CN115155565B - Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用 - Google Patents

Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用 Download PDF

Info

Publication number
CN115155565B
CN115155565B CN202210522278.XA CN202210522278A CN115155565B CN 115155565 B CN115155565 B CN 115155565B CN 202210522278 A CN202210522278 A CN 202210522278A CN 115155565 B CN115155565 B CN 115155565B
Authority
CN
China
Prior art keywords
based composite
oxide catalyst
reactor
catalyst
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210522278.XA
Other languages
English (en)
Other versions
CN115155565A (zh
Inventor
李素静
杨硕
李伟
王晓祥
文渝策
魏童
齐子韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210522278.XA priority Critical patent/CN115155565B/zh
Publication of CN115155565A publication Critical patent/CN115155565A/zh
Application granted granted Critical
Publication of CN115155565B publication Critical patent/CN115155565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种高性能Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用,它是以H2O、CH2Cl2的分层作为界面,将KMnO4、Fe(NO3)3溶解至上层H2O中,将正丁胺缓慢注入下层CH2Cl2中,反应过程中正丁胺由有机相进入水相反应,在界面上生成δ‑MnO2,并吸附在δ‑MnO2表面,阻碍产物的进一步团聚,形成介孔的δ‑MnO2。另外,正丁胺呈碱性,在缓慢向上层溶液扩散的过程中,沉淀上层溶液中的Fe3+,得到Mn基复合氧化物催化剂。本发明方法所用原料廉价易得,制备方法简便,易于推广,另外,该催化剂表现出了优异的低温VOCs催化氧化活性。

Description

Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用
技术领域
本发明涉及VOCs催化剂领域,具体涉及一种高性能Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用。
背景技术
随着工业的发展,各种污染问题变得越来越严峻,大气污染就是其中之一。易挥发性有机物(VOCs)是主要的空气污染物,主要来源于含VOCs的产品的使用和排放。针对固定源尾气排放VOCs污染物的消除,主要是采用低温催化氧化技术,由于其反应温度低、能耗低、安全度高等优点,是很有前景的VOCs控制技术。
锰基催化剂作为一种用于低温VOC催化氧化的催化剂,已被广泛研究。Mn作为一种具有多种价态的过渡性元素,在的转化中不仅可以促进电子转移,而且可以产生氧空位,促进氧物种的迁移。Fe作为一种廉价无毒的过渡性金属元素,其Fe3+不仅具有一定的氧化性,且/>过程使其具有良好的储释氧能力。同时,对于气固催化反应来说,气体分子在催化剂表面的吸附是催化过程的重要步骤,丰富的空隙结构所带来的较大孔容以及大量的表面活性位点有利于提高反应物分子的吸附容量,加快催化反应速率。此外,对于复合金属氧化物催化剂,元素的均匀分散,是促进多种金属元素发挥协同作用、产生丰富氧空位的关键因素。因此,设计合成具有高表面积且元素分散均匀的Mn基氧化物低温去除VOCs催化剂,对涂装、印染、制药等行业VOCs的高效去除有着重要意义。
发明内容
本发明提供了一种具有高性能Mn基复合氧化物低温去除VOCs催化剂。所制备催化剂具有丰富的孔道结构、高比表面积、丰富氧空位,其在VOCs催化氧化中表现出优异的低温催化性能(在30000h-1空速,1000ppm甲苯的负荷下,209℃即可达到90%的去除效率)。同时,本催化剂所用原料廉价易得,制备方法简便快捷,能耗少,产率高,在VOCs催化氧化领域有着潜在的应用前景。
本发明的目的:提供一种高性能的Mn基复合氧化物低温催化VOCs催化剂的制备方法以及由该方法制备的催化剂和其在涂装、印染、制药等工业去除VOCs中的应用。
本发明的技术方案如下:
一种高性能Mn基复合金属氧化物低温去除VOCs催化剂的制备方法,包括以下步骤:
1)称取KMnO4、硝酸盐溶解于去离子水中,混合均匀,形成溶液A;量取CH2Cl2,记作溶液B,先将B溶液倒入反应器中,再将A溶液倒入,静置,等待分层,形成界面,将反应器放置于15~35℃水浴锅;
2)称取正丁胺,导入注射器中,将正丁胺注入下层CH2Cl2中,静置16~30小时,界面处生成黄褐色沉淀,将沉淀离心水洗,在干燥后,移至马弗炉内,在空气气氛中在300~400℃下煅烧2~5小时,得到高性能Mn基复合氧化物催化剂。
本发明是以H2O、CH2Cl2的分层作为界面,将KMnO4、Fe(NO3)3溶解至上层H2O中,将正丁胺缓慢注入下层CH2Cl2中,反应过程中正丁胺由有机相进入水相反应,在界面上生成δ-MnO2,并吸附在δ-MnO2表面,阻碍产物的进一步团聚,形成介孔的δ-MnO2。另外,正丁胺呈碱性,在缓慢向上层溶液扩散的过程中,沉淀上层溶液中的Fe3+,得到Mn基复合氧化物催化剂。
本发明中,一是以KMnO4、正丁胺为原料,采用界面氧化还原法制备了具有丰富孔道、高比表面积的介孔催化剂;二是利用正丁胺呈碱性,在氧化还原生成δ-MnO2的同时,缓慢沉淀上层中的金属阳离子,制备元素分散均匀的锰基复合氧化物催化剂;三是可采用该方法制备多种Mn基复合氧化物催化剂。
步骤1)中,所述的硝酸盐、KMnO4的摩尔比为1:1~9,进一步优选为1:5;
所述的硝酸盐为Fe(NO3)3、Co(NO3)3、Ce(NO3)4、Cu(NO3)2等中的至少一种。
混合均匀的条件为持续搅拌20~40min,进一步优选为30min。优选的加上封口膜在室温搅拌时间为30min,时间太短,有部分KMnO4未溶解。
将反应器放置于20~30℃水浴锅,最优选将反应器放置于25℃水浴锅;
步骤2)中,所述的CH2Cl2的用量为:30~80mL,最优选为50mL。
将沉淀离心水洗5~7次,最优选,将沉淀离心水洗6次。优选的离心水洗次数为6次,次数太少,沉淀呈碱性。
干燥的条件:在70~90℃下干燥7~10小时,最优选,在80℃下干燥8小时。
在空气气氛中在325~375℃下煅烧2.5~3.5小时,最优选,在空气气氛中在350℃下煅烧3小时。
当步骤1)中,所述的硝酸盐为Fe(NO3)3·9H2O,所述的高性能Mn基复合氧化物催化剂的化学式为Fe1Mnx,1/x表示不同样品的Fe(NO3)3·9H2O与KMnO4摩尔比。
优选的Fe(NO3)3·9H2O与KMnO4摩尔比为:1/5;
一种上述制备方法制备的高性能Mn基复合氧化物低温去除VOCs催化剂。
上述的超高性能Mn基复合氧化物低温去除VOCs催化剂在去除涂装、印染、制药工厂尾气中VOCs的应用。
与现有技术相比,本发明具有如下优点:
1、所用原料廉价易得,制备方法简便,设备简单,易于推广,可大规模生产;
2、它是一种普适的Mn基复合氧化物的制备方法,也可制备高性能的FeMn、CeMn、CuMn、CoMn等二元复合氧化物以及这些元素组成的多元Mn基复合氧化物催化剂。
3、该方法所制备的锰基复合氧化物催化剂具有丰富的介孔结构、高比表面积、丰富的氧空位、金属元素分散均匀等优势,从而表现出了优异的低温VOCs催化氧化活性;另外,该方法制备的催化剂具有良好的稳定性。
附图说明
图1为锰基复合氧化物催化剂的XRD结果。
图2为锰基复合氧化物催化剂的SEM结果。
图3为锰基复合氧化物催化剂的N2-吸脱附结果。
图4为锰基复合氧化物催化剂的TEM结果。
图5为锰基复合氧化物催化剂的EDS结果。
图6为锰基复合氧化物FeMn系列催化剂催化氧化VOCs活性结果(去除效率)。
图7为锰基复合氧化物FeMn系列催化剂催化氧化VOCs活性结果(矿化效率)。
图8为锰基复合氧化物CeMn系列催化剂催化氧化VOCs活性结果(去除效率)。
图9为锰基复合氧化物CeMn系列催化剂催化氧化VOCs活性结果(矿化效率)。
具体实施方式
实施例1、Fe1Mn3锰基复合氧化物催化剂的制备
准确称取3.16g(0.02mol)KMnO4,2.69g Fe(NO3)3·9H2O溶解于100ml去离子水中,持续搅拌30min,形成溶液A;量取50ml CH2Cl2,记作溶液B。先将B溶液缓慢倒入250ml烧杯中,再将A溶液缓慢倒入,静置5min,等待分层,形成界面,将烧杯放置于25℃水浴锅。称取7.314g(0.1mol)正丁胺,导入注射器中,将正丁胺缓慢注入下层CH2Cl2中,静置24小时,界面处生成黄褐色沉淀,将沉淀离心水洗6次,在80℃下干燥8小时后,移至马弗炉内,在空气气氛中在350℃下煅烧3小时,得到Mn基复合氧化物催化剂Fe1Mn3。其BET测试结果表明,Fe(NO3)3与KMnO4摩尔比为1/3制备的Fe1Mn3锰基复合氧化物催化剂的比表面积达到106.4m2/g,孔容达到0.338cm3/g(如表1所示)。
实施例2、Fe1Mn5锰基复合氧化物催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O质量改为1.62g,其余条件不变,得到Mn基复合氧化物催化剂Fe1Mn5样品。其BET测试结果表明,Fe(NO3)3与KMnO4摩尔比为1/5制备的Fe1Mn3锰基复合氧化物催化剂的比表面积达到137.3m2/g,平均孔径为9.86nm,孔容达到0.342cm3/g(如表1所示)。
实施例3、Fe1Mn7锰基复合氧化物催化剂的制备催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O质量改为1.15g,其余条件不变,得到Mn基复合氧化物催化剂Fe1Mn7样品。其BET测试结果表明,Fe(NO3)3与KMnO4摩尔比为1/7制备的Fe1Mn7锰基复合氧化物催化剂的比表面积达到108.5m2/g,平均孔径为13.28nm,孔容达到0.327cm3/g(如表1所示)。
实施例4、Fe1Mn9锰基复合氧化物催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O质量改为0.90g,其余条件不变,得到Mn基复合氧化物催化剂Fe1Mn9样品。其BET测试结果表明,Fe(NO3)3与KMnO4摩尔比为1/9制备的Fe1Mn9锰基复合氧化物催化剂的比表面积达到67.3m2/g,平均孔径为17.37nm,孔容达到0.249cm3/g(如表1所示)。
表1
实施例5、Ce1Mn1锰基复合氧化物催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O改为称取8.68g Ce(NO3)3·6H2O,其余条件不变,得到Mn基复合氧化物催化剂Ce1Mn1样品。
实施例6、Ce1Mn3锰基复合氧化物催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O改为称取2.89g Ce(NO3)3·6H2O,其余条件不变,得到Mn基复合氧化物催化剂Ce1Mn3样品。
实施例7、Ce1Mn5锰基复合氧化物催化剂的制备
将实施例1中所称取的Fe(NO3)3·9H2O改为称取1.74g Ce(NO3)3·6H2O,其余条件不变,得到Mn基复合氧化物催化剂Ce1Mn5样品。
锰基复合氧化物催化剂的XRD结果如图1所示。由图可知,界面法得到的催化剂为δ-MnO2,随着Fe(NO3)3·9H2O与KMnO4摩尔比增大,催化剂逐渐趋于无定形结构。
锰基复合氧化物催化剂的SEM结果如图2所示。由图可知催化剂具有大量的孔道结构。
锰基复合氧化物催化剂的N2-吸脱附结果如图3所示。由图可知催化剂存在丰富介孔。
锰基复合氧化物催化剂的TEM结果如图4所示。由图所示,T表示晶格畸变,椭圆框内为晶格缺陷,表面Fe(NO3)3·9H2O与KMnO4摩尔比为1/5制备的Fe1Mn5锰基复合氧化物催化剂具有大量晶格缺陷,说明形成了丰富的氧空位。
锰基复合氧化物催化剂的EDS结果如图5所示。由图可知,Fe(NO3)3·9H2O与KMnO4摩尔比为1/5制备的Fe1Mn5锰基复合氧化物催化剂Fe、Mn、O元素分散均匀,有助于形成更强的多金属协同效应。
实施例8、不同Mn基复合氧化物催化剂的VOCs催化氧化性能评价
将实施例1,2,3,4,5,6,7中制备的催化剂应用于VOCs催化氧化反应,均表现出了良好的催化活性,实施例1,2,3,4中制备的催化剂去除效率如图6,7所示,实施例5,6,7中制备的催化剂去除效率如图8,9所示。该反应在VOCs催化氧化评价装置上进行,催化剂评价装置主要由气体管路、固定床反应器、流量控制系统和气体检测系统等4部分组成,在实验过程中,使用质量流量计实现对各路气体的精确控制。采用外径为10mm,内径为6mm的石英管作为催化反应器,反应器由电阻炉进行加热,并通过K型热电偶监测反应器内温度。混合气体的总流量为50mL·min-1,其中O2的体积分数为20%,甲苯通过两路标准空气流量比的调节控制为1000ml·m-3。在实验过程中,催化剂的装填量为100mg,粒径为40~60目,所对应的质量空速(WHSV)为30000mL·(g·h)-1

Claims (6)

1.高性能Mn基复合金属氧化物催化剂在低温去除甲苯中应用,其特征在于,所述高性能Mn基复合金属氧化物催化剂的制备方法包括以下步骤:
1)称取KMnO4、硝酸盐溶解于去离子水中,混合均匀,形成溶液A;量取CH2Cl2,记作溶液B,先将B溶液倒入反应器中,再将A溶液倒入,静置,等待分层,形成界面,将反应器放置于15~35℃水浴锅;
所述的硝酸盐、KMnO4的摩尔比为1:1~9;
所述的硝酸盐为Fe(NO3)3、Ce(NO3)4中的至少一种;
2)称取正丁胺,导入注射器中,将正丁胺注入下层CH2Cl2中,静置16~30小时,界面处生成黄褐色沉淀,将沉淀离心水洗,在干燥后,移至马弗炉内,在空气气氛中在300~400℃下煅烧2~5小时,得到高性能Mn基复合金属氧化物催化剂。
2.根据权利要求1所述的应用,其特征在于,步骤1)中,混合均匀的条件为持续搅拌20~40min;
将反应器放置于20~30℃水浴锅。
3.根据权利要求1所述的应用,其特征在于,步骤2)中,将沉淀离心水洗5~7次。
4.根据权利要求1所述的应用,其特征在于,步骤2)中,干燥的条件:在70~90℃下干燥7~10小时。
5.根据权利要求1所述的应用,其特征在于,步骤2)中,在空气气氛中在325~375℃下煅烧2.5~3.5小时。
6.根据权利要求1所述的应用,其特征在于,步骤2)中,当步骤1)中,所述的硝酸盐为Fe(NO3)3·9H2O,所述的高性能Mn基复合氧化物催化剂的化学式为Fe1Mnx,1/x表示不同样品的Fe(NO3)3·9H2O与KMnO4摩尔比,x为5。
CN202210522278.XA 2022-05-13 2022-05-13 Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用 Active CN115155565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210522278.XA CN115155565B (zh) 2022-05-13 2022-05-13 Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210522278.XA CN115155565B (zh) 2022-05-13 2022-05-13 Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN115155565A CN115155565A (zh) 2022-10-11
CN115155565B true CN115155565B (zh) 2024-01-05

Family

ID=83483129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210522278.XA Active CN115155565B (zh) 2022-05-13 2022-05-13 Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115155565B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234348A (zh) * 2008-02-27 2008-08-06 浙江大学 纳米级铈锰复合氧化物的制备方法
CN102513122A (zh) * 2011-11-15 2012-06-27 广东工业大学 一种Cu、Ce掺杂型氧化锰催化剂及其制备方法和应用
CN107265506A (zh) * 2017-08-03 2017-10-20 山东金城石墨烯科技有限公司 一种金属锰氧化物/石墨烯复合材料的制备方法
CN111686754A (zh) * 2020-07-07 2020-09-22 四川大学 用于催化燃烧挥发性有机物的非贵金属催化剂及制备方法
CN114160147A (zh) * 2021-11-29 2022-03-11 华南理工大学 一种用于含硫烟气中VOCs和NOx同步脱除的复合氧化物催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234348A (zh) * 2008-02-27 2008-08-06 浙江大学 纳米级铈锰复合氧化物的制备方法
CN102513122A (zh) * 2011-11-15 2012-06-27 广东工业大学 一种Cu、Ce掺杂型氧化锰催化剂及其制备方法和应用
CN107265506A (zh) * 2017-08-03 2017-10-20 山东金城石墨烯科技有限公司 一种金属锰氧化物/石墨烯复合材料的制备方法
CN111686754A (zh) * 2020-07-07 2020-09-22 四川大学 用于催化燃烧挥发性有机物的非贵金属催化剂及制备方法
CN114160147A (zh) * 2021-11-29 2022-03-11 华南理工大学 一种用于含硫烟气中VOCs和NOx同步脱除的复合氧化物催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Interface synthesis of MnO2 materials with various structures and morphologies and their application in catalytic oxidation of o-xylene";Yinsu Wu等;Materials Letters;第139卷;第157–160页 *
"Layered manganese oxides for formaldehyde oxidation at room temperature: the effect of interlayer cations";Jinlong Wang等;RSC Adv;第5卷;第1-9页 *

Also Published As

Publication number Publication date
CN115155565A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
Ri et al. Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation
Yang et al. Generation of abundant oxygen vacancies in Fe doped δ-MnO2 by a facile interfacial synthesis strategy for highly efficient catalysis of VOCs oxidation
CN108744953B (zh) 一种oms-2和/或金属掺杂oms-2催化烟气脱硝的应用方法
CN109772465B (zh) 一种水溶性碳点改性钙钛矿型催化材料的制备方法
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
CN102600878B (zh) 一种TiC-TiO2核壳型纳米材料的制备方法
CN110681382B (zh) 一种催化氧化甲苯的mof-钴基金属氧化物催化剂及其制备方法
CN111659392B (zh) 一种由氧化钨-金属表面等离子共振激元-铬酸钆组成的桥式异质催化剂的制备及应用
CN106732581A (zh) 一种用于低温SCR反应的Ru/CeTiOX催化剂的制备方法
CN111229235A (zh) NiO/MgAl2O4催化剂及其制备方法和应用
CN115555042B (zh) 碳纳米管催化剂的制备方法、碳纳米管催化剂及其应用
CN111330615A (zh) 一种纳米氯氧化铋/氮化碳复合材料及其制备方法和应用
CN113694933A (zh) 一种高熵共掺杂低温scr脱硝催化剂及其制备方法和应用
CN115138388A (zh) 一种高分散度钴氮碳催化剂及其制备方法
WO2024146222A1 (zh) 一种以单原子分散铂为前体物制备高分散Pt/CeO 2的方法与应用
CN115155565B (zh) Mn基复合金属氧化物低温去除VOCs催化剂的制备方法及应用
US20240207825A1 (en) Supported copper-based single-atom catalyst and preparation method and use thereof
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN114433073B (zh) 锰基催化剂及其制备方法和应用
CN111450823A (zh) 一种降解NO的复合催化剂GQD/Bi2WO6及其制备方法
CN111545199B (zh) 一种用于对二甲苯高效氧化净化的负载型铂锡双金属催化剂
CN114471527B (zh) 一种负载单原子的铈锆固溶体催化剂及其制备方法和用途
US20240228309A1 (en) Porous ammonia synthesis catalyst, its preparation method and use
CN115350708B (zh) 复合型催化剂及其制备方法和用途
CN115487832B (zh) 一种用于低温丙烷氧化的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant