CN115177906A - 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术 - Google Patents

一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术 Download PDF

Info

Publication number
CN115177906A
CN115177906A CN202210934977.5A CN202210934977A CN115177906A CN 115177906 A CN115177906 A CN 115177906A CN 202210934977 A CN202210934977 A CN 202210934977A CN 115177906 A CN115177906 A CN 115177906A
Authority
CN
China
Prior art keywords
plastic
test tube
photo
reaction
polystyrene micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210934977.5A
Other languages
English (en)
Inventor
王成旭
于凯
马昕
邵文
班赫辛
王贝贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202210934977.5A priority Critical patent/CN115177906A/zh
Publication of CN115177906A publication Critical patent/CN115177906A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/38Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by oxidation; by combustion
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种采用铁锰氧化物催化剂,通过光芬顿氧化方式降解聚苯乙烯微塑料的方法,将聚苯乙烯微塑料和催化剂、过氧化氢按照一定比例配置后,采用氙灯光源辐射反应,然后通过超声、抽滤、酸解的方式得到剩余反应底物。本发明通过利用光芬顿氧化技术,产生具有强氧化性的羟基自由基,从而达到降解的目的。该方法具有工艺简单、成本低廉、节约耗能的优点。

Description

一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术
技术领域
本发明涉及一种采用铁锰氧化物催化剂,通过光芬顿氧化方式降解聚苯乙烯微塑料的方法。
背景技术
微塑料(Microplastics,MPs)因为其尺寸微小的特性使得其在环境中更易分散并且难以收集,并且微塑料比表面积大、疏水性强、迁移性强,能够吸附承载多种疏水性有机污染物、重金属、病原体,使得微塑料对生物的健康和生态的平衡造成了危害,尤其当微塑料随着食物链的富集时,会将有害的污染物等传递到人类,对人类产生威胁;微塑料本身也会影响动植物的生长发育,降低动物生长速度、繁殖能力,对植物的种子萌发、根系生长、光合作用造成不利。因此,寻找合适的方法降解微塑料是解决该类问题的有效手段之一。
芬顿氧化技术的原理是在酸性条件下,Fe2+与H2O2反应生成具有强氧化性的羟基自由基(·OH),可以将难降解的有机污染物氧化分解。芬顿氧化技术具有反应设备简单,成本低,操作较为安全,反应迅速的优点。在芬顿氧化技术基础之上发展出来的光芬顿氧化技术,将紫外光或者自然光与芬顿氧化技术结合,提高了芬顿的催化活性。光芬顿氧化技术的反应机理是利用光激发芬顿试剂的化学反应,生成更多的羟基自由基。
聚苯乙烯(Polystyrene,PS)微塑料(0.1μm~5mm)更易对环境和人类健康造成更大的危害而受到了国内外学者的广泛关注。Zhu K,Jia H,Zhao S,et al.(Formation ofenvironmentally ersistent free radicals on microplastics under lightirradiation[J].Environmental Science&Technology,2019,53:8177-8186.)通过氙灯对PS及酚醛树脂(PF)进行光照老化后,以XPS表征微塑料表面化学成分的变化,发现老化后产生了更多的含氧官能团,此结果表明了光氧化过程可以诱导产生更多过氧化物;同样地,Liu P,Qian L,Wang H,et al.(New insights into the aging behavior ofmicroplastics accelerated by advanced oxidation processes[J].EnvironmentalScience&Technology,2019,53:3579-3588.)利用芬顿试剂对PS和PE老化处理,产生的自由基引起微塑料表面发生迅速氧化,造成表面的氧含量增加.故利用XPS能够检测到老化微塑料表面元素含量,特别是氧含量的增加,为进一步验证塑料表面所发生化学反应提供依据。
本发明通过使用四氧化三铁(Fe3O4)、三氧化二锰(Mn2O3)、氧化铁(Fe2O3)、羟基氧化铁(FeOOH)作为光芬顿氧化技术的催化剂,通过自然光辐射反应,产生了羟基自由基,对聚苯乙烯微塑料进行了降解。
发明内容
本发明的目的在于提供了一种通过光芬顿氧化方式降解聚苯乙烯微塑料的方法。通过利用光芬顿氧化体系,在提供光照、配置催化剂(Fe3O4、Mn2O3、Fe2O3、FeOOH)、添加H2O2的条件下,加速促进OH·的生成,从而达到氧化降解聚苯乙烯微塑料的目的。
本发明提供的一种通过光芬顿氧化方式降解聚苯乙烯微塑料的方法包括以下步骤:
1)将聚苯乙烯微塑料、催化剂(Fe3O4、Mn2O3、Fe2O3或FeOOH)和去离子水加入到试管中,超声10-15min,使聚苯乙烯微塑料与催化剂混合均匀;
2)在步骤1)的试管中,按照去离子水∶H2O2=1mL∶0.015mL的比例加入H2O2溶液;
3)将试管置于强磁力搅拌器,在20-30℃恒定温度的条件下,用功率为200W的氙灯光源持续光照,进行光催化降解反应;
4)反应每进行24h,按照去离子水∶H2O2=1mL∶0.015mL的比例补充添加H2O2溶液,反应持续144h。
优选地,所述步骤1)中的聚苯乙烯微塑料与催化剂的质量比为20∶1。
优选地,所述步骤2)中的H2O2溶液的质量分数为30%。
优选地,所述步骤3)中的恒定温度为25℃。
优选地,所述步骤4)中的H2O2溶液浓度同所述步骤2)中的H2O2溶液。
本发明提供了一种通过光芬顿氧化方式降解聚苯乙烯微塑料的方法。通过利用光芬顿氧化体系,在提供光照、配置催化剂(Fe3O4、Mn2O3、Fe2O3、FeOOH)、添加H2O2的条件下,加速促进OH·的生成,从而达到氧化降解聚苯乙烯微塑料的目的。本发明突出的实质性特点是:
1)本发明利用来源广泛且绿色的自然光源作为能量供体降解聚苯乙烯微塑料,并且选用常见且价格低廉的物质作为光芬顿反应催化剂,成本较少,耗能较低;
2)本发明可在常温常压下进行降解,不需要特殊环境,并且具有设备简单、工艺简单的优点,节约成本。
附图说明
图1为未经任何处理的聚苯乙烯微塑料扫描电镜图。
图2为实施例1中经过投加Fe3O4催化剂反应144h后的聚苯乙烯微塑料SEM图。
图3为实施例2中经过投加Mn2O3催化剂反应144h后的聚苯乙烯微塑料SEM图。
图4为实施例3中经过投加Fe2O3催化剂反应144h后的聚苯乙烯微塑料SEM图。
图5为实施例4中经过投加FeOOH催化剂反应144h后的聚苯乙烯微塑料SEM图。
具体实施方式
下面通过实施例进一步描述本发明的特征,但本发明并不局限于下述实例。实施例中未注明具体条件的实验方法,通常按照常规条件以及手册中所述的条件,或按照制造厂商所建议的条件;所用的通用设备、材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明提供的一种通过光芬顿氧化方式降解聚苯乙烯微塑料的方法包括的步骤:
1)将聚苯乙烯微塑料、催化剂(Fe3O4、Mn2O3、Fe2O3或FeOOH)和去离子水加入到试管中,超声15min,使聚苯乙烯微塑料与催化剂混合均匀;
2)向步骤(1)的试管中,按照去离子水∶H2O2=1mL∶0.015mL的比例加入H2O2溶液;
3)将试管置于强磁力搅拌器,在恒定温度25℃的条件下,用功率为200W的氙灯光源持续光照,进行光催化降解反应;
4)反应每进行24h,按照去离子水∶H2O2=1mL∶0.015mL的比例补充添加H2O2溶液,反应持续144h。
实施例1:利用Fe3O4作为催化剂通过光芬顿法降解聚苯乙烯微塑料
1)取0.4g平均粒径为100目的聚苯乙烯微塑料、0.02g Fe3O4于厚壁试管中,加入去离子水20mL,将厚壁试管超声15min,使聚苯乙烯微塑料与Fe3O4混合均匀;
2)向步骤1)的厚壁试管中加入0.3mL质量分数为30%的H2O2溶液;
3)将厚壁试管置于强磁力搅拌器,利用冷凝装置控制温度保持在常温25℃,使用功率为200W的氙灯光源,控制液面离灯源10cm,持续光照,进行光催化降解反应;
4)反应每进行24h,向厚壁试管中加入0.15mL质量分数为30%的H2O2溶液,反应持续144h。
实施例2:利用Mn2O3作为催化剂通过光芬顿法降解聚苯乙烯微塑料
1)取0.4g平均粒径为100目的聚苯乙烯微塑料、0.02g Mn2O3于厚壁试管中,加入去离子水20mL,将厚壁试管超声15min,使聚苯乙烯微塑料与Mn2O3混合均匀;
2)向步骤(1)的厚壁试管中加入0.3mL质量分数为30%的H2O2溶液;
3)将厚壁试管置于强磁力搅拌器,利用冷凝装置控制温度保持在常温,使用功率为200W的氙灯光源,控制液面离灯源10cm,持续光照,进行光催化降解反应;
4)反应每进行24h,向厚壁试管中加入0.15mL质量分数为30%的H2O2溶液,反应持续144h。
实施例3:利用Fe2O3作为催化剂通过光芬顿法降解聚苯乙烯微塑料
1)取0.4g平均粒径为100目的聚苯乙烯微塑料、0.02g Fe2O3于厚壁试管中,加入去离子水20mL,将厚壁试管超声15min,使聚苯乙烯微塑料与Fe2O3混合均匀;
2)向步骤1)的厚壁试管中加入0.3mL质量分数为30%的H2O2溶液;
3)将厚壁试管置于强磁力搅拌器,利用冷凝装置控制温度保持在常温,使用功率为200W的氙灯光源,控制液面离灯源10cm,持续光照,进行光催化降解反应;
4)反应每进行24h,向厚壁试管中加入0.15mL质量分数为30%的H2O2溶液,反应持续144h;
实施例4:利用FeOOH作为催化剂通过光芬顿法降解聚苯乙烯微塑料
1)取0.4g平均粒径为100目的聚苯乙烯微塑料、0.02g FeOOH于厚壁试管中,加入去离子水20mL,将厚壁试管超声15min,使聚苯乙烯微塑料与FeOOH混合均匀;
2)向步骤1)的厚壁试管中加入0.3mL质量分数为30%的H2O2溶液;
3)将厚壁试管置于强磁力搅拌器,利用冷凝装置控制温度保持在常温,使用功率为200W的氙灯光源,控制液面离灯源10cm,持续光照,进行光催化降解反应;
4)反应每进行24h,向厚壁试管中加入0.15mL质量分数为30%的H2O2溶液,反应持续120h。
实施例5:
对实施例1-4所述的方法进行降解率测试,具体方法是:等待反应结束后,采用超声、抽滤的方式清洗固体样品,之后使用盐酸浸泡固体样品,浸泡至催化剂(Fe3O4、Mn2O3、Fe2O3、FeOOH)完全溶解,使用去离子水清洗固体,直至滤液清澈无色,以此达到分离催化剂(Fe3O4、Mn2O3、Fe2O3、FeOOH)与反应底物的目的,收集反应底物剩余样品,将样品置于60℃的烘箱烘干,使用天平称取剩余反应底物质量。
表1为本发明将光芬顿法运用于聚苯乙烯微塑料降解的实施例1-4的降解率,就这四种催化剂来说,Fe2O3催化剂的降解效果最好,其光芬顿降解6d(144h)后聚苯乙烯微塑料的降解率为21.4%。
表1光芬顿法降解聚苯乙烯微塑料效果
Figure BSA0000279819980000031

Claims (4)

1.一种通过光芬顿氧化技术降解聚苯乙烯微塑料的方法,其特征在于包括以下步骤:
1)将聚苯乙烯微塑料、催化剂Fe3O4、Mn2O3、Fe2O3或FeOOH和去离子水加入到试管中,超声10-15min,使聚苯乙烯微塑料与催化剂混合均匀;
2)向步骤1)的试管中,按照去离子水∶H2O2=1mL∶0.015mL的比例加入H2O2溶液;
3)将试管置于强磁力搅拌器,在恒定温度的条件下,用功率为200W的氙灯光源持续光照,进行光催化降解反应;
4)反应每进行24h,按照去离子水∶H2O2=1mL∶0.015mL的比例补充添加H2O2溶液,反应持续144h。
2.根据权利要求1所述的方法,其特征在于步骤1)所述的聚苯乙烯微塑料与催化剂的质量比为20∶1。
3.根据权利要求1所述的方法,其特征在于步骤2)所述的去离子水与过氧化氢的比例为1mL∶0.015mL。
4.根据权利要求1所述的方法,其特征在于步骤3)所述的氙灯光源功率为200W,液面离灯源10cm。
CN202210934977.5A 2022-08-05 2022-08-05 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术 Pending CN115177906A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210934977.5A CN115177906A (zh) 2022-08-05 2022-08-05 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210934977.5A CN115177906A (zh) 2022-08-05 2022-08-05 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术

Publications (1)

Publication Number Publication Date
CN115177906A true CN115177906A (zh) 2022-10-14

Family

ID=83521730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210934977.5A Pending CN115177906A (zh) 2022-08-05 2022-08-05 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术

Country Status (1)

Country Link
CN (1) CN115177906A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099864A (zh) * 2023-02-27 2023-05-12 四川大学 一种基于球磨力化学和光催化联合技术的废弃高分子处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099864A (zh) * 2023-02-27 2023-05-12 四川大学 一种基于球磨力化学和光催化联合技术的废弃高分子处理方法

Similar Documents

Publication Publication Date Title
CN107175112A (zh) 一种微马达光催化剂及其制备方法和应用
CN102000573B (zh) 一种改性活性炭及其应用
CN103934034A (zh) 负载型铁基金属有机骨架异相Fenton催化剂的制备方法及其应用
Huang et al. Kinetic study of an immobilized iron oxide for catalytic degradation of azo dye reactive black B with catalytic decomposition of hydrogen peroxide
CN107376921B (zh) 一种废水深度处理用石墨烯-多孔氧化镍复合催化剂及其制备方法和应用
CN111530416A (zh) 一种多孔碳包裹的锰铁氧化物复合材料及其制备方法和应用
CN112827497B (zh) 一种臭氧催化材料的制备方法
CN110898851A (zh) 高岭土纳米管基复合材料及其用于降解有机染料的应用
CN115177906A (zh) 一种采用铁锰氧化物催化剂光芬顿降解微塑料的技术
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN113559837A (zh) 一种柱状活性炭载铁复合催化剂及其制备方法和应用
CN110548519B (zh) 一种多孔纳米掺钴锰酸锌尖晶石催化剂及其制备方法和应用
CN106362754A (zh) 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法
CN109133452B (zh) 一种镁铝水滑石负载TiO2光催化吸附材料处理四环素类抗生素废水的方法
CN115321660B (zh) 一种过渡金属氧化物活化亚氯酸盐选择性去除有机污染物的方法
CN114984980B (zh) 一种双功能FeCo2O4-CdS管状微马达及其制备方法和应用
CN112774683B (zh) 一种碳基包覆Ac-Fe/Co催化剂及微乳液制备方法和应用
CN111957320B (zh) 一种催化降解水中污染物的负载催化剂过滤纤维及其制备与应用
TW201625356A (zh) 陶瓷觸媒製備方法及陶瓷觸媒用於催化臭氧降解有機廢水之實施方法
Poorsajadi et al. Photocatalytic degradation of methyl orange dye using bismuth oxide nanoparticles under visible radiation
CN108862538A (zh) 纳米零价铁活化过碳酸钠降解双酚a的方法
CN114433084A (zh) 核壳结构中空碳/硅复合微球催化剂的制备方法及应用
CN106701734A (zh) 一种用于固定苯降解菌的改性膨润土吸附剂
CN113522247A (zh) 酶驱动α-Fe2O3/UiO多孔微电机及其制备方法、应用
Zhuang et al. Recycling rice straw derived, activated carbon supported, nanoscaled Fe 3 O 4 as a highly efficient catalyst for Fenton oxidation of real coal gasification wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication