mM葡萄糖,每间隔1min用手机摄像头对各测试组进行拍摄,并通过取色器APP的RGB模式对颜色进行识别,绘制颜色R值随时间变化的曲线,结果参见图7和图8。
由图可见,球状、线状和片状的GH@ZIF-8-ACP均比单纯的GH@ZIF-8具有更高的ΔR值;制成凝胶材料的GH@ZIF-8-ACP显色能力相较于游离在溶液中的GH@ZIF-8更强,说明GH@ZIF-8-ACP有助于提高对葡萄糖的识别灵敏度。
实验例3 GH@ZIF-8-ACP对葡萄糖的定量分析
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取27片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在不同GH@ZIF-8-ACP片上分别滴加1μL浓度为0mM、0.05mM、0.1mM、0.25mM、0.5mM、1mM、2mM、3mM、4mM的葡萄糖溶液,每组平行测试3次,15min后摄影并提取颜色R值,绘制葡萄糖浓度对ΔR值的曲线图,结果参见图9。
由图可见,GH@ZIF-8-ACP对葡萄糖具有分段性的线性响应范围,第一段为0~0.25mM,第二段为0.25~4mM,在相应的浓度范围内均具有良好的线性关系;上述测试结果证明了GH@ZIF-8-ACP可以通过与智能手机颜色识别软件联用,实现葡萄糖的准确定量,并且该方法具有简易便携的优点,可应用于葡萄糖的原位监测。
实验例4基于GH@ZIF-8-ACP的葡萄糖检测的抗干扰实验
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取36片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在GH@ZIF-8-ACP片上分别滴加1μL果糖、木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸、BSA、尿素、组氨酸、精氨酸、谷氨酸和丙氨酸溶液(上述浓度均为10mM),另外分别滴加1μL浓度为1mM的葡萄糖溶液以及1μL去离子水作为对比,每组平行测试3次,15min后摄影,并提取颜色R值,结果参见图10。
由图可见,在果糖、木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸、BSA和尿素溶液的浓度均10倍高于葡萄糖的情况下,只有滴加了葡萄糖的GH@ZIF-8-ACP片的R值的变化明显,说明本发明制备所得GH@ZIF-8-ACP对葡萄糖具有专一性。
实验例5 GH@ZIF-8-ACP显色的交叉反应实验
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,取36片,分开放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;在GH@ZIF-8-ACP片上滴加1μL含1mM葡萄糖和10mM木糖、鼠李糖、蔗糖、乳糖、半乳糖、麦芽糖、甘氨酸或BSA的混合液(即溶液中葡萄糖浓度为1mM,其他任一干扰物质的浓度为10mM),每组平行测试3次,15min后摄影,并提取颜色R值,结果参见图11。
由图可见,混合溶液总体上R值变化和单纯葡萄糖溶液相近,说明在高浓度干扰物存在下,GH@ZIF-8-ACP仍对葡萄糖具有准确的识别能力。
实验例6 GH@ZIF-8-ACP的储藏稳定性考察
将片状的GH@ZIF-8-ACP裁成规格为0.5cm×0.5cm的方片,放置于玻璃板上,通过手机摄像头摄影,并用取色APP提取颜色RGB数值的R值作为背景数值;将GH@ZIF-8-ACP方片常温放置,每隔一段时间取出3个方片,在每个方片中心滴加5μL 1mM的葡萄糖,15min后摄影,并提取颜色R值,通过计算放置不同时间后的GH@ZIF-8-ACP方片对葡萄糖识别的颜色R值变化的平均值,评估其储藏稳定性,结果参见图12。
由图可见,本发明制备的GH@ZIF-8-ACP常温储存30天后,ΔR值是原始数据的85.88%±10.30%,说明GH@ZIF-8-ACP具有优异的储存稳定性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种可塑型酶@金属有机框架凝胶的制备方法,其特征在于,具体包括以下步骤:
S1、将酶加入2-甲基咪唑溶液中,再加入锌盐溶液,混合均匀,静置,取沉淀,后处理,得酶@金属有机框架;
S2、取步骤S1所得酶@金属有机框架置于ABTS溶液中分散均匀,边搅拌边加入海藻酸钠,混合均匀,得混合液;
S3、将步骤S2所得混合液塑性成不同的形状,浸没于钙盐和聚丙烯酸的混合溶液中,聚合完全,即得。
2.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述酶选自葡萄糖氧化酶、辣根过氧化物酶、胆固醇氧化酶、肌氨酸氧化酶、黄嘌呤氧化酶、β-半乳糖苷酶、脲酶、尿激酶、漆酶、脂肪酶、乙醇脱氢酶、乙酰胆碱酯酶、过氧化氢酶、乳酸氧化酶、β-葡萄糖醛苷酸酶、细胞色素C、尿酸酶、超氧化物歧化酶中的一种或多种。
3.根据权利要求2所述制备方法,其特征在于,步骤S1中,所述酶为葡萄糖氧化酶-辣根过氧化物酶、胆固醇氧化酶-辣根过氧化物酶、肌氨酸氧化酶-辣根过氧化物酶、黄嘌呤氧化酶-辣根过氧化物酶、β-半乳糖苷酶-葡萄糖氧化酶-辣根过氧化物酶中的一种。
4.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述锌盐为乙酸锌或硝酸锌。
5.根据权利要求1所述制备方法,其特征在于,步骤S1中,所述酶的添加量为0.1~2mg/mL。
6.根据权利要求1所述制备方法,其特征在于,步骤S2中,所述酶@金属有机框架的添加量为0.5~100mg/mL。
7.根据权利要求1所述制备方法,其特征在于,步骤S2中,所述海藻酸钠的添加量为5~80mg/mL。
8.根据权利要求1所述制备方法,其特征在于,步骤S3中,所述钙盐为氯化钙、溴化钙、硝酸钙、氯酸钙、高氯酸钙、碳酸氢钙或磷酸二氢钙。
9.一种可塑型酶@金属有机框架凝胶,其特征在于,所述可塑型酶@金属有机框架凝胶由权利要求1~8任一所述制备方法制备得到。
10.权利要求9所述可塑型酶@金属有机框架凝胶在传感、生物催化、药物合成、食物加工、含酶洗涤剂、生物燃料中的应用。
CN202210790428.5A 2022-07-06 2022-07-06 一种可塑型酶@金属有机框架凝胶及其制备方法与应用 Pending CN115216468A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210790428.5A CN115216468A (zh) 2022-07-06 2022-07-06 一种可塑型酶@金属有机框架凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210790428.5A CN115216468A (zh) 2022-07-06 2022-07-06 一种可塑型酶@金属有机框架凝胶及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115216468A true CN115216468A (zh) 2022-10-21

Family

ID=83610425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210790428.5A Pending CN115216468A (zh) 2022-07-06 2022-07-06 一种可塑型酶@金属有机框架凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115216468A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819832A (zh) * 2023-02-15 2023-03-21 北京理工大学 一种Zr基金属有机骨架UiO-66的制备方法及成型工艺
CN115819165A (zh) * 2022-12-20 2023-03-21 郑州大学 叠氮化铜复合起爆药块体材料及其制备方法
CN117625572A (zh) * 2024-01-25 2024-03-01 山东理工大学 一种制备固定化半乳糖氧化酶的方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115819165A (zh) * 2022-12-20 2023-03-21 郑州大学 叠氮化铜复合起爆药块体材料及其制备方法
CN115819832A (zh) * 2023-02-15 2023-03-21 北京理工大学 一种Zr基金属有机骨架UiO-66的制备方法及成型工艺
CN117625572A (zh) * 2024-01-25 2024-03-01 山东理工大学 一种制备固定化半乳糖氧化酶的方法及应用
CN117625572B (zh) * 2024-01-25 2024-05-03 山东理工大学 一种制备固定化半乳糖氧化酶的方法及应用

Similar Documents

Publication Publication Date Title
CN115216468A (zh) 一种可塑型酶@金属有机框架凝胶及其制备方法与应用
Tan et al. Glucose biosensor based on glucose oxidase immobilized in sol–gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode
Wang et al. Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor
Yang et al. Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes
Qiu et al. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix
CN110129290B (zh) 金属有机框架材料固定化漆酶及其制备方法和应用
Kurokawa et al. Immobilization of enzyme onto cellulose–titanium oxide composite fiber
CN113406168B (zh) 分子印迹检测氯霉素的电化学传感器及其制备方法和应用
Li et al. Dopamine-polyethyleneimine co-deposition cellulose filter paper for α-Glucosidase immobilization and enzyme inhibitor screening
CN102181422A (zh) 大孔载体“同步法”共价交联-固载木瓜蛋白酶聚体及方法
Satvekar et al. A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide
Orrego et al. Preparation and characterization of chitosan membranes by using a combined freeze gelation and mild crosslinking method
CN111948269A (zh) 牛奶淀粉样蛋白分子印迹电化学传感器及其制法与应用
CN112034025B (zh) 用于氯霉素检测的复合修饰电极及其构建和检测方法
CN109959684B (zh) 双识别型毒死蜱传感器的制备、检测蔬菜中毒死蜱残留的方法及检测装置
Chen et al. Amperometric Biosensor for Hydrogen Peroxide Based on Sol‐Gel/Hydrogel Composite Thin Film
Zheng et al. Co‐Encapsulating Enzymes and Carbon Dots in Metal–Organic Frameworks for Highly Stable and Sensitive Touch‐Based Sweat Sensors
Qiu et al. Preparation of Three‐Dimensional Ordered Macroporous Prussian Blue Film Electrode for Glucose Biosensor Application
CN116376892A (zh) 一种基于亲水中空层状双金属氢氧化物原位封装酶的方法
Ding et al. Glucose oxidase immobilized in alginate/layered double hydroxides hybrid membrane and its biosensing application
CN100359324C (zh) 含剥层二氧化锰的生物传感器酶功能敏感膜及其制备方法
CN110066399B (zh) 一种壳聚糖修饰的微孔聚合物纳米材料的制备及其应用
Wang et al. Novel glucose oxidase interlocked prussian blue/polysulfone stereo-structure and its application in amperometric glucose biosensor
CN113740540A (zh) 一种用于丝素蛋白检测的有机电化学晶体管的制备方法
Ge et al. A novel hemin-based organic phase artificial enzyme electrode and its application in different hydrophobicity organic solvents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination