CN115093556A - 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法 - Google Patents

基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法 Download PDF

Info

Publication number
CN115093556A
CN115093556A CN202210512911.7A CN202210512911A CN115093556A CN 115093556 A CN115093556 A CN 115093556A CN 202210512911 A CN202210512911 A CN 202210512911A CN 115093556 A CN115093556 A CN 115093556A
Authority
CN
China
Prior art keywords
mpeg
drug
solution
nano
pmcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210512911.7A
Other languages
English (en)
Inventor
艾克拜尔·热合曼
王基伟
颜桂炀
胡建设
陈�峰
庄凰龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Normal University
Original Assignee
Ningde Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Normal University filed Critical Ningde Normal University
Priority to CN202210512911.7A priority Critical patent/CN115093556A/zh
Publication of CN115093556A publication Critical patent/CN115093556A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种基于双亲性聚碳酸酯膨胀型纳米药物载体及制备方法,以mPEG113为引发剂,DBU为催化剂,在一定条件下与环状单体MBC通过溶液聚合,制备出嵌段共聚物mPEG113‑b‑PMBCn,以Pd类催化剂为还原剂,通过加氢还原获得含羧基嵌段共聚物mPEG113‑b‑PMCCn;在DCC与DMAP作用下制备出共聚物P1,与阿霉素在DMSO中反应合成出膨胀型纳米药物载体;采用溶剂交换法制备纳米药物载体粒子。本发明制备的载药纳米粒子在体内能够稳定循环,并在肿瘤细胞内酸性环境中释放药物。此外,通过在侧链中引入叔胺基团,在细胞内酸性环境中可以快速质子化产生电荷斥力,使纳米颗粒膨胀,进一步促进药物的快速释放,使载药纳米粒子进入肿瘤细胞后能够迅速释放药物至治疗浓度,从而杀死肿瘤细胞。

Description

基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备 方法
技术领域
本发明属于纳米药物载体技术领域,尤其涉及一种基于双亲性聚碳酸酯 膨胀型快速释药纳米药物载体及其制备方法。
背景技术
恶性肿瘤已经成为威胁人类健康的重大疾病,在临床上,化疗作为一 种不可缺少的癌症治疗的方法一直受到广泛的关注,其中联合化疗是恶性 肿瘤治疗的新趋势。化疗是现阶段临床上用于恶性肿瘤治疗的主要手段之 一,传统的化疗药物的应用通常因水溶性差、生物利用度低和毒副作用大 而受到限制。
近年来,根据肿瘤微环境的特异性,越来越多的具有靶向性、缓释性 特点的纳米载药系统被开发,这些纳米载药系统可以提高药物溶解度、调 控化疗药物的体内过程、促进药物在肿瘤组织的分布与蓄积、改善药物的 细胞摄取与释放行为、实现减毒增效,具有良好的临床开发价值。纳米载 体的使用可以改善水溶性较差药物的递送效果,在保护药物活性的同时, 延长药物的血液循环时间、控制药物的释放速度、降低药物的毒副作用, 实现靶向药物递送、两种或两种以上药物的联合治疗协同递送等功能。尽 管目前对纳米药物载体的研究较为广泛,但纳米载体触发药物释放的方式 往往较为单一,且药物释放速度相对较慢,导致药物浓度低于治疗浓度, 肿瘤细胞在低水平药物环境中依然存活,且容易产生耐药性。因此,迫切 需要开发一种更灵敏的智能给药系统,使载药纳米粒子进入肿瘤细胞后能 够迅速释放药物至治疗浓度,从而杀死肿瘤细胞,防止其产生耐药性。
发明内容
本发明提供了一种基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体 及其制备方法,脂肪族聚碳酸酯具有良好的生物相容性,其本身及降解产 物均无毒,可通过侧链功能基团的引入调控其物理化学和生物学性质,以 更好地适应细胞或组织器官的粘附、生长等需求,拓宽其在医学领域的应 用范围。可以有效解决上述问题。
本发明是这样实现的:
针对纳米载体触发药物释放速度相对较慢,而导致药物浓度低于治疗 浓度,达不到治疗效果,且容易产生耐药性,本发明提供了一类基于双亲 性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法。
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,首先 以聚乙二醇单甲醚(mPEG113)为引发剂,1,8-二氮杂二环十一碳-7-烯(DBU) 为催化剂,在一定条件下与环状单体5-甲基-5-苄氧羰基三亚甲基碳酸酯 (MBC)通过溶液聚合,制备出嵌段共聚物mPEG113-b-PMBCn,然后以Pd 类催化剂为还原剂,通过加氢还原获得了含羧基嵌段共聚物mPEG113-b-PMCCn;其次在二环己基碳二亚胺(DCC)与4-二甲氨基吡啶 (DMAP)作用下将mPEG113-b-PMCCn与4-羟基苯甲醛和2-(二异丙氨基) 乙醇反应制备出共聚物P1,再将P1与阿霉素(DOX)在DMSO(二甲基 亚砜)中反应合成出膨胀型纳米药物载体;最后采用溶剂交换法制备纳米 药物载体粒子。
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体,其分子设计:
Figure BDA0003640175480000031
其中n=53,x+y+z=53。
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,按以 下步骤进行:
1.嵌段共聚物mPEG113-b-PMBCn的合成
1.1将mPEG113与BMC按照摩尔比为1:50~60的配比放入茄形瓶中;
1.2向茄形瓶中添加30~60mL二氯甲烷,待药品完全溶解后加入DBU, 添加量按DBU的摩尔量与mPEG113等量;
1.3对体系抽真空充氩气,确保在氩气氛围保护下,将反应装置转移至 25±5℃油浴锅中磁力搅拌,20~24h后加入苯甲酸淬灭反应,添加量按苯 甲酸的摩尔量为mPEG113的1.2~1.5%。
1.4反应结束后将体系旋蒸浓缩,在甲醇中沉降析出聚合物,过滤出沉 淀后,在20±5℃真空干燥20~24h后,得嵌段共聚物mPEG113-b-PMBCn
2.含羧基嵌段共聚物mPEG113-b-PMCCn的合成
2.1采用步骤1制备的mPEG113-b-PMCCn,在茄形瓶中用混合溶剂将 mPEG113-b-PMCCn溶解,制成共聚物溶液;所述的混合溶剂由甲醇和四氢 呋喃按体积比1:1混合制成;
2.2向共聚物溶液中加入Pd系催化剂,加入量按Pd催化剂占 mPEG113-b-PMCCn总重量的5~8%,Pd催化剂由Pd/C和Pd(OH)2/C按质量 比1:1混合制成。体系抽真空通氢气,确保体系中空气全部被氢气取代,在 氢气氛围下,25±5℃磁力搅拌反应30~48h。
2.3减压抽滤除去Pd系催化剂,滤液进一步旋转蒸发至干,然后25± 5℃真空干燥20~24h,得含羧基嵌段共聚物mPEG113-b-PMCCn
3.嵌段共聚物P1的合成
3.1将DCC和DMAP溶于二氯甲烷中制成催化剂有机溶液,DMAP为 DCC总重量的10%;
3.2采用步骤2制备的含羧基嵌段共聚物mPEG113-b-PMCCn,将其溶于 四氢呋喃中制成共聚物有机溶液;
3.3将步骤3.1制备的催化剂有机溶液滴加到步骤3.2制备的共聚物有 机溶液中,滴加量按mPEG113-b-PMCCn与DCC的摩尔比为1:1.0~1.2,在 25±5℃条件下搅拌20~30min,此时溶液变为乳白色;
3.4将PHB(4-羟基苯甲醛)溶于四氢呋喃中制成有机溶液;
3.5将DIPAE(2-(二异丙氨基)乙醇)溶于四氢呋喃中制成有机溶液;
3.6将步骤3.4制备的PHB溶液缓慢滴加(20~25滴/分)到步骤3.3制 备的溶液中,滴加结束后在20±5℃搅拌反应20~24h;添加量按PHB的 摩尔量为mPEG113-b-PMCCn的25~35%;
3.7将步骤3.5制备的DIPAE溶液再缓慢滴加(20~25滴/分)到步骤 3.6的反应体系中,滴加结束后在20±5℃搅拌反应20~24h,然后加入去 离子水1~2mL终止反应,继续搅拌0.5~1h;添加量按DIPAE的摩尔量为 mPEG113-b-PMCCn的25~35%;
3.8用砂芯漏斗减压抽滤除去反应生成的二环己基脲(DCU),然后将 滤液在-20℃冷冻后再次减压抽滤去除DCU,反复操作3~5次,完全除去 DCU。滤液用无水MgSO4干燥15-20h后,减压去除溶剂,得到粗产物。 用少量二氯甲烷重新溶解粗产物,二氯甲烷的量能使粗产物全部溶解即可, 然后在冰乙醚中沉降,沉降操作重复两次,以除尽杂质。最后,将沉降产 物全部收集,在25±5℃条件下真空干燥20~24h,得到淡黄色聚合物,记 为P1。
3.9通过调控PHB、DIPAE与mPEG113-b-PMCCn的反应投料比,可以 得到不同的x,y,z。聚合度x,y,z可有其核磁谱图确定。由于mPEG113中的 质子数是固定的,因此可以通过PHB和DIPAE中特征氢的积分峰面积与其 比较来计算侧链上官能基团的数量。未反应的羧基可与叔胺基团形成质子 海绵,从而在不同pH环境下通过质子得失来调节系统电荷。
4.聚合物-阿霉素共轭化合物DOX-P1的合成
4.1将DOX·HCl溶于DMSO中制成有机溶液,然后用微量注射器加入 少量三乙胺,三乙胺的量能使物质全部溶解即可(三乙胺为DOX.HCl的 6mol当量,也就是说1molDOX.HCl,对应的三乙胺大概是6mol),在20± 5℃条件下避光搅拌6~10h;
4.2将步骤3制备的聚合物P1溶于DMSO中制成有机溶液;
4.3将步骤4.2制备的聚合物P1溶液缓慢滴加(20~25滴/分)到步骤 4.1制备的DOX·HCl溶液中,在20±5℃条件下避光搅拌20~24h。反应结 束后,在体系中加入20~30mL去离子水,将混合溶液转移到MWCO 3500 Da的透析袋中,在去离子水中透析72h,每8~10h换一次水,以去除体系 中的杂质,最后将保留液冻干,得红色絮状产物DOX-P1。添加量按 DOX·HCl的质量为聚合物P1的25~30%。
5.纳米药物载体DOX-P1NPs的制备
5.1采用溶剂交换法制备纳米粒子,将DOX-P1溶解于DMSO中,然 后在超声分散的条件下滴加PBS缓冲溶液(pH 7.4)。继续超声15~20min 使纳米粒子溶液分散均匀;
5.2将步骤5.1制备的溶液转移到MWCO 3500Da透析袋中,在20±5 ℃下用PBS缓冲液(pH 7.4)透析72h,每8~10h更换透析液,整个过程 避光进行。所制备的载药纳米粒子记作DOX-P1NPs,纳米粒子溶液存放于 4℃冰箱内,所需高浓度纳米粒子溶液可用超滤离心管进行浓缩。
上述的mPEG113为聚乙二醇单甲醚,结构式为
Figure BDA0003640175480000061
上述的MBC为5-甲基-5-苄氧羰基三亚甲基碳酸酯,结构式为
Figure BDA0003640175480000062
上述的mPEG113-b-PMBCn的结构式为
Figure BDA0003640175480000063
上述的mPEG113-b-PMCCn的结构式为
Figure BDA0003640175480000071
上述的P1的结构式为
Figure BDA0003640175480000072
其中x+y+z=53。
上述的DOX-P1的结构式为
Figure BDA0003640175480000073
其中x+y+z=53。
本发明的特点及其有益效果是:
本发明制备的基于双亲性聚碳酸酯膨胀型纳米药物载体,通过对聚碳 酸酯侧链进行功能化修饰,使DOX与聚碳酸酯通过酸敏感的苯亚胺键形成 偶联聚合物,再进一步自组装制备了胞内快速释药纳米粒子。所制备的载 药纳米粒子在体内能够稳定循环,并在肿瘤细胞内酸性环境中释放药物。 此外,通过在侧链中引入叔胺基团,在细胞内酸性环境中可以快速质子化 产生电荷斥力,使纳米颗粒膨胀,进一步促进药物的快速释放,使载药纳米粒子进入肿瘤细胞后能够迅速释放药物至治疗浓度,从而杀死肿瘤细胞。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中 所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的 某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员 来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关 的附图。
图1为本发明实例1中制备的共聚物的FT-IR谱图;
根据图1可知,在3600-2500cm-1位置羧基特征吸收峰的衰减和1753 cm-1处酯羰基以及1600–1450、600–900cm-1处苯环特征吸收峰的出现证明 了酯化反应的成功。此外,在3334cm-1处DOX的羟基特征吸收峰清晰可 见。
图2为本发明实例1中制备的共聚物的1H-NMR谱图;
根据图2可知,δ=7.92ppm处的特征峰归属于P1侧链上的苯环特征氢。 此外,δ=1.87–1.03ppm的特征峰归属于聚碳酸酯链和叔胺基团中的甲基氢 信号。在δ=8.21–7.27和δ=5.62–4.87ppm处归属于苯环和DOX的质子峰清 晰可见,表明合成DOX-P1的结构正确。
图3为本发明实例1中制备的共聚物的GPC曲线;
根据图3可知,mPEG113-b-PMBC53的数均相对分子质量Mn为12865, 分散系数PDI为1.38。
图4为本发明实例1中制备的载体纳米粒子的形貌;
根据图4可知,在pH 7.4条件下,DOX-P1NPs为表面光滑的球形颗 粒,其平均粒径分别为47nm,且TEM所测粒径与DLS结果相吻合。
图5为本发明实例1中制备的载体纳米粒子的粒径分布图;
根据图5可知,平均粒径分别为49nm,分布系数0.49.
图6为本发明实例1中制备的载体纳米粒子在不同pH条件下粒径变化 曲。
根据图6可知,当DOX-P1 NPs处于pH 5.0环境中时,粒径在1h内 由49nm增大到65nm,并在2h后趋于稳定,然而在pH值为7.4或6.8 时,纳米粒子的粒径没有显著变化。但是,可以发现纳米粒子的膨胀具有 一定的限度,这是因为由于DOX-P1 NPs特殊的两性离子结构,在弱酸性 条件下,叔胺质子化所产生的正电荷斥力会被羧基产生的负电荷部分抵消, 从而限制了粒径膨胀。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合 本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完 整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全 部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范 围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基 于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施方式,都属于本发明保护的范围。
这些实施例仅用于说明本发明而不用于限制本发明的应用范围。本发 明实施例中所用化学试剂均为市购,化学纯;采用的水为去离子水;旋转 蒸发采用的设备为R201D型旋转蒸发器,工作时的旋转速度为120rpm。 实施例中进行还原反应是采用三口烧瓶进行反应,通过插入反应溶液中的 玻璃管通入氩气和氢气。
本发明采用的仪器与表征方法如下:
①FT-IR采用美国PE公司的Spectrum One红外光谱仪进行测试。固 体样品采用KBr压片,吸收光谱扫描的波数量程4000~500cm-1。
②1H-NMR采用德国Bruker ARX 600MHz超导核磁共振仪,以CDCl3 或DMSO作为溶剂,TMS为内标。
③凝胶渗透色谱(GPC)(Waters,1515 Isocratic HPLC Pump),检测器型 号为Waters 2414 Refractive Index Detector,配置有3根色谱柱,测试过程中 以聚苯乙烯作为标准物,色谱纯THF作为流动相,控制流速1mL/min,测 试温度为35℃
④透射电子显微镜(TEM)(JEOL,JEM 2100Plus),使用的是美国FEI 公司生产的型号为Tecnai G2 20的透射电镜,主要技术指标如下:点分辨 0.23nm,线分辨0.14nm,加速电压200kV,LaB6钨丝,放大倍数 20×-1000000×,全数字化计算机控制系统。
⑤动态光散射粒度仪(DLS)(Malvern,Nano-ZS90),所用DLS型号为 英国Malvern有限公司的Zetasizer Nano S,光源为功率4.0mW的He-Ne 激光器,测试波长为633nm,测试温度为25℃,测试散射角为173°。
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,首先 以聚乙二醇单甲醚(mPEG113)为引发剂,1,8-二氮杂二环十一碳-7-烯(DBU) 为催化剂,在一定条件下与环状单体5-甲基-5-苄氧羰基三亚甲基碳酸酯 (MBC)通过溶液聚合,制备出嵌段共聚物mPEG113-b-PMBCn,然后以Pd/C 和Pd(OH)2/C为还原剂,通过加氢还原获得了含羧基嵌段共聚物 mPEG113-b-PMCCn;其次在二环己基碳二亚胺(DCC)与4-二甲氨基吡啶 (DMAP)作用下将mPEG113-b-PMCCn与4-羟基苯甲醛和2-(二异丙氨基) 乙醇反应制备出共聚物P1,再将P1与阿霉素(DOX)在DMSO中反应合 成出膨胀型纳米药物载体;最后采用溶剂交换法制备纳米药物载体粒子。
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体,其分子设计:
Figure BDA0003640175480000111
其中n=53,x+y+z=53
基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,按以 下步骤进行:
2.嵌段共聚物mPEG113-b-PMBCn的合成
1.1将mPEG113与BMC按照摩尔比为1:50~60的配比放入茄形瓶中;
1.2向茄形瓶中添加30~60mL二氯甲烷,待药品完全溶解后加入DBU, 添加量按DBU的摩尔量与mPEG113等量;
1.3对体系抽真空充氩气,确保在氩气氛围保护下,将反应装置转移至 25±5℃油浴锅中磁力搅拌,20~24h后加入苯甲酸淬灭反应,添加量按苯 甲酸的摩尔量为mPEG113的1.2~1.5%。
1.4反应结束后将体系旋蒸浓缩,在甲醇中沉降析出聚合物,过滤出沉 淀后,在20±5℃真空干燥20~24h后,得嵌段共聚物mPEG113-b-PMBCn
2.含羧基嵌段共聚物mPEG113-b-PMCCn的合成
2.1采用步骤1制备的mPEG113-b-PMCCn,在茄形瓶中用混合溶剂将 mPEG113-b-PMCCn溶解,制成共聚物溶液;所述的混合溶剂由甲醇和四氢 呋喃按体积比1:1混合制成;
2.2向共聚物溶液中加入Pd系催化剂,加入量按Pd催化剂占 mPEG113-b-PMCCn总重量的5~8%。体系抽真空通氢气,确保体系中空气全 部被氢气取代,在氢气氛围下,25±5℃磁力搅拌反应30~48h;所述的Pd 催化剂由Pd/C和Pd(OH)2/C按质量比1:1混合制成;
2.3减压抽滤除去Pd系催化剂,滤液进一步旋转蒸发至干,然后25± 5℃真空干燥20~24h,得含羧基嵌段共聚物mPEG113-b-PMCCn
3.嵌段共聚物P1的合成
3.1将DCC和DMAP溶于二氯甲烷中制成催化剂有机溶液,DMAP为 DCC总重量的10%;
3.2采用步骤2制备的含羧基嵌段共聚物mPEG113-b-PMCCn,将其溶于 四氢呋喃中制成共聚物有机溶液;
3.3将步骤3.1制备的催化剂有机溶液滴加到步骤3.2制备的共聚物有 机溶液中,滴加量按mPEG113-b-PMCCn与DCC的摩尔比为1:1.0~1.2,在 25±5℃条件下搅拌20~30min,此时溶液变为乳白色;
3.4将PHB溶于四氢呋喃中制成有机溶液;
3.5将DIPAE溶于四氢呋喃中制成有机溶液;
3.6将步骤3.4制备的PHB溶液缓慢滴加(20~25滴/分)到步骤3.3制 备的溶液中,滴加结束后在20±5℃搅拌反应20~24h;添加量按PHB的 摩尔量为mPEG113-b-PMCCn的25~35%;
3.7将步骤3.5制备的DIPAE溶液再缓慢滴加(20~25滴/分)到步骤 3.6的反应体系中,滴加结束后在20±5℃搅拌反应20~24h,然后加入去 离子水1~2mL终止反应,继续搅拌0.5~1h;添加量按DIPAE的摩尔量为 mPEG113-b-PMCCn的25~35%;
3.8用砂芯漏斗减压抽滤除去反应生成的二环己基脲(DCU),然后将 滤液在-20℃冷冻后再次减压抽滤去除DCU,反复操作3~5次,完全除去 DCU。滤液用无水MgSO4干燥15-20h后,减压去除溶剂,得到粗产物。 用少量二氯甲烷重新溶解粗产物,然后在冰乙醚中沉降,沉降操作重复两 次,以除尽杂质。最后,将沉降产物全部收集,在25±5℃条件下真空干燥20~24h,得到淡黄色聚合物,记为P1。
3.9根据PHB、DIPAE与mPEG113-b-PMCCn的反应投料比,可以得到 不同的x,y,z。聚合度x,y,z可有其核磁谱图确定。由于mPEG113中的质 子数是固定的,因此可以通过PHB和DIPAE中特征氢的积分峰面积与其比 较来计算侧链上官能基团的数量。未反应的羧基可与叔胺基团形成质子海 绵,从而在不同pH环境下通过质子得失来调节系统电荷。更进一步的x占 总和的45-75%,y占总和的5-35%,z占总和的20-25%。
通过核磁可以来计算P1中羧基和醛基的功能团的摩尔数,根据醛基的 摩尔数可以确定和多少药物也就是DOX.HCl结合;根据P1中的-COOH, 是未反应的羧基,这个羧基可以与叔胺基团形成质子海绵,从而在不同pH 环境下通过质子得失来调节系统电荷。达到药物控制释放的作用。
4.聚合物-阿霉素共轭化合物DOX-P1的合成
4.1将DOX·HCl溶于DMSO中制成有机溶液,然后用微量注射器加入 少量三乙胺,在20±5℃条件下避光搅拌6~10h;
4.2将步骤3制备的聚合物P1溶于DMSO中制成有机溶液;
4.3将步骤4.2制备的聚合物P1溶液缓慢滴加(20~25滴/分)到步骤 4.1制备的DOX·HCl溶液中,在20±5℃条件下避光搅拌20~24h。反应结 束后,在体系中加入20~30mL去离子水,将混合溶液转移到MWCO 3500 Da的透析袋中,在去离子水中透析72h,每8~10h换一次水,以去除体系 中的杂质,最后将保留液冻干,得红色絮状产物DOX-P1。添加量按 DOX·HCl的质量为聚合物P1的25~30%。
5.纳米药物载体DOX-P1 NPs的制备
5.1采用溶剂交换法制备纳米粒子,将DOX-P1溶解于DMSO中,然 后在超声分散的条件下滴加PBS缓冲溶液(pH 7.4)。继续超声15~20min 使纳米粒子溶液分散均匀;
5.2将步骤5.1制备的溶液转移到MWCO 3500Da透析袋中,在20±5 ℃下用PBS缓冲液(pH 7.4)透析72h,每8~10h更换透析液,整个过程 避光进行。所制备的载药纳米粒子记作DOX-P1 NPs,纳米粒子溶液存放于 4℃冰箱内,所需高浓度纳米粒子溶液可用超滤离心管进行浓缩。
上述的mPEG113为聚乙二醇单甲醚,结构式为
Figure BDA0003640175480000141
上述的MBC为5-甲基-5-苄氧羰基三亚甲基碳酸酯,结构式为
Figure BDA0003640175480000142
上述的mPEG113-b-PMBCn的结构式为
Figure BDA0003640175480000151
上述的mPEG113-b-PMCCn的结构式为
Figure BDA0003640175480000152
上述的P1的结构式为
Figure BDA0003640175480000153
其中x+y+z=53。
上述的DOX-P1的结构式为
Figure BDA0003640175480000154
其中x+y+z=53。
实施例1
聚合物-阿霉素共轭化合物DOX-P1,化学结构式如下:
Figure BDA0003640175480000161
纳米药物载体DOX-P1 NPs的制备,包括以下5个步骤:
(1)称取5-甲基-5-苄氧羰基三亚甲基碳酸酯(MBC)6.0g(24mmol), mPEG113 2.0g(0.4mmol)于100mL茄形瓶中,加入50mL二氯甲烷使其 溶解,待药品完全溶解后加入DBU 60μL(0.4mmol)。对体系抽真空充氩 气,确保在氩气氛围保护下,将反应装置转移至25℃油浴锅中磁力搅拌, 24h后加入74mg苯甲酸淬灭反应。反应结束后将体系旋蒸浓缩,在冰甲 醇中沉降析出聚合物,沉淀物在25℃真空干燥24h后,得无色半透明嵌 段共聚物mPEG113-b-PMBC53,产率:91%,玻璃化温度为-9℃;
(2)取250mL茄形瓶,加入mPEG113-b-PMBCn 10.0g,用150mL比 例为1:1的甲醇与四氢呋喃的混合溶剂将其溶解,再向其中加入0.5g Pd/C 和0.5g Pd(OH)2/C共还原剂。体系抽真空通氢气,在氢气氛围下,于25℃ 搅拌反应48h。减压抽滤除去钯碳催化剂,滤液旋蒸至干,然后25℃真空 干燥24h,得到无色透明半结晶共聚物mPEG113-b-PMCC53,产率:81%,玻璃化温度为-12℃;
(3)将DCC 0.7840g(3.80mmol)和DMAP 0.078g溶解于10mL干 燥的四氢呋喃中,然后滴加入含0.8g mPEG113-b-PMCC53的30mL四氢呋 喃中,室温搅拌30min,此时溶液变呈乳白色。然后把含0.143g PHB的四 氢呋喃10mL溶液滴加到上述反应体系中,室温下搅拌24h,之后再向反 应体系中滴加含0.170g DIPAE的四氢呋喃10mL溶液,继续搅拌反应24h。 加入去离子水1mL终止反应,搅拌0.5h后用砂芯漏斗减压抽滤除去DCU, 然后将溶液于-20℃冷冻后再次减压抽滤除去DCU,反复操作4次,直到 DCU完全除去。滤液用无水MgSO4干燥12h后,减压蒸馏除去溶剂,得 到粗产物。再用少量二氯甲烷重新溶解粗产物,然后在冰乙醚中沉降,沉 降操作重复两次,以除尽杂质。最后,沉降物在30℃下真空干燥24h,得 淡黄色聚合物,记为P1。产率:85%,玻璃化温度为17℃;
(4)称量DOX·HCl 20mg于25mL茄形瓶中,加入10mL DMSO使其 溶解,然后用微量注射器加入三乙胺15μL,反应在室温条件下避光搅拌6 h。然后将80mg P1溶解于5mL DMSO中,再滴加到上述溶液中,室温避 光搅拌24h。然后在磁力搅拌条件下滴加20mL去离子水,将混合溶液转 移到MWCO 3500Da的透析袋中,在水中透析72h,每8h换一次水,去 除体系中的杂质,最后将保留液冷冻干燥,得到红色絮状产物DOX-P1。产 率:82%,玻璃化温度为24℃;
(5)将20mg DOX-P1溶解于10mL DMSO中,然后在超声分散的条 件下滴加10mL PBS缓冲溶液(pH 7.4),继续超声15min使纳米粒子溶液 分散均匀,再将该溶液转移到MWCO3500Da透析袋中,在室温下用PBS 缓冲液(pH 7.4)透析72h,每8h更换透析液,整个过程避光进行。所制 备的载药纳米粒子记作DOX-P1 NPs,纳米粒子溶液存放于4℃冰箱内, 所需高浓度纳米粒子溶液可用超滤离心管进行浓缩。
TEM与DLS研究表明:在pH 7.4条件下,DOX-P1 NPs为表面光滑的 球形颗粒,其平均粒径分别为47nm,且TEM所测粒径与DLS结果相吻合。 当DOX-P1 NPs处于pH 5.0环境中时,粒径在1h内由49nm增大到65nm, 并在2h后趋于稳定。
实施例2
聚合物-阿霉素共轭化合物DOX-P1,化学结构式如下:
Figure BDA0003640175480000181
纳米药物载体DOX-P1NPs的制备,包括以下5个步骤:
(1)与实施例1中步骤(1)合成相同;
(2)与实施例1中步骤(2)合成相同;
(3)将DCC 0.7840g(3.80mmol)和DMAP 0.078g溶解于10mL干 燥的四氢呋喃中,然后滴加入含0.8g mPEG113-b-PMCC53的30mL四氢呋 喃中,室温搅拌30min,此时溶液变呈乳白色。然后把含0.195g PHB的四 氢呋喃10mL溶液滴加到上述反应体系中,室温下搅拌24h,之后再向反 应体系中滴加含0.170g DIPAE的四氢呋喃10mL溶液,继续搅拌反应24h。 加入去离子水1mL终止反应,搅拌0.5h后用砂芯漏斗减压抽滤除去DCU, 然后将溶液于-20℃冷冻后再次减压抽滤除去DCU,反复操作5次,直到 DCU完全除去。滤液用无水MgSO4干燥12h后,减压蒸馏除去溶剂,得 到粗产物。再用少量二氯甲烷重新溶解粗产物,然后在冰乙醚中沉降,沉 降操作重复两次,以除尽杂质。最后,沉降物在30℃下真空干燥24h,得 淡黄色聚合物,记为P1。产率:83%,玻璃化温度为19℃;
(4)称量DOX·HCl 25mg于25mL茄形瓶中,加入12mL DMSO使 其溶解,然后用微量注射器加入三乙胺16μL,反应在室温条件下避光搅拌 6h。然后将80mg P1溶解于5mL DMSO中,再滴加到上述溶液中,室温 避光搅拌24h。然后在磁力搅拌条件下滴加20mL去离子水,将混合溶液 转移到MWCO 3500Da的透析袋中,在水中透析72h,每8h换一次水, 去除体系中的杂质,最后将保留液冷冻干燥,得到红色絮状产物DOX-P1。 产率:83%,玻璃化温度为25℃;
(5)与实施例1中步骤(5)制备相同;所制备的载药纳米粒子记作 DOX-P1 NPs。TEM与DLS研究表明:在pH 7.4条件下,DOX-P1-2 NPs 为表面光滑的球形颗粒,其平均粒径分别为49nm,且TEM所测粒径与DLS 结果相吻合。当DOX-P1 NPs处于pH 5.0环境中时,粒径在1h内由50nm 增大到69nm,并在2h后趋于稳定。
如图6所示,随着pH的变化药物载体的粒径发生了明显变化。通过在 侧链中引入叔胺基团,在细胞内酸性环境中可以快速质子化产生电荷斥力, 使纳米颗粒膨胀,进一步促进药物的快速释放,使载药纳米粒子进入肿瘤 细胞后能够迅速释放药物至治疗浓度,从而杀死肿瘤细胞。本发明制备的 载药纳米粒子在体内能够稳定循环,并在肿瘤细胞内酸性环境中释放药物。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对 于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的 精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发 明的保护范围之内。

Claims (8)

1.基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于,包括以下步骤:S1:以聚乙二醇单甲醚(mPEG113)为引发剂,1,8-二氮杂二环十一碳-7-烯(DBU)为催化剂,在一定条件下与环状单体5-甲基-5-苄氧羰基三亚甲基碳酸酯(MBC)通过溶液聚合,制备出嵌段共聚物mPEG113-b-PMBCn;S2:以Pd类催化剂为还原剂,通过加氢还原获得了含羧基嵌段共聚物mPEG113-b-PMCCn;S3:在二环己基碳二亚胺(DCC)与4-二甲氨基吡啶(DMAP)作用下将mPEG113-b-PMCCn与4-羟基苯甲醛和2-(二异丙氨基)乙醇反应制备出共聚物P1;S4:将P1与阿霉素(DOX)在DMSO中反应合成出膨胀型纳米药物载体;S5:采用溶剂交换法制备纳米药物载体粒子。
2.根据权利要求1所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:步骤S1嵌段共聚物mPEG113-b-PMBCn的合成:
1)将mPEG113与BMC按照摩尔比为1:50~60的配比放入茄形瓶中;
2)向茄形瓶中添加30~60mL二氯甲烷,待药品完全溶解后加入与mPEG113等摩尔量的DBU;
3)对体系抽真空充氩气,将反应装置转移至25±5℃油浴锅中磁力搅拌,20~24h后加入mPEG113摩尔量1.2~1.5%的苯甲酸淬灭反应;
4)反应结束后将体系旋蒸浓缩,浓缩至大部分溶剂被蒸馏,在此温度继续操作基本没有溶剂蒸馏出为止,在甲醇中沉降析出聚合物,过滤出沉淀后,在20±5oC真空干燥,得嵌段共聚物mPEG113-b-PMBCn
3.根据权利要求1所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:步骤S2含羧基嵌段共聚物mPEG113-b-PMCCn的合成:
1)采用步骤S1制备的mPEG113-b-PMCCn,在茄形瓶中用甲醇和四氢呋喃按体积比1:1的混合溶剂将mPEG113-b-PMCCn溶解,制成共聚物溶液;
2)向共聚物溶液中加入mPEG113-b-PMCCn总重量5~8%的Pd系催化剂,Pd催化剂由Pd/C和Pd(OH)2/C按质量比1:1混合制成;体系抽真空通氢气,在氢气氛围下,25±5℃磁力搅拌反应30~48h;
3)减压抽滤除去Pd系催化剂,滤液进一步旋转蒸发至干,然后25±5℃真空干燥,得含羧基嵌段共聚物mPEG113-b-PMCCn
4.根据权利要求1所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:步骤S3嵌段共聚物P1的合成:
1)将DCC:DMAP质量比8:1-12:1溶于二氯甲烷中制成催化剂有机溶液;
2)采用步骤S2制备的含羧基嵌段共聚物mPEG113-b-PMCCn,将其溶于四氢呋喃中制成共聚物有机溶液;
3)将步骤1)制备的催化剂有机溶液滴加到步骤2)制备的共聚物有机溶液中,滴加量按mPEG113-b-PMCCn与DCC的摩尔比为1:1.0~1.2,在25±5℃条件下搅拌20~30min,此时溶液变为乳白色;
4)将PHB溶于四氢呋喃中制成有机溶液;
5)将DIPAE溶于四氢呋喃中制成有机溶液;
6)将步骤4)制备的PHB溶液缓慢滴加到步骤3)制备的溶液中,PHB的添加摩尔量为mPEG113-b-PMCCn摩尔量的25~35%,滴加结束后在20±5℃搅拌反应20~24h;
7)将步骤5)制备的DIPAE溶液再缓慢滴加到步骤6)的反应体系中,DIPAE的添加为mPEG113-b-PMCCn摩尔量的25~35%,滴加结束后在20±5℃搅拌反应20~24h,然后加入去离子水1~2mL终止反应,继续搅拌0.5~1h;
8)用砂芯漏斗减压抽滤除去反应生成的二环己基脲(DCU),;滤液用无水MgSO4干燥后,减压去除溶剂,得到粗产物;用少量二氯甲烷重新溶解粗产物,然后在冰乙醚中沉降;将沉降产物全部收集,在25±5℃条件下真空干燥20~24h,得到淡黄色聚合物,记为P1。
5.根据权利要求4所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:所述PHB、DIPAE与mPEG113-b-PMCCn的反应投料比不同,获得不同的x,y,z聚合度的P1。
6.根据权利要求1所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:步骤S4聚合物-阿霉素共轭化合物DOX-P1的合成:
1)将DOX·HCl溶于DMSO中制成有机溶液,然后用微量注射器加入少量三乙胺,在20±5℃条件下避光搅拌6~10h;
2)将步骤S3制备的聚合物P1溶于DMSO中制成有机溶液;
3)将步骤2)制备的聚合物P1溶液缓慢滴加到步骤1)制备的DOX·HCl溶液中,DOX·HCl添加的质量为聚合物P1质量的25~30%,在20±5℃条件下避光搅拌20~24h;反应结束后,在体系中加入20~30mL去离子水,将混合溶液转移到透析袋中,在去离子水中透析72h,每8~10h换一次水,以去除体系中的杂质,最后将保留液冻干,得红色絮状产物DOX-P1。
7.根据权利要求1所述的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体的制备方法,其特征在于:步骤S5纳米药物载体DOX-P1 NPs的制备:
1)采用溶剂交换法制备纳米粒子,将DOX-P1溶解于DMSO中,然后在超声分散的条件下滴加PBS缓冲溶液,继续超声15~20min使纳米粒子溶液分散均匀;
2)将步骤1)制备的溶液转移到透析袋中,在20±5℃下用PBS缓冲液透析72h,每8~10h更换透析液,整个过程避光进行,制备获得载药纳米粒子DOX-P1 NPs。
8.根据前述任意一项所述的方法制备的基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体,其分子设计为:
Figure RE-FDA0003803857660000041
其中n=53,x+y+z=53。
CN202210512911.7A 2022-05-12 2022-05-12 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法 Pending CN115093556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210512911.7A CN115093556A (zh) 2022-05-12 2022-05-12 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210512911.7A CN115093556A (zh) 2022-05-12 2022-05-12 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法

Publications (1)

Publication Number Publication Date
CN115093556A true CN115093556A (zh) 2022-09-23

Family

ID=83287158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210512911.7A Pending CN115093556A (zh) 2022-05-12 2022-05-12 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法

Country Status (1)

Country Link
CN (1) CN115093556A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106265509A (zh) * 2016-08-10 2017-01-04 国家纳米科学中心 一种pH和Redox双响应两亲性嵌段共聚物及其制备方法和用途
CN106317416A (zh) * 2016-09-07 2017-01-11 国家纳米科学中心 一种双pH响应的两亲性共聚物及其制备方法和用途
AU2020100701A4 (en) * 2020-05-05 2020-06-11 Chai, Junyan Mr Fabrication of a pH-responsive nanoparticle for drug delivery
CN111991563A (zh) * 2020-09-03 2020-11-27 西北师范大学 pH响应型纳米药物递送系统及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106265509A (zh) * 2016-08-10 2017-01-04 国家纳米科学中心 一种pH和Redox双响应两亲性嵌段共聚物及其制备方法和用途
CN106317416A (zh) * 2016-09-07 2017-01-11 国家纳米科学中心 一种双pH响应的两亲性共聚物及其制备方法和用途
AU2020100701A4 (en) * 2020-05-05 2020-06-11 Chai, Junyan Mr Fabrication of a pH-responsive nanoparticle for drug delivery
CN111991563A (zh) * 2020-09-03 2020-11-27 西北师范大学 pH响应型纳米药物递送系统及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENHUI LIANG 等: "pH-Responsive expandable polycarbonate-doxorubicin conjugate nanoparticles for fast intracellular drug release" *
KRISHNA KATTEL 等: "Biodistribution of Self-Assembling Polymer Gemcitabine Conjugate after Systemic Administration into Orthotopic Pancreatic Tumor Bearing Mice" *
牛立敬 等: "pH响应双载药抗肿瘤药物胶束的制备及性能研究" *

Similar Documents

Publication Publication Date Title
CN108175860B (zh) 一种酯酶响应型的多聚姜黄素硫代二丙酸共聚物前药纳米胶束及其制备方法和应用
CN101474411B (zh) 一种两亲性超支化聚酯为载体的抗肿瘤前药及制备方法
CN104758247A (zh) 一种pH响应聚合物混合胶束及其应用
Li et al. Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier
CN101007174A (zh) 一种生物降解高分子-多西紫杉醇键合药及其制备方法
Li et al. Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P (DMAEMA-co-PEGMA)) 16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin
Lu et al. Synthesis of self-assemble pH-responsive cyclodextrin block copolymer for sustained anticancer drug delivery
CN109134870B (zh) 一种pH响应聚合物载体及其制备的胶束、制备方法和应用
CN104415010A (zh) 一种含阿霉素的抗肿瘤胶束的制备方法
KR101818377B1 (ko) 활성 산소종 관련 질환의 진단/치료용 디셀레나이드 가교결합을 함유한 블록 공중합체 및 이의 제조방법
CN110628035B (zh) 酶和pH双重响应性共聚物及其制备方法和应用
CN109400830B (zh) 一种pH可解离轻度交联聚合物纳米材料及其制备方法和应用
CN115093556A (zh) 基于双亲性聚碳酸酯膨胀型快速释药纳米药物载体及其制备方法
CN104415013A (zh) 新型抗肿瘤含阿霉素的高分子药物
CN112546236B (zh) 一种pH敏感的双药物骨架聚合物前药及其制备方法和应用
CN113262309B (zh) 一种负载抗肿瘤药物的超支化-嵌段共接枝药物载体及其制备方法和应用
CN112661961B (zh) 两亲性聚噁唑啉共聚物、其制备方法及应用
CN101632834A (zh) 疏水药物肿瘤靶向传递的磁性纳米载体及其制备方法
CN113912841A (zh) 一种pH和Redox双响应两嵌段两亲性聚合物前药及其制备方法
CN104415012A (zh) 一种医用高分子药物的制备方法
CN104415339A (zh) 一种自组装靶向纳米药物载体胶束
CN107744503B (zh) 酶敏感性两亲性聚酯MePEG-Peptide-PER-CL给药纳米粒的制备方法
CN111410757A (zh) 一种可降解及环境响应性复合物微凝胶的制备方法
AYDIN Engineering of pH-sensitive, cross-linked micelles for drug delivery.
CN114940751A (zh) 基于双亲性聚碳酸酯电荷反转型纳米药物载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination