CN106362754A - 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法 - Google Patents

去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法 Download PDF

Info

Publication number
CN106362754A
CN106362754A CN201610643207.XA CN201610643207A CN106362754A CN 106362754 A CN106362754 A CN 106362754A CN 201610643207 A CN201610643207 A CN 201610643207A CN 106362754 A CN106362754 A CN 106362754A
Authority
CN
China
Prior art keywords
graphene
sodium bismuthate
catalyst
preparation
fenton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610643207.XA
Other languages
English (en)
Inventor
安俊健
张光彦
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201610643207.XA priority Critical patent/CN106362754A/zh
Publication of CN106362754A publication Critical patent/CN106362754A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿催化剂及其制备方法,其特征在于:它由铋酸钠铁‑石墨烯复配而成,其铋酸钠铁FexNayBiO3质量含量为90‑99.5%,石墨烯的质量含量为10‑0.5%。以NaBiO3铋酸钠为基础催化剂,通过掺杂Fe元素赋予其类芬顿催化性能,制成同时具可见光和多相类芬顿催化性能的纳米级催化剂—铋酸钠铁,再将铋酸钠铁负载在微米级氧化石墨烯上,并通过热还原的方法将复合物中的氧化石墨烯还原为石墨烯,得到最终物质:铋酸钠铁‑石墨烯可见光‑类芬顿催化剂。在可见光照射下,纳米FexNayBiO3光催化产生羟自由基等强氧化性物种;石墨烯既可利用π‑π作用和疏水作用力增强催化剂和底物的亲和作用,显著强化NP的吸附,增强其界面反应能力,同时又具有优良的电子传输性能,促进光生空穴和电子在异相界面的分离与转移,进一步提高氧化降解NP的能力。

Description

去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿复合催化剂及 其制备方法
技术领域
本发明属于水处理的技术领域,涉及在含壬基酚等酚类污染物的处理过程中,以铋酸钠铁-石墨烯复合物为吸附和催化剂,利用该复合材料的较强的选择性吸附和催化性能,对壬基酚进行吸附和催化氧化降解,最终达到去除降解壬基酚的目的,实现对含壬基酚污染物废水的深度处理。
背景技术
近几十年来,环境激素的污染及带来的生态效应引起国际社会的广泛关注。我们注意到,作为一种精细化工的重要原料和中间体,壬基酚( Nonylphenol, NP)具有类似雌激素活性,干扰人类以及动物的内分泌系统、生殖系统、成长发育和免疫系统等,并具有致畸、致突变性,是需优先控制的持久性有毒污染物。因此,近年来,有关壬基酚的降解处理方法的研究引起国内外学者的广泛关注。目前相关降解研究主要集中在生物降解、物理方法和化学氧化法,其中生物处理和物理方法处理效果十分有限。化学氧化法中的光催化氧化方法具备较好的应用前景。因此,本项目制备了一种高效的主体催化剂FexNayBiO3,将其与H2O2构成可见光-类芬顿联合催化体系,利用该体系产生的羟自由基等氧化活性物种降解去除NP。同时,通过负载石墨烯降低该催化剂的亲水性能,以提高对疏水性NP的吸附能力;而石墨烯的引入又可以提高该催化剂在可见光照射下产生光生电子和空穴的分离效率,增强其可见光催化性能,从而实现对NP的高效、深度降解。
NP是石油化学工业和有机合成工业中最重要的中间体之一,广泛应用于表面活性剂、润滑油添加剂、橡胶和塑料抗氧化剂等的生产中。环境介质中的壬基酚主要来源于壬基酚聚氧乙烯醚分解或降解。目前,在地表水、土壤、水处理厂污泥等均能检测出NP,而且NP能在生物体内富集累积,并通过食物链放大,最终进入人体,对人类健康具有巨大潜在危害。我国已开始关注NP的污染情况,并启动相关调查研究工作。调查发现NP在我国东南部沿海地区和长江流域等地区的环境中广泛存在,污染状况令人担忧。
对于壬基酚,其降解研究主要集中在物理、生物和化学氧化等三类处理方法上。物理去除NP的方法主要是物理吸附,应用较多的吸附剂是活性碳。但活性碳吸附方法不但成本较高,而且不能真正降解去除NP,只能将水环境中的NP转移至固相吸附剂中。这极大地限制了吸附法的应用。一般而言,对低毒性有机物去除,生物方法成本较低,操作方便。但 NP具有较强的生物积累性和毒性,难以获得高效降解菌。文献中,对NP的去除更多是采用化学氧化法。主要有以下四种方法:
a. 电化学氧化法。 Kuramitz 等(H. Kuramitz, J. Saitoh, T. Hattori, et al.Electrochemical removal of pnonylphenol from dilute solutions using a carbonfiber anode. Water Research 2002, 36: 3323-3329)采用碳纤维电极作为工作电极,在最佳工作电势 0.7 V 条件下,NP 初始浓度为 1×10-5 mol·L-1的溶液中, 60 min 后有效去除NP。由于这种方法需要额外的电能,因此成本较高,不适合大规模的工程应用。
b. 臭氧氧化法。臭氧氧化法已广泛应用于NP的降解。B. Ning (B. Ning, N.J.D.Graham, Y. Zhang, Degradation of octylphenol and nonylphenol by ozone – PartI: direct reaction, Chemosphere 2007, 68: 1163–1172) 等对臭氧氧化NP的机理进行了研究,发现臭氧氧化机理包含臭氧直接氧化和羟基自由基间接氧化两条途径。臭氧氧化虽能有效降解NP,但有研究发现在降解过程中产生了甲醛等有毒中间副产物(胡翔, 李进,皮运正. 臭氧氧化水中壬基酚的反应机理研究. 环境科学2007, 28(3): 584-587),而且矿化率低。另外,产生臭氧需要复杂的设备,运行能耗较高,使得产生臭氧的成本高昂。而且臭氧的化学性质极不稳定,在空气和水中会分解成氧气,尤其在非纯水中分解速度更快,因此,为保证氧化效果,反应时需加大臭氧的投入浓度,这进一步加大了运行的成本。此外,臭氧本身有一定的毒性,无论使用何种投加方式和接触反应设备,均有一定量的臭氧不能充分反应,需对尾气进行处理,限制了其在实际处理过程中的应用。
c. 声化学氧化法。Yim 等 (B. Yim, Y. Yoo, Y. Maeda. Sonolysis ofalkyphenols in aqueous solution with Fe(Ⅱ) and Fe(Ⅲ). Chemosphere 2003, 50:1015-1023) 研究得到,在超声频率 200 kHz、pH 大于3、以氧气为载气、声强度为6W cm-2条件下用超声波降解 NP(30 µmol L-1),100 min 后可去除 90%。但声化学氧化法需要借助超声波,能量消耗大,成本较高。
d. 光催化氧化法。光催化氧化法中主要研究在紫外光或可见光照射下,采用TiO2或BiVO4以及它们的改性物作为光催化剂催化降解NP。Inumaru (K. Inumaru, M.Murashima, T. Kasahara, S. Yamanaka. Enhanced photocatalytic decomposition of4-nonylphenol by surface-organografted TiO2: a combination of molecularselective adsorption and photocatalysis. Applied Catalysis B: Environmental.2004, 52: 275-280) 合成了具有高选择性吸附的n-辛烷基-负载TiO2,并用其光催化降解4-NP,结果表明,在苯酚共存下,4-NP在180min内全部降解。然而,TiO2光催化仅能利用太阳光中比例很小的紫外光部分。Shigeru Kohtani等(S. Kohtani, J. Hiro, N. Yamamoto,A. Kudo, K. Tokumura, R. Nakagaki, Adsorptive and photocatalytic propertiesof Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible lightirradiation, Catal. Commun. 2005,6: 185-189)采用BiVO4或Ag掺杂的BiVO4在可见光条件下降解NP,但积累了大量的中间产物,矿化率低。Babaei等(A.A. Babaei, A.R.Mesdaghiniai, N. Jaafarzadeh Haghighi, R. Nabizadeh, A.H. Mahvi, Modeling ofnonylphenol degradation by photo-nanocatalytic process via multivariateapproach, Journal of Hazardous Materials 2011, 185: 1273-1279.)以ZnO为光催化剂,在UV–vis/ZnO反应体系中降解NP,研究了不同反应条件对NP降解的影响。但结果表明,NP的降解速率常数仍然较低。中国发明专利“一种可用于去除水体中酚类内分泌干扰物的光催化剂的制备方法 申请号:200910076490.2 申请日:2009-01-05”公开了:一种可用于去除水体中酚类内分泌干扰物的卤化氧铋BIOX(X=CL,BR或I)光催化剂的制备方法。具体步骤为:以NABIO3为氧化剂,卤化氢水溶液为还原剂,通过简单的浸渍、固-液分离以及干燥等步骤即可获得具有片状微观结构的BIOX光催化剂。光催化实验结果表明该类光催化剂在氙灯光源照射下均表现出一定的光催化活性,在相同的反应条件下,去除效果均优于已商业化的光催化剂P25。其中BIOI光催化剂由于具有较窄的禁带宽度,可充分利用可见光的能量,反应3小时后对4-叔-辛基酚,4-壬基酚,五氯酚钠以及双酚A等四种酚类内分泌干扰物的去除率均大于50%,对五氯酚钠的去除率高达95%以上。同时,也可以看出,上述发明还难以实现对壬基酚的高效降解,尤其是难以在较短的时间内实现壬基酚的高效去除,这说明目前单一的光催化氧化体系的催化活性还存在着催化活性不足的问题。从上面的分析表明,光催化氧化NP的效率不高,究其原因,主要源于该体系无法提供足够的氧化活性物种。因此,光催化氧化NP急需发展新的高效可见光催化剂。
e. 均相芬顿氧化法。Rojas等(Mario R. Rojas, Fernando Pe´rez, DanielWhitley, Robert G. Arnold, and A. Eduardo Sa´ez, Modeling of advancedoxidation of Trace organic contaminants by hydrogen peroxide photolysis andFenton’s Reaction, Ind. Eng. Chem. Res. 2010, 49:11331–11343)采用均相芬顿反应对NP进行降解。结果表明,反应200min后,NP大部分降解。均相芬顿反应对NP具有一定的降解效果,但总体而言,降解效率并不高。这主要是因为NP为疏水性污染物,很难在极性的水相中溶解或均匀分散,从而减少了活性反应物种和污染物的接触机会,因此导致效率较低。另外,均相芬顿反应仍存在其固有缺点,例如要求反应的pH较低(<3),处理过程中产生铁泥沉淀,这些都限制了其在NP降解中的应用。
通过对比上述降解方法可知,光催化氧化法是处理NP较具实际应用价值的方法,其条件较为温和,成本较低,其中可见光催化剂具有更大的应用前景。然而,现有的可见光催化体系仍然存在以下问题:①催化剂自身催化活性不够高(仅能去除50%的壬基酚),难以在短时间内产生足够的氧化活性物种实现NP的高效降解和矿化;②由于NP是强疏水物质,难以在催化剂亲水性表面有效吸附,从而严重制约了其和氧化活性物种的接触,导致NP降解效率不高。因此,如何克服单一光催化体系的不足,探索和开拓高效的具有可见光和其他催化活性的催化剂,实现NP在催化剂上的高效吸附和降解是非常必要和有着重要的现实意义。
发明内容
本发明的目的是提供一种可高效去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂及其制备方法,对于壬基酚等烷基酚类污染物具有高度的选择性吸附能力,同时又具备较强的可见光-多相类芬顿催化能力,在可见光照射及过氧化氢存在的条件下,实现对壬基酚的降解和矿化。
本发明的技术方案是:去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂,其特征在于:它由铋酸钠铁-石墨烯复配而成,其铋酸钠铁FexNayBiO3质量含量为 90-99.5% ,石墨烯的质量含量为 10-0.5%,铋酸钠铁FexNayBiO3中,X为 2/7 ,Y为 1/7。
上述去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂的制备方法,其特征在于:以NaBiO3铋酸钠为基础催化剂,通过掺杂Fe元素赋予其类芬顿催化性能,制成同时具可见光和多相类芬顿催化性能的纳米级催化剂—铋酸钠铁,再将铋酸钠铁负载在微米级氧化石墨烯上,并通过热还原的方法将复合物中的氧化石墨烯还原为石墨烯,得到最终物质:铋酸钠铁-石墨烯可见光-类芬顿催化剂。
本专利从两个方面进行了针对性研究:①研制具有较高催化活性的可见光-多相类芬顿主体催化剂。本研究选取铋酸钠为基础催化剂,并通过掺杂Fe元素赋予其类芬顿催化性能,制成同时具可见光和多相类芬顿催化性能的纳米级催化剂。通过可见光催化和类芬顿催化两个过程中产生大量的氧化活性物种,引起污染物的高效降解和矿化。②提高NP在催化剂上的吸附性能,并进一步提高催化剂的催化活性。将上述合成的主体催化剂负载在微米级氧化石墨烯上,并通过热还原的方法将复合物中的氧化石墨烯还原为石墨烯,利用石墨烯基体的疏水性能增强NP在催化剂表面的吸附,从而进一步提高NP与羟自由基等氧化活性物种的接触,加速NP的降解与矿化;另外,利用石墨烯优异的电子传导性能提高光生载流子的有效分离,加快氧化活性物种的产生,为高效处理NP提供一种新方法(研究思路如图1所示)。
铋酸钠铁(FexNayBiO3)的制备:采用水相离子交换反应制备FexNayBiO3催化剂。
FexNayBiO3-石墨烯复合物的制备:采用共沉淀-热还原法制备FexNayBiO3-石墨烯复合物。
优点和积极效果:
1本发明制备的复合催化剂对壬基酚具有选择性吸附能力,对壬基酚较强的吸附必然提高对其降解能力。
2该催化剂中的石墨烯具有优异的电子传导性能,可提高光生载流子的有效分离效率,从而提高催化剂的可见光催化性能。
3本发明制备的复合催化剂兼具可见光和多相类芬顿两种催化能力,克服单一可见光催化活性的不足,可在较短的时间内实现对壬基酚的降解和矿化。本发明的FexNayBiO3-石墨烯复合催化剂的壬基酚去除率高达90%。
在可见光照射下,纳米FexNayBiO3光催化产生羟自由基等强氧化性物种;石墨烯既可利用π-π作用和疏水作用力增强催化剂和底物的亲和作用,显著强化NP的吸附,增强其界面反应能力,同时又具有优良的电子传输性能,促进光生空穴和电子的在异相界面的分离与转移,进一步提高氧化降解NP的能力。本发明制备的复合材料可高效去除NP等烷基酚类污染物,具有重要的科学意义,可产生重要的环境和经济效益。
附图说明
图1为本专利的研究思路示意图。
图2为共沉淀-热还原法合成的FexNayBiO3的扫描电镜图。
图3为共沉淀-热还原法合成的FexNayBiO3对壬基酚的吸附情况。
图4为NaBiO3和共沉淀-热还原法合成的FexNayBiO3对NP的降解(a)及TOC去除(b)情况(反应条件: 催化剂浓度: 1g L-1,NP浓度: 0.05mM, H2O2 浓度:20mM, 温度: 25℃,pH: 5,可见光照射)。
图5为水相离子交换反应制备的FexNayBiO3的扫描电镜图。
图6 为Hummers法制备的氧化石墨烯扫描电镜图。
图7为FexNayBiO3-石墨烯的扫描电镜图。
图8为 FexNayBiO3-石墨烯的透射电镜图。
图9为不同石墨烯含量下FexNayBiO3-石墨烯对壬基酚的吸附量。
图10为不同催化剂对NP的降解(a)及TOC去除(b)情况(反应条件: 催化剂浓度:1g L-1,NP浓度: 0.05mM, H2O2 浓度:20mM, 温度: 25℃,pH: 5,可见光照射)。
具体实施方式
利用本发明所述的技术方案制备FexNayBiO3-石墨烯复合材料的具体实施过程分为FexNayBiO3的制备、氧化石墨烯纳米片的制备及FexNayBiO3-石墨烯复合材料的制备三个主要步骤,并根据所制备的材料对壬基酚的吸附和降解效果对制备工艺进行相应调整,具体如下:
实施例一共沉淀-热还原法制备FexNayBiO3复合物
(1)FexNayBiO3的制备:
以NaBiO3和Fe(NO3)3为原料,采用水相离子交换反应制备FexNayBiO3催化剂。具体如下:首先将一定量的Fe(NO3)3溶解到去离子水中,然后加入NaBiO3,搅拌一段时间后,离心分离,干燥得到产品(其扫描电镜如图2所示)。
(2)FexNayBiO3复合材料对壬基酚的吸附评价
以壬基酚为吸附对象,研究FexNayBiO3对其的吸附效果,具体吸附情况如图3所示。
(3)FexNayBiO3复合材料对壬基酚的降解评价
以壬基酚为降解对象,研究FexNayBiO3对其降解的效果(具体降解情况如图4所示)。
实施例二共沉淀-热还原法制备FexNayBiO3-石墨烯复合物
(1)FexNayBiO3的制备:
以NaBiO3和Fe(NO3)3为原料,采用水相离子交换反应制备FexNayBiO3催化剂。具体如下:首先将一定量的Fe(NO3)3溶解到去离子水中,然后加入NaBiO3,搅拌一段时间后,离心分离,干燥得到产品(其扫描电镜如图5所示)。
(2)氧化石墨烯(GO)的制备
首先以石墨为原料,采用Hummers法(J. Am. Chem. Soc. 1958, 80: 1339)制备氧化石墨烯(其扫描电镜如图6所示)。
(3)FexNayBiO3-石墨烯复合材料的制备
FexNayBiO3-氧化石墨烯的复配制备:复配方法采用液相沉积法制备GO-FexNayBiO3。具体步骤如下:取一定量的氧化石墨烯加入到去离子水中,超声处理后得到氧化石墨烯分散液。然后向该分散液中加入一定量的FexNayBiO3并搅拌得到分散良好的分散液,然后将得到的分散液密封后放入水浴锅中在60℃恒温2 h。反应结束后,将反应液抽滤,并用大量去离子水洗涤产物,在60℃下干燥后获得最终产品。
FexNayBiO3-石墨烯的制备:将得到的GO-FexNayBiO3复合物在氮气气氛的管式炉中于200 -800 ºC范围内加热2 h,得到最终复合物产品(其扫描电镜和透射电镜分别如图7和8所示)。
(4)FexNayBiO3-石墨烯复合材料对壬基酚的吸附评价
以壬基酚为吸附对象,研究FexNayBiO3-石墨烯对其的吸附效果,并根据吸附的效果,对FexNayBiO3-石墨烯复合材料的制备工艺进行相应的调整(其吸附情况如图9所示)。
(5)FexNayBiO3-石墨烯复合材料对壬基酚的降解评价
以壬基酚为降解对象,通过不同催化剂对其降解效果的对比,对FexNayBiO3-石墨烯复合材料的催化
活性进行评价(不同催化剂对NP的降解及TOC去除情况如图10所示)。本发明的FexNayBiO3-石墨烯复合催化剂的壬基酚去除率高达90%,TOC去除高率达70%以上。

Claims (5)

1.去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂,其特征在于:它由铋酸钠铁-石墨烯复配而成,其铋酸钠铁FexNayBiO3质量含量为 90-99.5% ,石墨烯的质量含量为10-0.5%,铋酸钠铁FexNayBiO3中,X为 2/7 ,Y为 1/7。
2.去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂的制备方法,其特征在于:以NaBiO3铋酸钠为基础催化剂,通过掺杂Fe元素赋予其类芬顿催化性能,制成同时具可见光和多相类芬顿催化性能的纳米级催化剂—铋酸钠铁,再将铋酸钠铁负载在微米级氧化石墨烯上,并通过热还原的方法将复合物中的氧化石墨烯还原为石墨烯,得到最终物质:铋酸钠铁-石墨烯可见光-类芬顿催化剂。
3.根据权利要求2所述去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂的制备方法,其特征在于:对于铁掺杂铋酸钠的制备,采用水相离子交换反应法进行制备。
4.根据权利要求2所述去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂的制备方法,其特征在于:对于FexNayBiO3-氧化石墨烯复合物的制备,采用液相沉积法进行制备。
5.根据权利要求2所述去除壬基酚的铋酸钠铁-石墨烯可见光-类芬顿催化剂的制备方法,其特征在于:对于FexNayBiO3-石墨烯复合物的制备,用充氮煅烧的方法进行制备。
CN201610643207.XA 2016-08-08 2016-08-08 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法 Pending CN106362754A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610643207.XA CN106362754A (zh) 2016-08-08 2016-08-08 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610643207.XA CN106362754A (zh) 2016-08-08 2016-08-08 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN106362754A true CN106362754A (zh) 2017-02-01

Family

ID=57878221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610643207.XA Pending CN106362754A (zh) 2016-08-08 2016-08-08 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106362754A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107744835A (zh) * 2017-10-12 2018-03-02 湖北工业大学 一种铋酸钠基可见光催化纸材料的制备方法
CN107827200A (zh) * 2017-10-12 2018-03-23 湖北工业大学 一种高效吸附降解染料的多孔材料的制备方法
CN109261205A (zh) * 2018-08-28 2019-01-25 东北师范大学 POMs/graphene类Fenton试剂降解环境激素
CN110668556A (zh) * 2019-10-09 2020-01-10 哈尔滨工业大学 一种可见光催化耦合生物电化学湿地系统及其应用
CN115739133A (zh) * 2022-11-22 2023-03-07 塔里木大学 一种负载Fe3+的光催化铋基材料及其方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528872A (zh) * 2015-01-07 2015-04-22 苏州科技学院 铁酸铋或其碳复合材料光催化脱氮方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528872A (zh) * 2015-01-07 2015-04-22 苏州科技学院 铁酸铋或其碳复合材料光催化脱氮方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安俊健: "BiFeO3及BiFeO3-碳质材料复合物的制备及其吸附-降解有机污染物的研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107744835A (zh) * 2017-10-12 2018-03-02 湖北工业大学 一种铋酸钠基可见光催化纸材料的制备方法
CN107827200A (zh) * 2017-10-12 2018-03-23 湖北工业大学 一种高效吸附降解染料的多孔材料的制备方法
CN107744835B (zh) * 2017-10-12 2019-11-15 湖北工业大学 一种铋酸钠基可见光催化纸材料的制备方法
CN109261205A (zh) * 2018-08-28 2019-01-25 东北师范大学 POMs/graphene类Fenton试剂降解环境激素
CN110668556A (zh) * 2019-10-09 2020-01-10 哈尔滨工业大学 一种可见光催化耦合生物电化学湿地系统及其应用
CN115739133A (zh) * 2022-11-22 2023-03-07 塔里木大学 一种负载Fe3+的光催化铋基材料及其方法
CN115739133B (zh) * 2022-11-22 2024-05-28 塔里木大学 一种负载Fe3+的光催化铋基材料及其方法

Similar Documents

Publication Publication Date Title
Babaei et al. A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@ carbon
Zhou et al. Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: Synergism of powdered activated carbon and ferroferric oxide nanocatalyst
Li et al. Microwave-enhanced Mn-Fenton process for the removal of BPA in water
Chen et al. Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/OH/O2−
Zhu et al. Copper sulfide as an excellent co-catalyst with K2S2O8 for dye decomposition in advanced oxidation process
Hou et al. Three-dimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst
Fayazi Preparation and characterization of carbon nanotubes/pyrite nanocomposite for degradation of methylene blue by a heterogeneous Fenton reaction
Karimipourfard et al. Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst
CN106362754A (zh) 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法
Karimipourfard et al. Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: an experimental investigation
Hayati et al. LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N, Fe co-doped TiO2@ SWCNT: optimization, performance and reaction mechanism studies
Wang et al. Simultaneous enhancement of adsorption and peroxymonosulfate activation of Nitrogen-doped reduced graphene oxide for bisphenol A removal
Hung et al. N-doped metal-free biochar activation of peroxymonosulfate for enhancing the degradation of antibiotics sulfadiazine from aquaculture water and its associated bacterial community composition
Eldos et al. Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
Chu et al. Heterogeneous electro-Fenton-like oxidation for the degradation of 4-nitrophenol characterized by immobilized Fe (III): Performance, mechanism and chlorinated organic compounds formation
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN105797728A (zh) 一种磁性纳米CuxO-Fe2O3臭氧催化剂的制备方法及其应用
Asli et al. Sonophotocatalytic degradation of pollutants by ZnO‐based catalysts: a review
An et al. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
Zhang et al. Multi-catalysis of glow discharge plasma coupled with FeS2 for synergistic removal of antibiotic
Zhang et al. Recent development of sludge biochar-based catalysts in advanced oxidation processes for removing wastewater contaminants: A review
Noor et al. Advanced oxidation processes for remediation of persistent organic pollutants
Yang et al. Microwave synthesis of Fe–Cu diatomic active center MOF: synergistic cyclic catalysis of persulfate for degrading norfloxacin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170201

WD01 Invention patent application deemed withdrawn after publication