CN115117205A - 一种硅基雪崩光电二极管的抗辐照加固方法 - Google Patents

一种硅基雪崩光电二极管的抗辐照加固方法 Download PDF

Info

Publication number
CN115117205A
CN115117205A CN202211030140.4A CN202211030140A CN115117205A CN 115117205 A CN115117205 A CN 115117205A CN 202211030140 A CN202211030140 A CN 202211030140A CN 115117205 A CN115117205 A CN 115117205A
Authority
CN
China
Prior art keywords
type
region
epitaxial layer
ring
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211030140.4A
Other languages
English (en)
Other versions
CN115117205B (zh
Inventor
葛超洋
谢儒彬
吴建伟
杨强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 58 Research Institute
Original Assignee
CETC 58 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 58 Research Institute filed Critical CETC 58 Research Institute
Priority to CN202211030140.4A priority Critical patent/CN115117205B/zh
Publication of CN115117205A publication Critical patent/CN115117205A/zh
Application granted granted Critical
Publication of CN115117205B publication Critical patent/CN115117205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种硅基雪崩光电二极管的抗辐照加固方法,属于半导体光电探测器领域。N型收集环及加固注入区为用于抗辐照的结构,N型收集环用于收集器件外围区域的电流,防止对有效的倍增信号产生干扰;通过在器件外围区域的场氧下方引入一道P型加固注入区,防止该弱P型区域在辐照条件下反型成N型形成漏电流通道,即阻止该区域反型造成N型结截止扩展环、N型收集环与电通道截止环之间的漏电。另外,也保证了雪崩击穿总是发生在器件中心位置的P型雪崩区中。该方法降低了硅基雪崩光电二极管辐照后的暗电流,提高了硅基雪崩光电二极管的抗辐照能力。

Description

一种硅基雪崩光电二极管的抗辐照加固方法
技术领域
本发明涉及半导体光电探测器技术领域,特别涉及一种硅基雪崩光电二极管的抗辐照加固方法。
背景技术
半导体光电探测器是基于光生载流子这一基本物理现象,能够将光信号转化成电信号的一种光电器件。典型的半导体光电探测器主要有PIN结构、雪崩光电二极管(Avalanche Photo Diode,APD)结构、金属-半导体-金属(Metal-Semiconductor-Metal,MSM)结构。
其中,硅基雪崩光电二极管是一种可对微弱光甚至单光子进行探测的光电器件,被广泛应用于空间光通讯、空间量子通讯、激光测距、激光时间传输、遥感成像、空间辐照探测器等领域,空间技术及高能粒子实验领域的应用对硅基雪崩光电二极管的抗辐照性能提出新的要求。因此,研究硅基雪崩光电二极管的抗辐照加固方法,降低辐照后的暗电流,提升硅基雪崩光电二极管在空间环境及高能粒子实验领域下的耐辐射损伤特性是一项重要的课题,将对航空航天、军事应用、高能粒子物理等具有重要意义。
发明内容
本发明的目的在于提供一种硅基雪崩光电二极管的抗辐照加固方法,以解决现有硅基雪崩光电二极管抗辐照性能不足,受辐照后暗电流增大的问题。
为解决上述技术问题,本发明提供了一种硅基雪崩光电二极管的抗辐照加固方法,包括:
提供包括P+衬底和P型π外延层在内的体硅外延材料片;
在所述P型π外延层的两端形成电通道截止环;
在所述P型π外延层上进行抗辐照加固注入形成加固注入区;
在所述P型π外延层上形成P型雪崩区;
在所述P型π外延层上形成N+区域、N型结截止扩展环、N型收集环;
在所述P型π外延层形成接触孔及金属电极;
在P型雪崩区上方进行光窗刻蚀,淀积减反膜;
在所述P+衬底的背面进行金属化形成背面金属。
在一种实施方式中,通过如下步骤在所述P型π外延层的两端形成电通道截止环:
在所述P型π外延层的表面涂覆光刻胶,漏出所述P型π外延层的两端,进行电通道截止环光刻;
对所述P型π外延层的两端进行P型注入,去除剩余光刻胶,形成电通道截止环。
在一种实施方式中,通过如下步骤在所述P型π外延层上进行抗辐照加固注入形成加固注入区:
在所述P型π外延层的表面涂覆光刻胶,暴露出形成加固注入区的区域,进行加固注入区域光刻;
进行P型注入,形成抗辐照加固注入区。
在一种实施方式中,通过如下步骤在所述P型π外延层上形成P型雪崩区:
在所述P型π外延层的表面涂覆光刻胶,暴露出形成P型雪崩区的区域,进行P型雪崩区光刻;
通过高能粒子注入机进行P型注入并退火,去除剩余光刻胶,形成P型雪崩区。
在一种实施方式中,通过如下步骤在所述P型π外延层上形成N+区域、N型结截止扩展环、N型收集环:
在所述P型π外延层的表面涂覆光刻胶,进行N+区域、N型结截止扩展环、N型收集环光刻;
进行N+注入,去除剩余光刻胶,形成N+区域、N型结截止扩展环、N型收集环;
其中所述N+区域位于所述P型雪崩区的上方且与其接触,所述N型结截止扩展环位于所述N+区域外侧且与其接触;所述N型收集环位于所述N型结截止扩展环外侧且与其间隔有一个加固注入区;所述电通道截止环位于所述N型收集环外侧且与其间隔有另一个加固注入区。
在一种实施方式中,通过如下步骤在所述P型π外延层形成接触孔及金属电极:
淀积场氧,在场氧的表面涂覆光刻胶,进行接触孔光刻;
在接触孔里淀积金属钨,通过CMP工艺形成钨柱;
淀积金属铝,在铝的表面涂覆光刻胶,刻蚀形成金属电极;所述金属电极位于所述N+区域表面分别将所述N+区域和所述N型收集环引出;所述场氧位于减反膜两侧,将金属电极隔开。
在一种实施方式中,通过如下步骤在P型雪崩区上方进行光窗刻蚀,淀积减反膜:
在场氧上方涂覆光刻胶,进行光窗光刻;刻蚀场氧,形成光窗;
淀积氧化层形成减反膜,去除剩余光刻胶;所述减反膜位于所述N+区域的上方。
在一种实施方式中,通过如下步骤在所述P+衬底的背面进行金属化形成背面金属:
将P+衬底进行减薄;在减薄后的P+衬底背面进行金属淀积,形成背面金属。
在一种实施方式中,所述P型π外延层的厚度为5~100μm。
在本发明提供的硅基雪崩光电二极管的抗辐照加固方法中,N型收集环及加固注入区为用于抗辐照的结构。N型收集环用于收集器件外围区域的暗电流,防止对有效的倍增信号产生干扰;通过在器件外围区域(电通道截止环与N型收集环之间,及N型收集环与N型结截止扩展环之间)的场氧下方引入一道P型加固注入区,防止该弱P型区域在辐照条件下反型成N型形成漏电流通道,即阻止该区域反型造成N型结截止扩展环、N型收集环与电通道截止环之间的漏电。另外,该结构也保证了雪崩击穿总是发生在器件中心位置的P型雪崩区中。本发明的加固方法降低了硅基雪崩光电二极管辐照后的暗电流,提升硅基雪崩光电二极管在空间环境下的耐辐射损伤特性,对航空航天、军事应用、高能粒子物理等具有重要意义。
附图说明
图1是外延材料片的结构示意图。
图2是在P型π外延层的表面形成电通道截止环结构的示意图。
图3是在P型π外延层的表面形成抗辐照加固注入区的示意图。
图4是在P型π外延层的表面形成P型雪崩区的示意图。
图5是在P型π外延层的表面形成N+区域、N型结截止扩展环结构、N型收集环结构的示意图。
图6是在场氧表面涂覆光刻胶并进行通孔光刻的示意图。
图7是淀积金属钨并通过CMP工艺形成通孔的示意图。
图8是在表面淀积金属铝、在金属铝的表面涂覆光刻胶的示意图。
图9是进行光刻、刻蚀形成金属电极的示意图。
图10是在场氧上方重新涂覆光刻胶、以进行光窗光刻的示意图。
图11是刻蚀场氧形成光窗、淀积氧化层形成减反膜的示意图。
图12是在P+衬底的背面进行金属化形成背面金属的示意图。
图13是有无加固注入结构辐照后的暗电流对比示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种硅基雪崩光电二极管的抗辐照加固方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明提供了一种硅基雪崩光电二极管的抗辐照加固方法,包括如下步骤:
步骤一:提供如图1所示的外延材料片,所述外延材料片包括P+衬底和P型π外延层;所述P型π外延层的厚度为5~100μm;
步骤二:在所述P型π外延层的表面涂覆光刻胶,所述光刻胶未铺满所述P型π外延层的表面,漏出所述P型π外延层的两端;在所述P型π外延层漏出的两端进行P型注入(即注入硼离子),形成电通道截止环,如图2所示;
步骤三:去除光刻胶,在所述P型π外延层的表面继续涂覆光刻胶,进行P型注入,形成抗辐照加固注入区,如图3所示;
步骤四:去掉涂覆的光刻胶,再重新在所述P型π外延层的表面涂覆光刻胶;通过高能粒子注入机进行P型注入并退火,形成P型雪崩区,如图4所示;
步骤五:去除剩余光刻胶,再重新在所述P型π外延层的表面涂覆光刻胶,进行N+注入(即注入磷离子),如图5所示,形成N+区域、N型结截止扩展环、N型收集环;
步骤六:去除剩余光刻胶,在所述P型π外延层的表面淀积场氧,在场氧表面涂覆光刻胶,并进行接触孔光刻,如图6所示;
步骤七:去除光刻胶,在接触孔里淀积金属钨,通过CMP工艺形成钨柱,如图7所示;
步骤八:在表面淀积金属铝,再在铝的表面涂覆光刻胶,如图8所示;
步骤九:如图9所示,对铝进行金属刻蚀,形成金属电极;
步骤十:去除光刻胶,在场氧上方重新涂覆光刻胶,以进行光窗光刻,如图10所示;
步骤十一:如图11所示,刻蚀中间的场氧形成光窗;淀积氧化层形成减反膜;
步骤十二:最后去除光刻胶,在P+衬底的背面进行金属化形成背面金属,如图12所示。
通过上述方法制备的硅基雪崩光电二极管结构包含正面金属电极、场氧、减反膜、N+区域、P型雪崩区、N型结截止扩展环、N型收集环、电通道截止环、加固注入区、P型π外延层、P+衬底和背面金属。
如图13所示,与无加固注入结构辐照后暗电流的相比,本发明能够有效降低硅基雪崩光电二极管辐照后的暗电流。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (9)

1.一种硅基雪崩光电二极管的抗辐照加固方法,其特征在于,包括:
提供包括P+衬底和P型π外延层在内的体硅外延材料片;
在所述P型π外延层的两端形成电通道截止环;
在所述P型π外延层上进行抗辐照加固注入形成加固注入区;
在所述P型π外延层上形成P型雪崩区;
在所述P型π外延层上形成N+区域、N型结截止扩展环、N型收集环;
在所述P型π外延层形成接触孔及金属电极;
在P型雪崩区上方进行光窗刻蚀,淀积减反膜;
在所述P+衬底的背面进行金属化形成背面金属。
2.如权利要求1所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P型π外延层的两端形成电通道截止环:
在所述P型π外延层的表面涂覆光刻胶,漏出所述P型π外延层的两端,进行电通道截止环光刻;
对所述P型π外延层的两端进行P型注入,去除剩余光刻胶,形成电通道截止环。
3.如权利要求2所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P型π外延层上进行抗辐照加固注入形成加固注入区:
在所述P型π外延层的表面涂覆光刻胶,暴露出形成加固注入区的区域,进行加固注入区域光刻;
进行P型注入,形成抗辐照加固注入区。
4.如权利要求3所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P型π外延层上形成P型雪崩区:
在所述P型π外延层的表面涂覆光刻胶,暴露出形成P型雪崩区的区域,进行P型雪崩区光刻;
通过高能粒子注入机进行P型注入并退火,去除剩余光刻胶,形成P型雪崩区。
5.如权利要求4所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P型π外延层上形成N+区域、N型结截止扩展环、N型收集环:
在所述P型π外延层的表面涂覆光刻胶,进行N+区域、N型结截止扩展环、N型收集环光刻;
进行N+注入,去除剩余光刻胶,形成N+区域、N型结截止扩展环、N型收集环;
其中所述N+区域位于所述P型雪崩区的上方且与其接触,所述N型结截止扩展环位于所述N+区域外侧且与其接触;所述N型收集环位于所述N型结截止扩展环外侧且与其间隔有一个加固注入区;所述电通道截止环位于所述N型收集环外侧且与其间隔有另一个加固注入区。
6.如权利要求5所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P型π外延层形成接触孔及金属电极:
淀积场氧,在场氧的表面涂覆光刻胶,进行接触孔光刻;
在接触孔里淀积金属钨,通过CMP工艺形成钨柱;
淀积金属铝,在铝的表面涂覆光刻胶,刻蚀形成金属电极;所述金属电极位于所述N+区域表面分别将所述N+区域和所述N型收集环引出;所述场氧位于减反膜两侧,将金属电极隔开。
7.如权利要求6所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在P型雪崩区上方进行光窗刻蚀,淀积减反膜:
在场氧上方涂覆光刻胶,进行光窗光刻;刻蚀场氧,形成光窗;
淀积氧化层形成减反膜,去除剩余光刻胶;所述减反膜位于所述N+区域的上方。
8.如权利要求7所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,通过如下步骤在所述P+衬底的背面进行金属化形成背面金属:
将P+衬底进行减薄;在减薄后的P+衬底背面进行金属淀积,形成背面金属。
9.如权利要求1所述的硅基雪崩光电二极管的抗辐照加固方法,其特征在于,所述P型π外延层的厚度为5~100μm。
CN202211030140.4A 2022-08-26 2022-08-26 一种硅基雪崩光电二极管的抗辐照加固方法 Active CN115117205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211030140.4A CN115117205B (zh) 2022-08-26 2022-08-26 一种硅基雪崩光电二极管的抗辐照加固方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211030140.4A CN115117205B (zh) 2022-08-26 2022-08-26 一种硅基雪崩光电二极管的抗辐照加固方法

Publications (2)

Publication Number Publication Date
CN115117205A true CN115117205A (zh) 2022-09-27
CN115117205B CN115117205B (zh) 2022-11-15

Family

ID=83335918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211030140.4A Active CN115117205B (zh) 2022-08-26 2022-08-26 一种硅基雪崩光电二极管的抗辐照加固方法

Country Status (1)

Country Link
CN (1) CN115117205B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072755A (zh) * 2023-03-09 2023-05-05 潍坊先进光电芯片研究院 一种硅基线性雪崩光电探测器、制备方法及应用
GB2612716A (en) * 2021-05-10 2023-05-10 X Fab Global Services Gmbh Improved Semiconductor Light Sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299437A (zh) * 2010-09-08 2013-09-11 爱丁堡大学评议会 用于cmos电路的单光子雪崩二极管
CN108039390A (zh) * 2017-11-22 2018-05-15 天津大学 非接触式保护环单光子雪崩二极管及制备方法
CN114122191A (zh) * 2021-10-15 2022-03-01 北京英孚瑞半导体科技有限公司 一种雪崩光电探测器的制备方法
CN114242828A (zh) * 2022-01-10 2022-03-25 无锡学院 雪崩光电二极管及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299437A (zh) * 2010-09-08 2013-09-11 爱丁堡大学评议会 用于cmos电路的单光子雪崩二极管
CN108039390A (zh) * 2017-11-22 2018-05-15 天津大学 非接触式保护环单光子雪崩二极管及制备方法
CN114122191A (zh) * 2021-10-15 2022-03-01 北京英孚瑞半导体科技有限公司 一种雪崩光电探测器的制备方法
CN114242828A (zh) * 2022-01-10 2022-03-25 无锡学院 雪崩光电二极管及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612716A (en) * 2021-05-10 2023-05-10 X Fab Global Services Gmbh Improved Semiconductor Light Sensor
GB2612716B (en) * 2021-05-10 2024-01-10 X Fab Global Services Gmbh Improved Semiconductor Light Sensor
CN116072755A (zh) * 2023-03-09 2023-05-05 潍坊先进光电芯片研究院 一种硅基线性雪崩光电探测器、制备方法及应用

Also Published As

Publication number Publication date
CN115117205B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN115117205B (zh) 一种硅基雪崩光电二极管的抗辐照加固方法
US7297927B2 (en) Fabrication of low leakage-current backside illuminated photodiodes
US6677182B2 (en) Technique for suppression of edge current in semiconductor devices
CN109545804B (zh) 光侧面入射的蓝光增敏硅雪崩光电二极管阵列器件
CN110246903B (zh) 低噪声宽光谱响应的单光子雪崩光电二极管及其制作方法
JP3441101B2 (ja) 電子管
CN110707181B (zh) 台面型光电探测器的制作方法
CN116598369B (zh) 低噪声单光子探测器及其制备方法
KR20110089497A (ko) 기판에의 불순물 도핑 방법, 이를 이용한 태양 전지의 제조 방법 및 이를 이용하여 제조된 태양 전지
CN114520277A (zh) 一种抗辐照硅基雪崩光电二极管的制备方法及结构
CN110326116B (zh) 半导体结构及其制造
CA1078948A (en) Method of fabricating silicon photodiodes
CN113964238A (zh) 一种雪崩光电探测器的制备方法
CN111599888A (zh) 一种单光子雪崩光电探测器焦平面阵列及制备方法
CN115084307B (zh) 一种抗辐照加固单光子探测器及其制备方法
CN116504866B (zh) 高时间分辨率单光子探测器及其制备方法
CN115020504A (zh) 硅探测器的制造方法
CN118039724A (zh) 光电探测器、光接收模块及电子设备
CN116469959A (zh) 一种spad阵列制备方法和spad芯片
CN117276397A (zh) 一种单光子雪崩二极管器件及其制作方法
WO2010080048A1 (en) Semiconductor geiger mode microcell photodiode (variants)
CN112271233A (zh) 一种硅基背照pin器件结构的制备方法
CN115084304A (zh) 半导体结构及其形成方法
JPS61206271A (ja) 光電気変換装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant