CN113555562B - 一种在宽氧气氛工作的复合阴极结构及其制备方法 - Google Patents

一种在宽氧气氛工作的复合阴极结构及其制备方法 Download PDF

Info

Publication number
CN113555562B
CN113555562B CN202110724446.9A CN202110724446A CN113555562B CN 113555562 B CN113555562 B CN 113555562B CN 202110724446 A CN202110724446 A CN 202110724446A CN 113555562 B CN113555562 B CN 113555562B
Authority
CN
China
Prior art keywords
lscf
composite cathode
salt
soluble
gadolinium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110724446.9A
Other languages
English (en)
Other versions
CN113555562A (zh
Inventor
朱腾龙
吕秋秋
王诺
钟秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110724446.9A priority Critical patent/CN113555562B/zh
Publication of CN113555562A publication Critical patent/CN113555562A/zh
Application granted granted Critical
Publication of CN113555562B publication Critical patent/CN113555562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种在宽氧气氛工作的复合阴极结构及其制备方法,该复合阴极由纳米GDC颗粒镶嵌于LSCF表面形成异质结构,本发明采用溶剂热原位生长技术,将微米级LSCF粉体置于均相水热反应器中,加入Gd、Ce等的可溶性盐制备成悬浮液,加入还原剂防止LSCF被分解;然后在均相反应器中反应,离心后获得LSCF@GDC。该复合阴极单电池的输出性能提高了~50%,在0.03atm的低氧分压下输出功率仍可达0.21atm氧分压性能的53%。

Description

一种在宽氧气氛工作的复合阴极结构及其制备方法
技术领域
本发明涉及一种阴极,属于固体氧化物燃料电池技术领域。
背景技术
固体氧化物燃料电池(SOFC)是一种全固态的能量转换装置,能将化学能直接转化为电能,具有能量转化率高、环境友好、噪音低和可靠性强等优点,被认为是目前最有应用前景的发电系统。SOFC是典型的电化学反应装置,在发电模式下,空气中的氧在阴极反应生成氧离子,通过电解质传导至阳极,与阳极的燃料发生反应,电子在外电路流过产生电流。然而,在海拔高度为10000米时,空气压力仅为~26kPa、氧含量为~0.05atm。因此,SOFC用于高空飞行动力系统以及高原地区的分布式发电时往往面临温度低、氧气稀薄等问题。传统阴极材料在贫氧气氛下的性能和效率急剧降低,无法满足SOFC单电池高性能运行需求。
除了开发新型的电极材料,在现有的材料上进行优化也是一个重要的研究方向,纳米技术的发展为构建高性能阴极提供了新的方向。钙钛矿镧锶钴铁(LSCF,LaxSr1- xCoyFe1-yO3-δ)阴极兼顾了活性和稳定性,具有较好的电子导电性以及电催化活性,是目前商业化程度最高的材料。适当引入高离子电导率相如GDC(氧化钆掺杂氧化铈)可以缓解LSCF在低温下性能降低的问题。并且引入高氧离子传导速率的GDC相可以大大提高LSCF阴极在低氧分压下性能快速衰减的问题。传统直接机械复合的方法得到的是两相材料,而GDC的电子导电性很低,会大大降低阴极的导电性,增大欧姆电阻。虽然浸渍法可以采用LSCF为骨架,然后浸渍GDC相,对导电性影响较小,但需要多次重复浸渍,过程较为繁琐,且对电解质强度造成破坏。溶剂热原位生长法得到的LSCF@GDC复合阴极以LSCF为骨架,表面生长纳米颗粒GDC,制备得到的阴极材料电导率依旧很高,且只需一步反应,过程简单,生产成本低,耗时短。
发明内容
本发明的目的是提供一种在宽氧气氛工作的复合阴极结构及其制备方法。
解决本发明技术问题所采用的技术方案是:一种在宽氧气氛工作的复合阴极,纳米GDC颗粒镶嵌于LSCF表面形成异质结构的复合阴极。
上述复合阴极的制备方法,包括:
(1)将可溶性钆盐、可溶性铈盐、LSCF、还原剂溶于溶剂中;
(2)将步骤(1)所得溶液于120~150℃下均相反应一段时间,反应结束后离心、干燥。
较佳的,步骤(1)中,可溶性钆盐包括硝酸钆和氯化钆;可溶性铈盐包括硝酸铈和氯化铈。
较佳的,步骤(1)中,还原剂包括柠檬酸和尿酸。
较佳的,步骤(1)中,可溶性钆盐和可溶性铈盐的摩尔比为1:9~2:8,LSCF与总金属盐(可溶性钆盐和可溶性铈盐)的质量比为1:0.1~1:1。
较佳的,步骤(2)中,于120~150℃下均相反应3小时以上。
较佳的,步骤(2)中,均相反应的转速为1r/min。
上述复合阴极作为固体氧化物燃料电池阴极材料的用途。
本发明与现有技术相比,其优势是:
(1)该方法得到的纳米级氧化铈、氧化钆的引入有效的增加了三相界面活性位点,从而提高了阴极材料的氧还原活性,制备的阴极材料比表面积由12.54m2/g(LSCF粉体)增大到33.93 m2/g。也增加了阴极材料与隔离层GDC、电解质的热膨胀匹配性和兼容性。
(2)该方法可重复性高、操作工艺简单,复合阴极制备温度低,低成本、低能耗,具有较高的工业化实施前景。
(3)复合阴极制备温度低,低于150℃。
附图说明
图1是异质结构LSCF@GDC复合阴极制备流程图。
图2是异质结构LSCF@GDC复合阴极的结构图。
图3是LSCF与LSCF@GDC复合阴极的XRD图。
图4是LSCF与LSCF@GDC复合阴极吸脱附及比表面积图。
图5是LSCF与LSCF@GDC复合阴极为阴极制备的阳极支撑电池阻抗图。其中,a为原LSCF阴极电池的阻抗图,b为所制备的LSCF@GDC复合阴极电池的阻抗图。
图6是LSCF与LSCF@GDC复合阴极为阴极制备的阳极支撑电池功率密度图,其中,a为原LSCF阴极电池的功率密度图,b为所制备的LSCF@GDC复合阴极电池的功率密度图。
图7是LSCF@GDC复合阴极STEM图,其中,a为LSCF@GDC复合阴极的STEM图,b为LSCF@GDC复合阴极Fe素的分布图,c为LSCF@GDC复合阴极Ce元素的分布图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清晰、明确,以下将通过实施例和附图对本发明进行详细说明。需要说明的是,对于这些实施方式的说明主要用来帮助理解本发明,并不构成对本发明的限定。
本发明涉及一种宽氧高性能LSCF@GDC复合阴极,其结构组成为纳米GDC颗粒镶嵌于LSCF表面的异质结构复相阴极(如图2),改变了LSCF单相阴极的物理和电化学特性。基体为混合氧离子和电子导电的钙钛矿及其衍生物,表面为原位生长的纳米掺杂氧化铈颗粒。用于固体氧化物燃料电池领域,作为固体氧化物燃料电池的阴极材料。
为进一步提高LSCF在低温下(小于750℃)、低氧分压下(PO2<0.03atm)性能,本发明将高活性电极材料制备与水热技术结合,以微米级LSCF为骨架,在表面长有纳米级GdzCe1-zO1.5(GDC)颗粒,通过水热法引入高离子电导率相GDC(氧化钆掺杂氧化铈),操作工艺简单,复合阴极制备温度低,成本低、能耗低。
【实施例1】
结合图1,首先配制水热溶液,加入1g LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ),0.087g Gd(NO3)3·6H2O和0.73g Ce(NO3)3·6H2O (Gd(NO3)3·6H2O和Ce(NO3)3·6H2O摩尔比为1:9),溶剂为60mL乙醇;加入0.1g柠檬酸作为还原剂防止LSCF被分解,搅拌均匀。然后将混合溶液置于反应釜中,将反应釜放入均相反应器中,在150℃下反应6小时,转速为1r/min。反应结束后离心,收集固体沉淀并在80℃干燥24h,其XRD如图3所示,高倍透射电镜图如图7a所示,元素分布如图7b和7c所示,结构示意图如图2所示。纳米GDC颗粒镶嵌于LSCF表面的异质结构复相阴极,改变了LSCF单相阴极的物理和电化学特性。
将获得异质结构的LSCF@GDC复合阴极制备成丝网印刷浆料,在阳极支撑体半电池上丝网印刷复合阴极制备成阳极支撑单电池,采用电化学交流阻抗测试EIS来表征电化学性能。图4、图5、图6为上述制备的复合阴极材料及相应的电化学性能。
该方法得到的纳米级氧化铈、氧化钆的引入有效的增加了三相界面活性位点,从而提高了阴极材料的氧还原活性,制备的阴极材料比表面积由12.54m2/g(LSCF粉体)增大到33.93 m2/g。也增加了阴极材料与隔离层GDC、电解质的热膨胀匹配性和兼容性。
结果显示LSCF@GDC复合阴极单电池在氧分压小于~0.07atm时,仍然具有非常高的电化学性能输出,性能为0.21atm气氛下的70%以上。在更低氧分压下(PO2<0.03atm)使用该阴极的固体氧化物燃料电池具有较高的开路电压(>1.0V)和较大的输出功率(0.415 W/cm2),然具有较高的输出功率(提高了~50%),极化阻抗更低(降低了~38%),能够保证单电池在比较宽的电压范围内工作。
【实施例2】
结合图1,首先配制水热溶液,加入1g LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ),0.042gGdCl3·3H2O和0.91g CeCl3 (GdCl3和CeCl33·3H2O摩尔比为2:8),溶剂为60mL乙醇;加入0.1g柠檬酸作为还原剂防止LSCF被分解,搅拌均匀。然后将混合溶液置于反应釜中,将反应釜放入均相反应器中,在150℃下反应3小时,转速为1r/min。反应结束后离心,收集固体沉淀并在80℃干燥24h。
结果显示LSCF@GDC复合阴极活化能(153.69KJ/mol)低于纯LSCF活化能(162.67KJ/mol)。

Claims (8)

1.一种在宽氧气氛工作的复合阴极,其特征在于,纳米氧化钆掺杂氧化铈颗粒镶嵌于镧锶钴铁钙钛矿表面形成异质结构的复合阴极;
其制备步骤如下:
(1)将可溶性钆盐、可溶性铈盐、镧锶钴铁钙钛矿粉体、还原剂溶解于溶剂中;
(2)将步骤(1)所得溶液于120~150℃下均相反应一段时间,反应结束后离心、干燥。
2.如权利要求1所述的复合阴极的制备方法,其特征在于,包括:
(1)将可溶性钆盐、可溶性铈盐、镧锶钴铁钙钛矿粉体、还原剂溶解于溶剂中;
(2)将步骤(1)所得溶液于120~150℃下均相反应一段时间,反应结束后离心、干燥。
3.如权利要求2所述的方法,其特征在于,步骤(1)中,可溶性钆盐为硝酸钆或氯化钆;可溶性铈盐为硝酸铈或氯化铈。
4.如权利要求2所述的方法,其特征在于,步骤(1)中,还原剂为柠檬酸或尿酸。
5.如权利要求2所述的方法,其特征在于,步骤(1)中,可溶性钆盐和可溶性铈盐的摩尔比为1:9~2:8,镧锶钴铁钙钛矿与总金属盐的质量比为1:0.1~1:1。
6.如权利要求2所述的方法,其特征在于,步骤(2)中,于120~150℃下均相反应3小时以上。
7.如权利要求2所述的方法,其特征在于,步骤(2)中,均相反应的转速为1r/min。
8.如权利要求1所述的复合阴极作为固体氧化物燃料电池阴极材料的用途。
CN202110724446.9A 2021-06-29 2021-06-29 一种在宽氧气氛工作的复合阴极结构及其制备方法 Active CN113555562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110724446.9A CN113555562B (zh) 2021-06-29 2021-06-29 一种在宽氧气氛工作的复合阴极结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110724446.9A CN113555562B (zh) 2021-06-29 2021-06-29 一种在宽氧气氛工作的复合阴极结构及其制备方法

Publications (2)

Publication Number Publication Date
CN113555562A CN113555562A (zh) 2021-10-26
CN113555562B true CN113555562B (zh) 2022-09-06

Family

ID=78102422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110724446.9A Active CN113555562B (zh) 2021-06-29 2021-06-29 一种在宽氧气氛工作的复合阴极结构及其制备方法

Country Status (1)

Country Link
CN (1) CN113555562B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623716B (zh) * 2012-04-16 2013-12-25 哈尔滨工业大学 一种中温固体氧化物燃料电池一维纳米复合阴极的制备方法
KR20150088409A (ko) * 2014-01-24 2015-08-03 삼전순약공업(주) Gdc 및 lscf 복합분말의 제조 방법
CN106166491B (zh) * 2016-07-22 2019-01-25 武汉理工大学 一种介孔La0.8Sr0.2CoO3负载纳米CeO2催化剂及其制备方法和应用
CN111146456B (zh) * 2020-01-22 2022-05-31 福州大学 一种燃料电池用复合阴极材料的制备方法

Also Published As

Publication number Publication date
CN113555562A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
Liu et al. High-entropy perovskite oxide: a new opportunity for developing highly active and durable air electrode for reversible protonic ceramic electrochemical cells
CN110797542B (zh) 一种对称固体氧化物燃料电池电极材料及其制备方法
Yu et al. BaZr0. 1Co0. 4Fe0. 4Y0. 1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells
CN111430734B (zh) (Pr0.5Sr0.5)xFe1-yRuyO3-δ钙钛矿材料及其制备方法与应用
Chen et al. Development of intertwined nanostructured multi-phase air electrodes for efficient and durable reversible solid oxide cells
CN113839054B (zh) 一种可逆质子陶瓷电池电极材料及其制备方法和用途
CN113948714A (zh) 原位析出法自组装核壳结构纳米颗粒修饰钙钛矿氧化物电极材料及其制备方法与应用
Wei et al. Fabrication of La 2 NiO 4 nanoparticles as an efficient bifunctional cathode catalyst for rechargeable lithium–oxygen batteries
CN114583191A (zh) 一种电沉积制备直接甲醇燃料电池阳极催化剂的方法
Ai et al. Performance and stability of nano-structured Pd and Pd0. 95M0. 05 (M= Mn, Co, Ce, and Gd) infiltrated Y2O3–ZrO2 oxygen electrodes of solid oxide electrolysis cells
Huang et al. LSCM-GDC as composite cathodes for high temperature steam electrolysis: Performance optimization by composition and microstructure tailoring
CN114420943A (zh) 一种异质界面复合电极材料及其制备方法与应用
Shi et al. NiFe-LDH nanosheets anchored on Fe, N decorated carbon nanofibers as efficient bifunctional electrocatalysts for long-term rechargeable Zn-air batteries
Li et al. In situ construction of Co3O4 nanoarray catalysts on (La0. 8Sr0. 2) 0.95 MnO3–δ cathode for high-efficiency intermediate-temperature solid oxide fuel cells
CN113555562B (zh) 一种在宽氧气氛工作的复合阴极结构及其制备方法
CN107994234B (zh) 陶瓷燃料电池及其制备方法
CN115180936B (zh) 一种质子导体可逆电池空气电极、制备方法和用途
CN112952171B (zh) 一种基于铈酸钡基质子导体一体化全对称固体氧化物燃料电池电极材料及其制备和应用
TIAN et al. Performance of reversible solid oxide cells based on La0. 6Ca0. 4Fe0. 7Sc0. 1Ni0. 2O3–δ oxygen electrode
CN113555569B (zh) 一种催化剂前驱体、金属碳基催化剂及其制备方法和应用
CN113451588A (zh) 一种共生型燃料电池阳极及其制备方法与应用
Ali et al. A review on preparation of SDC-carbonate as composite electrolyte material for intermediate temperature Solid Oxide Fuel Cells (IT-SOFC)
Corre et al. High temperature fuel cell technology
CN114400332B (zh) 一种可逆固体氧化物电池的电极材料的复合材料、制备方法
CN115064712B (zh) 一种纳米颗粒包覆复合阴极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant