CN115180936A - 一种质子导体可逆电池空气电极、制备方法和用途 - Google Patents

一种质子导体可逆电池空气电极、制备方法和用途 Download PDF

Info

Publication number
CN115180936A
CN115180936A CN202210409221.9A CN202210409221A CN115180936A CN 115180936 A CN115180936 A CN 115180936A CN 202210409221 A CN202210409221 A CN 202210409221A CN 115180936 A CN115180936 A CN 115180936A
Authority
CN
China
Prior art keywords
salt
electrode material
air electrode
ops
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210409221.9A
Other languages
English (en)
Other versions
CN115180936B (zh
Inventor
杨广明
朱益君
吴俊琳
张德立
刘左清
周嵬
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210409221.9A priority Critical patent/CN115180936B/zh
Publication of CN115180936A publication Critical patent/CN115180936A/zh
Application granted granted Critical
Publication of CN115180936B publication Critical patent/CN115180936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

此发明涉及了一种质子导体可逆电池空气电极、制备方法和用途。分子式为:Ba0.5Sr0.55‑ xCo0.85‑yFe0.1+x+yO3‑δ‑BaZr0.1Ce0.75‑mY0.05+ mYb0.1O3‑δ,其中δ为氧空位的含量,0<x,y,m≤0.05。通过对一步法以及物理混合两种制备方法对空气电极材料进行测试,发现一步法制备的空气电极材料不仅具有更高的质子传导性能,还能够增加空气电极反应的活性位点并增强氧离子的传输能力。因此,该新型空气电极材料能够取得优异的电化学性能,同时在高水分压的测试条件下维持稳定。

Description

一种质子导体可逆电池空气电极、制备方法和用途
技术领域
本发明涉及一种高性能质子导体可逆电池复合空气电极的制备方法及应用,属于新能源材料技术领域。
背景技术
当前在人类社会文明速发展、科学技术不断进步的同时,巨大能源消耗使化石能源迅速枯竭并且造成了严重的环境污染。因此加速研究、开发可再生能源(如风能、太阳能、潮汐能等)减少对化石能源的依赖性、寻找新的能源转换方式以及减少环境污染是适应未来可持续发展道路的必然选择。燃料电池因为具有耐用性强、环境友好、能量转化率高和使用安全等特点[2,3]而受到广泛关注。
可逆质子陶瓷电化学电池(R-PCEC)通常被用来作为间歇性发电装置和能源转换设备。与传统单一模式运行的固体氧化物燃料电池(SOFC)和固体氧化物电解池(SOEC)相比,R-PCEC可以再在中低温(500-700℃)条件下运行,因此避免了由于高温带来的运行成本高、设备密封难度大、耐久性和耐久性差等问题。R-PCEC是一种基于质子传导来实现发电和制氢的可逆装置,在质子陶瓷电解池(PCEC)模式下,可以将可再生能源和工厂产生的废热结合作为能量输入,以减少电力的使用,从而获得更高的能量利用率;在质子陶瓷燃料电池(PCFC)模式下,利用可再生能源或者工业碳氢燃料废气可以实现高效发电。
然而,当前设计的空气电极催化剂在中低温条件下氧还原反应/氧析出反应(ORR/OER)动力学缓慢,材料自身耐久性差以及各部件之间热匹配性差种种原因导致了R-PCEC在工业生产上很难实现的大规模生产。尽管如此,对R-PCEC空气电极的研究已经由最早的纯电子(e-)导体电极到混合离子(O2-)和电子(e-)导体(MIEC)电极,最后到现在广泛应用的三导电空气电极。目前所报道的具有三导电能力的单相氧化物难以在拥有出色的质子传导能力的同时,也具有优异的氧离子传导能力。因此,多相催化剂通常会表现出令人优异的电化学性能。Song等人报道了一种三导电纳米复合材料BaCo0.7(Ce0.8Y0.2)0.3O3-δ(BCCY),该阴极材料是由质子/电子混合传导相BaCexYyCozO3-δ和氧离子电子混合传导相BaCoxCeyYzO3-δ和BaCoO3-δ(BCO)共同组成,从而实现快速的离子传输和良好的兼容性。以BCCY作为燃料电池空气电极,在650℃时,分别在基于氧离子和质子传导的燃料电池上获得985和464mW cm-2的峰值功率密度(非专利文献1)。同时,在R-PCEC空气电极的开发上,Zhou等人通过在La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)表面浸渍高效的BCO涂层催化剂,从而提高了母体钙钛矿LSCF的ORR/OER活性。多相催化剂的合理调控可以增强高质子导电能力,从而提高空气电极的电催化性能(非专利文献2)。
非专利文献1:Song Y,Chen Y,Wang W,et al.Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode[J].Joule,2019,3(11):2842-2853.(10.1016/j.joule.2019.07.004).
非专利文献2:Zhou Y,Zhang W,Kane N,et al.An Efficient Bifunctional AirElectrode for Reversible Protonic Ceramic Electrochemical Cells[J].AdvancedFunctional Materials,2021,31(40):2105386.(10.1002/adfm.202105386).
发明内容
本发明所要解决的技术问题是:现有的应用于ORR/OER过程中多相催化材料存在着的催化活性不好、运行耐久度低的问题。本发明制备出了一种可逆电池复合空气电极材料,该材料具有Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)的通式,本方法提高空气电极材料的质子传导性能。将Ba0.5Sr0.5Co0.8Fe0.2O3-δ与BaZr0.1Ce0.7Y0.1Yb0.1O3-δ通过一步法复合得到的材料,在纳米尺度下的元素分布十分均匀并且仍具有优良孔隙率。不仅提高了材料的氧离子电导率、氧离子表面交换系数和氧离子的体相扩散能力,而且提高了材料水合能力,可以在质子导体可逆电池上具有优异电化学性能的同时,也具有持续的耐久性。
本发明的第一个方面,提供了:
一种固体氧化复合空气电极材料,其化学通式为ABO3-δ,具体分子式为:Ba0.5Sr0.55-xCo0.85-yFe0.1+x+yO3-δ-BaZr0.1Ce0.75-mY0.05+mYb0.1O3-δ,其中δ为氧空位的含量,0<x,y,m≤0.05。
在一个实施方式中,分子式为:Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)。
本发明的第二方面,提供了:
上述固体氧化复合空气电极材料的制备方法,是指一步溶胶凝胶法或者直接混合法。
所述的一步溶胶凝胶法包括如下步骤:按照所选的化学计量比称取一定量的Ba盐、Sr盐、Co盐、Fe盐、Zr盐、Ce盐、Y盐、Yb盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料。
在一个实施方式中,总金属离子:EDTA:CA:氨水的摩尔比为1:0.5-1.5:1-3:3-20。
在一个实施方式中,干燥条件为140-160℃烘烤1-10h。
在一个实施方式中,煅烧的温度是900-1100℃煅烧1-10h,升温速度为2-8℃/min。
上述直接混合法,如下:包括如下步骤:
步骤1:采用溶胶-凝胶法制备Ba0.5Sr0.5Co0.8Fe0.2O3-δ,按照所选的化学计量比称取一定量的Ba盐、Sr盐、Co盐、Fe盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料;
步骤2:采用溶胶-凝胶法制备BaZr0.1Ce0.7Y0.1Yb0.1O3-δ,按照所选的化学计量比称取一定量的Ba盐、Zr盐、Ce盐、Y盐和Yb盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料;
步骤3:将两种粉体于7:3的质量比混合,在高能球磨仪中以400rpm的转速球磨30min后,最终得到物理混合法制备的复合电极材料。
步骤3中,两种粉体的质量比6-8:3;球磨条件是转速200-800rpm,时间10-60min。
在一个实施方式中,步骤1和步骤2中,总金属离子:EDTA:CA:氨水的摩尔比为1:1:1-3:5-15。
在一个实施方式中,步骤1和步骤2中,干燥条件为130-155℃下2-7h。
在一个实施方式中,步骤1和步骤2中,煅烧的温度是950-1020℃煅烧3-8h,升温为3-6℃/min。
本发明的第三个方面,提供了:
上述固体氧化复合空气电极材料用于燃料电池中的用途。
在一个实施方式中,所述的用途是作为质子导体空气电极的用途。
在一个实施方式中,上述所指的用途为提高电极材料的质子传导能力、提高氧还原反应活性以及增强电池的耐久性。
本发明的第四个方面,提供了:
上述固体氧化复合空气电极材料用于质子导体电解池中的用途。
在一个实施方式中,上述所致的用途是提高空气电极的水合能力、电流输出性能、电解的氢气产量以及操作耐久性。
有益效果
(1)合成方法简单高效
此发明通过溶胶-凝胶一步法合成了Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ复合阴极材料,材料内的各个元素分布均匀,合成方法简单高效。
(2)性能优异
BSCF-BZCYYb(BB-OPS)作为优异的空气电极材料,在燃料电池模式下于650℃时的峰值功率密度分别为1138mW cm-2,并且在相同温度下电解池模式在1.3V时对应的电流密度分别为-1533mA cm-2
附图说明
图1是BSCF、BB-OPS和BB-PC电极材料和BZCYYb电解质材料在室温下的XRD图谱;
图2是BSCF、BB-OPS和BB-PC电极材料的形貌SEM图;
图3是BSCF、BB-OPS和BB-PC电极材料的SEM-mapping图;
图4是BB-OPS的高倍TEM和对应的mapping图;
图5是BSCF、BB-OPS和BB-PC样品在干燥和湿润环境下的电导率;
图6是BSCF、BB-OPS和BB-PC电极材料在干空气条件下的Dchem和kchem的Arrhenius图;
图7是BSCF、BB-OPS和BB-PC电极材料在湿空气条件下的Dchem和kchem的Arrhenius图;
图8是BSCF、BB-OPS和BB-PC电极材料的氧程序升温脱附。
图9是BSCF、BB-OPS的O1s的XPS光谱;
图10是BSCF和BB-OPS的H2O-TG示意图;
图11是BSCF、BB-OPS和BB-PC样品在500-700℃范围内的干空气氛围下对称电池上获得的ASR的Arrhenius图;
图12是BSCF、BB-OPS和BB-PC样品在500-700℃范围内的5%水分压氛围下对称电池上获得的ASR的Arrhenius图;
图13是BB-OPS电极在3%、5%和10%水分压500-650℃温度范围内ASR的Arrhenius图;
图14是BB-OPS和BB-PC电极的对称电池在600℃湿润空气条件下的耐久性测试;
图15是BB-OPS和BB-PC电极的对称电池的长期升降温循环耐久性测试;
图16是Ni-BZCYYb|BZCYYb|BB-OPS单电池在500-650℃温度内以燃料电池模式的I-V和I-P曲线和阻抗;
图17是Ni-BZCYYb|BZCYYb|BB-PC单电池在500-650℃温度内以燃料电池模式的I-V和I-P曲线和阻抗;
图18是BSCF、BB-OPS和BB-PC空气电极燃料电池模式下的功率密度峰值对比;
图19是Ni-BZCYYb|BZCYYb|BB-OPS单电池在500-650℃温度内以电解池模式的I-V曲线和阻抗;
图20是BSCF、BB-OPS和BB-PC电解性能对比图;
图21是在600℃时,BB-OPS空气电极在不同电流密度下的电解水的产氢量;
图22是在600℃时,BB-OPS空气电极在不同电流密度下的电解水的法拉第效率;
图23是在600℃时,BB-OPS电极在-900mA cm-2恒定电流密度不同水分压下(30%,50%,80%)的耐久性测试;
图24是在-800mA cm-2恒定电流密度30%水分压下电解池热循环测试;
图25是分别在-900mA cm-2和300mA cm-2恒定电流密度下进行电解池和燃料电池可逆循环测试;
具体实施方式
此发明提供了一种具有优异电化学性能的质子导体可逆电池复合空气电极材料Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)的制备方法和应用,其中δ表示氧空位含量,属于质子导体可逆电池空气电极材料领域。通过溶胶-凝胶一步法制备的BB-OPS纳米复合空气电极材料,具有更均匀的两相分布,有效地拓展了反应活性位点,同时优化了材料的微观形貌以获得更快的氧离子表面动力学速率,增强了材料的水合能力以及在燃料电池和电解池两种模式下的操作耐久性。燃料电池模式下,BB-OPS电极在550℃时的极化阻抗低至0.23Ωcm2,并且在650℃时取得最大的峰值功率密度为1138mW cm-2。在电解池模式下,BB-OPS电极于650℃时得到的输出电流密度为-1066mA cm-2(1.3V)。BB-OPS电极的可逆电池在两种模式下都具有良好的耐久性。此发明开发了一种高性能的可逆空气材料以及制备方法,极大地提升了质子导体可逆电池的电化学性能。
实施例1
本实施例提供一种中低温质子导体固体氧化物可逆电池空气电极材料Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)的制备方法,其具体步骤如下:
(1)称取10.7282g硝酸钡、5.2908g硝酸锶、11.6412g硝酸钴、4.04g硝酸铁、0.6981g硝酸锆、4.9423g硝酸铈、0.6228g硝酸钇、0.6978g硝酸镱,并加入适量的去离子水溶解。按照乙二胺四乙酸:一水合柠檬酸:金属离子=1:2:1的摩尔比称取38.72g乙二胺四乙酸和55.70g一水合柠檬酸作为络合剂并加入适量的去离子水。
(2)将得到的络合剂加入溶解后的金属离子溶液中,再向其中加入适量的氨水以调节溶液的pH范围为7-8,随后加热搅拌至水分蒸发得到胶状物质。
(3)将胶状物质放在250℃的烘箱中去除水分得到前驱体。
(4)将得到的前驱体置于1000℃的高温炉中煅烧5h最终得到电极的粉体。
实施例2
本实施例提供一种中低温质子导体固体氧化物可逆电池空气电极材料Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-PC)的制备方法,其具体步骤如下:
分别通过溶胶凝胶法获得Ba0.5Sr0.5Co0.8Fe0.2O3-δ和BaZr0.1Ce0.7Y0.1Yb0.1O3-δ粉体,最后将两种粉体于7:3的质量比混合,在高能球磨仪中以400rpm的转速球磨30min后,最终得到物理混合法制备的复合电极材料。
实施例3
本实施例提供一种以Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)为电极的对称电池的制备和测试方法,具体步骤如下:
(1)称取1g实例1中制备得到的电极粉体Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)于高能球墨罐中,并向其中加入10mL的异丙醇、2mL的乙二醇、0.8mL的丙三醇,在400r/min条件下球磨30min后得到所需的电极浆料。
(2)将制备好的BZCYYb电解质片放在150℃的加热台上,通过惰性气体和喷枪将制备得到的电极浆料均匀地喷涂在电解质片的两侧,待液体完全蒸发之后,将喷涂后的电解质片置于1000℃的高温炉中煅烧2h以得到所需的对称电池,并用于500-700℃温度范围内的电极极化阻抗的测试。其中电池在700℃时干空气和5%水分压条件下测得的极化阻抗分别为0.23、0.05Ωcm2
实施例4
本实施例提供一种以Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)为空气电极的单电池的制备和测试方法,具体步骤如下:
(1)称取1g实例1中制备得到的电极粉体Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)于高能球墨罐中,并向其中加入10mL的异丙醇、2mL的乙二醇、0.8mL的丙三醇,在400r/min条件下球磨30min后得到所需的电极浆料。
(2)将制备好的NiO-BZCYYb单电池片放在150℃的加热台上,通过惰性气体和喷枪将制备得到的电极浆料均匀地喷涂在电解质侧的表面,待液体完全蒸发之后,将喷涂后的电解质片置于1000℃的高温炉中煅烧2h以得到所需的单电池,并用于500-650℃温度范围内可逆电池性能的测试。其中电池在650℃时的燃料电池模式下测得的峰值功率密度为1138mW cm-2,并且在电解池模式下得到的电流密度为-1533mA cm-2(1.3V)。
表征结果
1.X射线衍射(XRD)表征
图1是Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)、BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)、Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)和Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-PC)四种电池粉体在室温下的XRD图谱;其特征峰与物理混合的Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)和BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BZCYYb)的特征峰一致,无其他杂质峰生成。
2.扫描电子显微镜(SEM)表征
图2和图3是BSCF、BB-OPS和BB-PC电极材料的形貌SEM和对应的mapping图谱。根据SEM图片可以清楚看到BB-OPS电极粉末相较于BSCF和BB-PC,表面具有独特的多孔形貌。而且同时测试的BB-POS和BB-PC电极粉体的SEM-mapping结果也表明BB-OPS在微米尺度上比BSCF和BB-PC元素分布更加均匀。
3.透射电子显微镜(TEM)表征
图4是BB-OPS的高倍TEM和对应的mapping图片;BB-OPS粉体在A和B点的两个衍射平面的距离分别为
Figure BDA0003603442400000081
Figure BDA0003603442400000082
分别对应立方结构BSCF的(100)晶面和正交结构BZCYYb的(100)晶面。同时TEM-mapping结果也表明BB-OPS粉体中各元素在材料内部分布均匀。
4.电导率表征
图5是BSCF、BB-OPS和BB-PC样品在干燥和湿润环境下的电导率;通过四探针法进行测试,具体方法如下:
(1)先通过模具干压电极粉体得到尺寸约为2*5*12mm的条状坯体,经高温烧结得到致密的电导率测试样品。
(2)在致密的条状样品两端涂上银胶并与银丝相连接,作为电流电极;在样品中间连接另外两根银线,用银胶固定,作为电压电极。
(3)将样品的四个电极分别接在Keithley 2400型数字电源电表的电流和电压端,在样品的两端电极通电流I,量取中间的电势差V,测得样品的直流电阻R=V/I,将电阻值R代入方程式:
Figure BDA0003603442400000083
计算即可得到样品的电导率σ值。其中,A为条状样品的截面面积,L为中间两电极间的距离。
在300-800℃之间,BB-OPS在干燥空气条件下电导率为6.2-8.1S cm-1,低于BSCF和BB-PC。而湿润空气下,复合电极材料BB-OPS由于BZCYYb较强的水合能力和质子能力,使得500℃以下时干燥空气条件的总电导率更高。
5.氧气扩散率表征
图6和图7分别是是BSCF、BB-OPS和BB-PC电极材料在干空气和湿空气条件下的Dchem和kchem的性能;通过电导驰豫的方法对BB-OPS、BB-PC和BSCF从500到700℃进行测试。在干空气600℃时,BB-OPS的Dchem和kchem值分别为9.88×10-5cm2 s-1和8.76×10-4cm2 s-1,相比较BSCF分别提升了81%和62%。湿空气条件下,BB-OPS的Dchem和kchem值相较于BSCF和BB-PC更大。
6.氧程序升温脱附(O2-TPD)表征
图8是BSCF、BB-OPS和BB-PC电极材料的O2程序升温脱附;BB-OPS的氧的峰值脱附温度出现在390℃,早于BB-PC(415℃)和BSCF(415℃)。然而更早的氧脱附温度代表着优异的氧体相扩散和表面交换性能。
7.X射线光电子谱(XPS)表征
图9是BSCF、BB-OPS的O1s的XPS光谱图;BB-OPS的晶格氧(Olattice)和吸附氧(Oadsorb)含量分别占比13.6%和86.4%,而BB-OPS样品的Oadsorb/Olattice值约为6.35高于BSCF(5.33),表明BB-OPS具有更高含量的表面氧空穴。
8.热重分析(TGA)表征
图10是BSCF和BB-OPS的H2O-TG示意图;观察BB-OPS和BSCF样品在400℃时由干燥空气转换为湿润空气的质量变化。BSCF氧化物在湿润空气中质量增加0.39%,而BB-OPS质量增加为0.71%,说明BB-OPS表现出更强的水合能力。
9.电化学阻抗测试
图11和是BSCF、BB-OPS和BB-PC样品在500-700℃范围内的干空气条件下对称电池上获得的ASR的Arrhenius图;在干空气的氛围下,BB-OPS在500-700℃的ASR分别为0.23、0.48、0.79、1.22和3.18Ωcm2,同时BB-OPS、BSCF和BB-PC的活化能分别为0.807eV、0.954eV、1.186eV,其中BB-OPS的活化能最低。
图12是BSCF、BB-OPS和BB-PC样品在500-700℃范围内的5%水分压条件下对称电池上获得的ASR的Arrhenius图;在5%水分压的条件下,BSCF、BB-OPS和BB-PC在700℃时的ASR为0.12Ωcm2、0.05Ωcm2和0.06Ωcm2。并且活化能分别为1.033eV、0.822eV和1.061eV。因此在湿空气条件下BB-OPS也表现出最佳的性能。
图13是BB-OPS电极在3%、5%和10%水分压500-650℃温度范围内ASR的Arrhenius图;随着水分压的逐渐增加,BB-OPS的ASR也随之减小。在550℃时BB-OPS电极在3%、5%和10%水分压条件下所获得的ASR分别为0.44、0.37和0.34Ωcm2。同时活化能也随水分压增加而减小,这表明BB-OPS具有出色的质子传导能力,是优异的R-PCEC空气电极候选材料。
10.对称电池耐久性测试
图14是BB-OPS和BB-PC电极的对称电池在600℃湿润空气条件下的耐久性测试;将两种电极的对称电池在600℃湿润空气条件下连续120h运行。BB-OPS电极没有明显的性能衰减,表现出良好的耐久性。而BB-PC电极的ASR从最初的0.23Ωcm2增加到0.54Ωcm2
图15是BB-OPS和BB-PC电极的对称电池的长期升降温循环耐久性测试;在湿润空气中600、550和500℃之间循环测试发现BB-OPS相比较BB-PC电极具有明显耐久性优势。
11.燃料电池性能测试
图16和图17是Ni-BZCYYb|BZCYYb|BB-OPS和Ni-BZCYYb|BZCYYb|BB-PC单电池在500-650℃温度内以燃料电池模式的I-V和I-P曲线以及阻抗;燃料电池模式下,阳极通入80mL min-1的氢气,空气电极通入100mL min-1的干燥空气。BB-OPS电极在650、600、550和500℃时的峰值功率密度分别为1138、880、632和431mW cm-2。而BB-PC电极在650℃的峰值功率仅为863mW cm-2
图18是BSCF、BB-OPS和BB-PC空气电极燃料电池模式下的功率密度峰值对比;将BB-OPS,BB-PC和BSCF电极的燃料电池性能对比发现BB-OPS相较于BSCF燃料电池性能提升了64%。550℃时为BB-OPS,BB-PC和BSCF的极化阻抗分别为0.23、0.28和0.37Ωcm2
12.电解池性能测试
图19是Ni-BZCYYb|BZCYYb|BB-OPS单电池在500-650℃温度内以电解池模式的I-V曲线和阻抗;BB-OPS单电池在10%水分压条件下,650、600、550和500℃对应的电流密度分别为-1533、-1099、-666和-466mA cm-2(1.3V)。同时对应的极化阻抗分别为0.04、0.07、0.11和0.22Ωcm2
图20是BSCF、BB-OPS和BB-PC电解性能对比图;在相同气氛下650℃时,BB-PC和BSCF的电流密度分别为-1066和-1000mA cm-2(1.3V)。
图21是在600℃时,BB-OPS空气电极在不同电流密度下的电解水的产氢量;600℃时在电流密度为600、800、1000、1200和1400mA cm-2的条件下分别测得产氢速率为4.15、5.49、6.92、8.31和9.70mL cm-2 min-1
图22是在600℃时,BB-OPS空气电极在不同电流密度下的电解水的法拉第效率;BB-OPS电极在电解水时法拉第效率接近100%,表明BB-OPS电极具备出色的OER活性和电化学反应速率。
13.单电池耐久性测试
图23是在600℃时,BB-OPS电极在-900mA cm-2恒定电流密度不同水分压下(30%、50%和80%)的耐久性测试;观察BB-OPS电解池在高水分压条件下的短期耐久性。R-PCEC电池的电压随着水分压的增加而减小,表明电极表明OER动力学速率不断优化,并且在30%、50%和80%水分压条件下均表现出出色的耐久性。
图24是在-800mA cm-2恒定电流密度30%水分压下电解池热循环测试;在600、550和500℃之间经过5个循环仍然保持电压平稳。
图25是分别在10%水分压和-900mA cm-2、300mA cm-2恒定电流密度下进行电解池和燃料电池可逆循环测试;实验发现电池运行过程中依然保持良好耐久性。

Claims (10)

1.一种固体氧化复合空气电极材料,其化学通式为ABO3-δ,其特征在于,分子式为:Ba0.5Sr0.55-xCo0.85-yFe0.1+x+yO3-δ-BaZr0.1Ce0.75-mY0.05+mYb0.1O3-δ,其中δ为氧空位的含量,0<x,y,m≤0.05。
2.根据权利要求1所述的固体氧化复合空气电极材料,其特征在于同,分子式为:Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ(BB-OPS)。
3.权利要求1所述的固体氧化复合空气电极材料的制备方法,其特征在于,是指一步溶胶凝胶法或者直接混合法。
4.根据权利要求3所述的固体氧化复合空气电极材料的制备方法,其特征在于,所述的一步溶胶凝胶法包括如下步骤:按照所选的化学计量比称取一定量的Ba盐、Sr盐、Co盐、Fe盐、Zr盐、Ce盐、Y盐、Yb盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料。
5.根据权利要求3所述的固体氧化复合空气电极材料的制备方法,其特征在于,总金属离子:EDTA:CA:氨水的摩尔比为1:0.5-1.5:1-3:3-20;
干燥条件为140-160℃烘烤1-10h;
煅烧的温度是900-1100℃煅烧1-10h,升温速度为2-8℃/min。
6.根据权利要求3所述的固体氧化复合空气电极材料的制备方法,其特征在于,直接混合法,如下:包括如下步骤:
步骤1:采用溶胶-凝胶法制备Ba0.5Sr0.5Co0.8Fe0.2O3-δ,按照所选的化学计量比称取一定量的Ba盐、Sr盐、Co盐、Fe盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料;
步骤2:采用溶胶-凝胶法制备BaZr0.1Ce0.7Y0.1Yb0.1O3-δ,按照所选的化学计量比称取一定量的Ba盐、Zr盐、Ce盐、Y盐和Yb盐溶解于水中,加入乙二胺四乙酸(EDTA)、一水合柠檬酸(CA)以及氨水入烧杯中并且调节pH值为7-8之间,继续加热搅拌至胶体状,再凝胶干燥、煅烧后得到电极材料;
步骤3:将两种粉体于7:3的质量比混合,在高能球磨仪中以400rpm的转速球磨30min后,最终得到物理混合法制备的复合电极材料。
7.根据权利要求6所述的固体氧化复合空气电极材料的制备方法,其特征在于,步骤3中,两种粉体的质量比6-8:3;球磨条件是转速200-800rpm,时间10-60min。
8.根据权利要求6所述的固体氧化复合空气电极材料的制备方法,其特征在于,步骤1和步骤2中,总金属离子:EDTA:CA:氨水的摩尔比为1:1:1-3:5-15;干燥条件为130-155℃下2-7h;煅烧的温度是950-1020℃煅烧3-8h,升温为3-6℃/min。
9.权利要求1所述的固体氧化复合空气电极材料用于燃料电池中的用途。
10.权利要求1所述的固体氧化复合空气电极材料用于质子导体电解池中的用途。
CN202210409221.9A 2022-04-19 2022-04-19 一种质子导体可逆电池空气电极、制备方法和用途 Active CN115180936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210409221.9A CN115180936B (zh) 2022-04-19 2022-04-19 一种质子导体可逆电池空气电极、制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210409221.9A CN115180936B (zh) 2022-04-19 2022-04-19 一种质子导体可逆电池空气电极、制备方法和用途

Publications (2)

Publication Number Publication Date
CN115180936A true CN115180936A (zh) 2022-10-14
CN115180936B CN115180936B (zh) 2023-09-12

Family

ID=83512143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210409221.9A Active CN115180936B (zh) 2022-04-19 2022-04-19 一种质子导体可逆电池空气电极、制备方法和用途

Country Status (1)

Country Link
CN (1) CN115180936B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116924799A (zh) * 2023-07-28 2023-10-24 中国矿业大学 一种质子导体陶瓷电化学氢泵及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817997A (zh) * 2019-03-20 2019-05-28 南京工业大学 一种钙钛矿混合导体材料及其制备方法
CN110429288A (zh) * 2019-08-08 2019-11-08 南京工业大学 一种b位缺陷的质子导体燃料电池阴极材料、电解质及其制备方法
CN113839054A (zh) * 2021-04-02 2021-12-24 南京工业大学 一种可逆质子陶瓷电池电极材料及其制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817997A (zh) * 2019-03-20 2019-05-28 南京工业大学 一种钙钛矿混合导体材料及其制备方法
CN110429288A (zh) * 2019-08-08 2019-11-08 南京工业大学 一种b位缺陷的质子导体燃料电池阴极材料、电解质及其制备方法
CN113839054A (zh) * 2021-04-02 2021-12-24 南京工业大学 一种可逆质子陶瓷电池电极材料及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMIR REZA HANIFI ET AL.: "Fabrication and characterization of a tubular ceramic fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ proton conducting electrolyte" *
ZONGPING SHAO ET AL.: "A High Performance Cathode for the Next Generation Solid-Oxide Fuel Cells" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116924799A (zh) * 2023-07-28 2023-10-24 中国矿业大学 一种质子导体陶瓷电化学氢泵及其制备方法

Also Published As

Publication number Publication date
CN115180936B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN110581283B (zh) 一种铋掺杂固体氧化物电池燃料极材料及其制备方法与应用
CN113839054B (zh) 一种可逆质子陶瓷电池电极材料及其制备方法和用途
Tongyun et al. NdFeO3 as anode material for S/O2 solid oxide fuel cells
CN113149092B (zh) 一种b位掺杂的质子导体燃料电池的电解质材料、制备方法以及直接氨燃料电池中的应用
CN113745548B (zh) 基于尖晶石结构的高熵陶瓷材料及其制备方法和应用
Mumtaz et al. Nano grained Sr and Zr co-doped BaCeO3 electrolytes for intermediate temperature solid oxide fuel cells
Liu et al. Study of high active and redox-stable La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sm0. 1Ce0. 9O2− δ composite ceramic electrode for solid oxide reversible cells
CN112408490B (zh) 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法
CN115180936B (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN114420943A (zh) 一种异质界面复合电极材料及其制备方法与应用
CN107555489B (zh) 一种a位富余的固体氧化物燃料电池阴极材料、制备方法与应用
CN115650312B (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN116082028B (zh) 一种质子陶瓷燃料电池阳极材料、制备方法以及在直接氨燃料电池中的用途
TIAN et al. Performance of reversible solid oxide cells based on La0. 6Ca0. 4Fe0. 7Sc0. 1Ni0. 2O3–δ oxygen electrode
CN112952171B (zh) 一种基于铈酸钡基质子导体一体化全对称固体氧化物燃料电池电极材料及其制备和应用
CN115241471A (zh) 一种固体氧化物燃料电池阴极材料及其制法与应用
CN113488665A (zh) 一种可逆固体氧化物电池空气电极材料及制备方法和应用
CN114635150A (zh) 一种新型的固体氧化物电解池氧电极及其制备方法
CN113381033A (zh) 一种钙钛矿型氧化物的电催化剂和电催化剂浆料以及它们的制备方法
CN108258250A (zh) 一种新型质子阻塞复合阴极材料及其制备方法和应用
CN113555562B (zh) 一种在宽氧气氛工作的复合阴极结构及其制备方法
CN109546164A (zh) 一种经修饰的固体氧化物燃料电池阴极材料及其制备方法
CN114400332B (zh) 一种可逆固体氧化物电池的电极材料的复合材料、制备方法
ZHENG et al. Synthesis and characterization of Ce0. 8Sm0. 2O1. 9 nanopowders using an acrylamide polymerization process
Yang et al. Co-precipitation process as an effective and viable route for proton-conducting solid oxide fuel cell applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant