CN115213416A - 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料 - Google Patents

一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料 Download PDF

Info

Publication number
CN115213416A
CN115213416A CN202210810648.XA CN202210810648A CN115213416A CN 115213416 A CN115213416 A CN 115213416A CN 202210810648 A CN202210810648 A CN 202210810648A CN 115213416 A CN115213416 A CN 115213416A
Authority
CN
China
Prior art keywords
powder
composite material
temperature
sintering
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210810648.XA
Other languages
English (en)
Inventor
仝永刚
李鹏飞
胡永乐
梁秀兵
陈永雄
胡振峰
任紫祎
方靖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202210810648.XA priority Critical patent/CN115213416A/zh
Publication of CN115213416A publication Critical patent/CN115213416A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/062Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料,属于粉末冶金领域。本发明通过振荡压力烧结将陶瓷颗粒引入细晶合金粉体显著提升了材料的强度与耐高温性能。本发明采用振荡压力烧结法在降低热压烧结压力和温度条件的同时,进一步促进热压烧结样品的致密化。本发明复合材料具有优异的室温强度和抗高温软化性能,室温最大抗压强度达3624.7MPa,在2000℃高温时最大压缩强度达到121MPa。

Description

一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料
技术领域
本发明属于粉末冶金领域,涉及一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料。
背景技术
难熔中熵合金是一种新型高温合金,主要以熔点高于1650℃的金属元素Ti、V、Nb、Hf、Ta、Mo、W、Ta,Zr等为主元素,具有高强度和优异的耐高温性。但随着航空航天飞行器飞行速率的提高,高温承载结构和热防护结构对难熔中熵合金室温与高温性能提出了越来越苛刻的要求。目前急需同时提高难熔高熵合金的室温与高温力学性能,以满足材料苛刻的应用要求。
陶瓷材料具有较低的密度,极高的强度、硬度,抗高温性和化学稳定性,因此将陶瓷作为强化相引入中熵合金是进一步提高其室温与高温性能的有效方法。但陶瓷材料属于强共价材料,熔点远高于合金材料,作为增强相加入合金难于烧结且需达到非常高的致密度并消除内部各种缺陷才能获得高性能。为获得高性能的陶瓷,往往采取一些辅助烧结措施,如真空烧结、热压烧结、气压烧结等,但单纯提高烧结温度与压力,不仅降低了生产效率,更造成了生产成本的大大提高。
发明内容
本发明的目的是提供一种具有极高强度、硬度,良好的抗高温性和化学稳定性的陶瓷颗粒增强细晶中熵合金复合材料。
本发明的另一个目的在于克服上述现有技术的缺点,提供该复合材料的制备方法。
为达成上述目的,本发明所述一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料,其特征在于,复合材料由细晶合金粉体和陶瓷粉体复合而成,所述细晶合金粉体包括Nb、Mo、Ta、W和Zr,所述陶瓷粉体为ZrB2、TiC、TaC、ZrC或B4C粉体。
如上所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)称取合金粉体和陶瓷粉体,然后添加少量过程控制剂,合金粉体占合金粉末和陶瓷粉末两者重量之和的比例为30~70wt.%,过程控制剂为1~3wt%的硬脂酸;
(2)将所述Nb粉、Mo粉、Ta粉、W粉和Zr粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比3:1~5:1、球磨机转速300r/min~400r/min,在保护气体为氩气的条件下球磨40~60h,得到细晶合金化粉末;
(3)在所述合金化粉末中加入陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为3:1~5:1、转速为100r/min~300r/min的条件下混合5~10h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结,烧结温度为1600~1800℃,压强为25~40MPa,保温时间为20~40min,并通过振荡压力使复合材料充分致密化,烧结结束后自然冷却。
进一步的,所述步骤⑴中的Nb粉、Mo粉、Ta粉、W粉和Zr粉均为颗粒状,其粒度均为10~40μm,纯度>99.9%。
进一步的,所述步骤(2)中的合金化粉末的粒径小于100nm。
进一步的,所述步骤(3)中陶瓷粉末的粒径为1-2um。
进一步的,所述步骤(4)中的加热过程是指由室温升到200℃为手动加热,由200℃升到1600~1800℃℃为自动加热,加热速率为10~20℃/min。
进一步的,所述步骤(4)中的振荡参数是指振荡设定压力为25~40MPa,振荡幅度为4~7MPa,振荡频率为3~7Hz。
本发明的有益效果:
1.本发明提供一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料,将陶瓷颗粒引入细晶合金粉体显著提升了合金的强度与耐高温性能;
2.本发明提供一种振荡压力烧结超高温中熵陶瓷增强难熔中熵合金复合材料的制备方法,该方法得到的粉末晶粒细小,烧结后的样品组织均匀,且利用振荡压力在降低热压烧结压力和温度条件的同时,进一步促进热压烧结样品的致密化;
3.该方法制备的复合材料具有优异的室温力学性能和抗高温软化性能,室温最大压缩强度达到3624.7MPa,在2000℃高温时最大压缩强度达到121MPa。
附图说明
图1为(NbTaW)40(TaC)60复合材料的扫描电镜微观组织形貌。
图2为(NbTaW)40(ZrC)60复合材料的扫描电镜微观组织形貌。
图3为(NbTaW)40(ZrB2)60复合材料的扫描电镜微观组织形貌。
具体实施方式
实施例1 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表1所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
表1:原材料配比(质量比wt.%)
Figure 89443DEST_PATH_IMAGE001
(2)将Nb粉、Ta粉、W粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比5:1、球磨机转速400r/min,在保护气体为氩气的条件下球磨50h,得到细晶合金化粉末;
(3)在合金化粉末中加入TaC陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min;
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTaW)40(TaC)60样品的SEM组织形貌如图1所示,说明样品组织均匀分布,材料致密度好。
经压缩力学性能测试,样品压缩强度为2113.2MPa,压缩断裂应变为7.5%。进行了2000℃高温压缩性能测试,压缩强度达到110MPa,表明样品具有优异的室温力学性能和抗高温软化性能。
实施例2 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表2所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
表2:原材料配比(质量比wt.%)
Figure 68901DEST_PATH_IMAGE003
(2)将Nb粉、Ta粉、W粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比5:1、球磨机转速400r/min,在保护气体为氩气的条件下球磨50h,得到细晶合金化粉末;
(3)在合金化粉末中加入ZrC陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min;
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTaW)40(ZrC)60样品的SEM组织形貌如图2所示,说明样品组织细小且均匀分布,材料致密度好。
经压缩力学性能测试,样品压缩强度为2580.2MPa,压缩断裂应变为9.5%。进行了2000℃高温压缩性能测试,压缩强度达到99MPa,表明样品具有优异的室温力学性能和抗高温软化性能。
实施例3 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表3所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
表3:原材料配比(质量比wt.%)
Figure 661687DEST_PATH_IMAGE005
(2)将Nb粉、Ta粉、W粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比5:1、球磨机转速400r/min,在保护气体为氩气的条件下球磨50h,得到细晶合金化粉末;
(3)在合金化粉末中加入ZrB2陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min;
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTaW)40(ZrB2)60样品的SEM组织形貌如图3所示,说明样品组织均匀分布,材料致密度好。
经室温压缩力学性能测试,样品压缩强度为3624.7MPa,压缩断裂应变为13.6%,进行了2000℃高温压缩性能测试,压缩强度达到121MPa,表明样品具有优异的室温力学性能和抗高温软化性能。
对比例1 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表3所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
(2)将Nb粉、Ta粉、W粉和ZrB2陶瓷粉末放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min。
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTaW)40(ZrB2)60样品材料致密度好,但晶粒粗大。经室温压缩力学性能测试,样品压缩强度下降明显。
对比例2 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表4所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
表4:原材料配比(质量比wt.%)
Figure DEST_PATH_IMAGE007
(2)将Nb粉、Ti粉、Zr粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比5:1、球磨机转速400r/min,在保护气体为氩气的条件下球磨50h,得到细晶合金化粉末;
(3)在合金化粉末中加入ZrC陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min。
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTiZr)40(ZrC)60样品组织均匀分布,材料致密度好。经压缩力学性能测试,样品压缩强度明显下降。
对比例3 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)按表5所示称量原料粉末,称取1wt%的硬脂酸作为过程控制剂;
表5:原材料配比(质量比wt.%)
Figure DEST_PATH_IMAGE009
(2)将Nb粉、Ta粉、W粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比5:1、球磨机转速400r/min,在保护气体为氩气的条件下球磨50h,得到细晶合金化粉末;
(3)在合金化粉末中加入TaC陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为5:1、转速为200r/min的条件下混合8h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结。烧结压强为30MPa,烧结温度为1700℃,加热过程中由室温升到200℃为手动加热,由200℃升到1700℃为自动加热,加热速率为15℃/min;
(5)在1700℃下保温30min并开启振荡,振荡设定压力为30MPa,振荡幅度为5MPa,振荡频率为5Hz。烧结结束后自然冷却。
所得(NbTaW)30(TaC)70样品组织均匀分布,材料致密度好。经压缩力学性能测试,样品最大压缩强度下降明显,且由于陶瓷含量过高,断裂应变也随之下降。

Claims (7)

1.一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料,其特征在于:所述复合材料由细晶合金粉体和超细陶瓷粉体复合而成,所述细晶合金粉体包括Nb、Mo、Ta、W和Zr,所述超细陶瓷粉体为ZrB2、TiC、TaC、ZrC或B4C粉体。
2.如权利要求1所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,包括以下步骤:
(1)称取合金粉体和陶瓷粉体,然后添加少量过程控制剂,合金粉体占合金粉末和陶瓷粉末两者重量之和的比例为30~70wt.%,过程控制剂为1~3wt%的硬脂酸;
(2)将所述Nb粉、Mo粉、Ta粉、W粉和Zr粉放入不锈钢球磨罐中,采用不锈钢磨球,在行星式高能球磨机中进行球磨,球磨参数为球料比3:1~5:1、球磨机转速300r/min~400r/min,在保护气体为氩气的条件下球磨40~60h,得到细晶合金化粉末;
(3)在所述合金化粉末中加入陶瓷粉末,并放入行星式高能球磨机,在磨球为不锈钢球、球料比为3:1~5:1、转速为100r/min~300r/min的条件下混合5~10h,得到均匀化的粉末;
(4)将均匀化的粉末放入石墨模具,通过高温振荡烧结炉进行烧结,烧结温度为1600~1800℃,压强为25~40MPa,保温时间为20~40min,并通过振荡压力使复合材料充分致密化,烧结结束后自然冷却。
3.如权利要求2所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,其特征在于:所述步骤⑴中的Nb粉、Mo粉、Ta粉、W粉和Zr粉均为颗粒状,其粒度均为10~40μm,纯度>99.9%。
4.如权利要求2所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,其特征在于:所述步骤(2)中的细晶合金化粉末的粒径小于100nm。
5.如权利要求2所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,其特征在于:所述步骤(3)中的陶瓷粉末的粒径为1-2um。
6.如权利要求2所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,其特征在于:所述步骤(4)中的加热过程是指由室温升到200℃为手动加热,由200℃升到1600~1800℃为自动加热,加热速率为10~20℃/min。
7.如权利要求2所述的一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料的制备方法,其特征在于:所述步骤(4)中的振荡参数是指振荡设定压力为25~40MPa,振荡幅度为4~7MPa,振荡频率为3~7Hz。
CN202210810648.XA 2022-07-11 2022-07-11 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料 Pending CN115213416A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210810648.XA CN115213416A (zh) 2022-07-11 2022-07-11 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210810648.XA CN115213416A (zh) 2022-07-11 2022-07-11 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料

Publications (1)

Publication Number Publication Date
CN115213416A true CN115213416A (zh) 2022-10-21

Family

ID=83610337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210810648.XA Pending CN115213416A (zh) 2022-07-11 2022-07-11 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料

Country Status (1)

Country Link
CN (1) CN115213416A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048374A (zh) * 2016-07-19 2016-10-26 中南大学 一种难熔高熵合金/碳化钛复合材料及其制备方法
CN112226639A (zh) * 2020-09-16 2021-01-15 华南理工大学 一种基于环己烯球磨介质的原位超细晶TiC增强钛基复合材料及其制备方法
CN113373363A (zh) * 2021-05-26 2021-09-10 北京有研粉末新材料研究院有限公司 难熔高熵复合材料及其制备方法
CN114959406A (zh) * 2022-07-05 2022-08-30 长沙理工大学 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048374A (zh) * 2016-07-19 2016-10-26 中南大学 一种难熔高熵合金/碳化钛复合材料及其制备方法
CN112226639A (zh) * 2020-09-16 2021-01-15 华南理工大学 一种基于环己烯球磨介质的原位超细晶TiC增强钛基复合材料及其制备方法
CN113373363A (zh) * 2021-05-26 2021-09-10 北京有研粉末新材料研究院有限公司 难熔高熵复合材料及其制备方法
CN114959406A (zh) * 2022-07-05 2022-08-30 长沙理工大学 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料

Similar Documents

Publication Publication Date Title
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN103240412B (zh) 一种近终形制备粉末超合金的方法
CN109338172A (zh) 一种高熵合金增强的2024铝基复合材料及其制备方法
CN111500911A (zh) 一种高强韧纳米增强金属基复合材料的制备方法
CN110273092B (zh) 一种CoCrNi颗粒增强镁基复合材料及其制备方法
CN112647009A (zh) 一种高强度高耐磨性中熵合金及其制备方法
CN110093548B (zh) 一种含稀土Gd的超细晶高强韧高熵合金及其制备方法
CN101824575A (zh) 一种超细晶碳化钨/钴系硬质合金及其制备方法
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN114645180B (zh) 一种双相增强铝合金及其制备方法
CN113862540B (zh) 一种添加max相的钼合金及其制备方法
WO2023231744A1 (zh) 镶嵌颗粒增强的高熵合金基纳米超硬复合材料及其制备方法
CN111705252A (zh) 一种Al2O3纳米颗粒增强CrCoNi中熵合金基复合材料及制备方法
CN110724867B (zh) 一种ZrO2-Y2O3增强TZM合金及其制备方法、复合粉体及其制备方法
CN113930696A (zh) 一种轻质富钛Ti-Zr-Nb-Al系难熔高熵合金基复合材料的制备方法
CN114318039B (zh) 三峰晶粒结构金属基复合材料的元素合金化制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN107952966A (zh) 球形钛铝基合金粉末的制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN116219218A (zh) 一种TiAl基合金及其制备方法和应用
CN115213416A (zh) 一种振荡压力烧结超高温陶瓷增强细晶中熵合金复合材料
CN111378871B (zh) 一种球磨混粉-放电等离子烧结钛基复合材料及制备方法
CN113957294A (zh) 一种CrCoNi中熵合金增强Al基复合材料及其制备方法
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination