CN115090307A - 一种磷酸银复合光催化剂及其制备方法 - Google Patents

一种磷酸银复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN115090307A
CN115090307A CN202210943484.8A CN202210943484A CN115090307A CN 115090307 A CN115090307 A CN 115090307A CN 202210943484 A CN202210943484 A CN 202210943484A CN 115090307 A CN115090307 A CN 115090307A
Authority
CN
China
Prior art keywords
composite photocatalyst
preparation
solution
silver phosphate
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210943484.8A
Other languages
English (en)
Inventor
马旭
李洪峰
诸慧
陈钢
刘耀轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoneng Nanjing Electric Power Test Research Co ltd
Original Assignee
Guoneng Nanjing Electric Power Test Research Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoneng Nanjing Electric Power Test Research Co ltd filed Critical Guoneng Nanjing Electric Power Test Research Co ltd
Priority to CN202210943484.8A priority Critical patent/CN115090307A/zh
Publication of CN115090307A publication Critical patent/CN115090307A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种复合光催化剂,由Ag和Ag3PO4组成。本发明还提供了复合光催化剂的制备方法,将制备好的Ag3PO4与聚乙烯吡咯烷酮K‑30混合均匀后加入到乙二醇溶液中,在微波化学反应仪中加热一段时间,将产物用去离子水和无水乙醇洗涤多次后真空干燥,得到Ag/Ag3PO4复合光催化剂。将制备好的Ag3PO4悬浮于去离子水中,搅拌状态下用氙灯照射10mi n,产物用去离子水和无水乙醇洗涤多次后真空干燥,得到Ag/Ag3PO4复合光催化剂。通过微波辅助还原法制备的Ag/Ag3PO4复合光催化剂降解水中环境雌激素双酚A的活性较高,比相同条件下Ag3PO4的活性高接近两倍,降解能力也明显优于光致还原法制备的Ag/Ag3PO4

Description

一种磷酸银复合光催化剂及其制备方法
技术领域
本发明属于化学领域,涉及一种催化剂,具体来说是一种复合光催化剂及其制备方法。
背景技术
磷酸银(Ag3PO4)光催化剂是一种在可见光照射下具有光催化活性的光催化剂,但其光催化降解水中环境雌激素双酚A的活性较差,限制了它的实际应用。
因此,有必要提供一种磷酸银复合光催化剂及其制备方法解决上述技术问题。
发明内容
本发明提供一种磷酸银复合光催化剂及其制备方法,解决了光催化降解环境雌激素双酚A的活性较差,限制了它的实际应用的问题。
为解决上述技术问题,本发明提供的一种磷酸银复合光催化剂为Ag和Ag3PO4组成的复合光催化材料,其中Ag的重量份为10-30克,Ag3PO4的重量份为50-70克。
优选的,所述的Ag或Ag3PO4由Ag3PO4在微波化学反应仪中加热不同时间进行制备。
优选的,磷酸银复合光催化剂的制备方法,包括以下步骤:
S1、共沉淀法制备Ag3PO4:将AgNO3和Na2HPO4·12H2O分别溶解于超纯水中,制的浓度均为0.1mol/L的溶液,将40mL Na2HPO4·12H2O溶液逐滴加至60mLAgNO3溶液中,避光下磁力搅拌1h,将沉淀离心多次得到Ag3PO4光催化剂;
S2、共沉淀法制备Ag3PO4:称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,向上述AgNO3溶液中逐滴滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后避光条件下搅拌2h,减压抽滤、洗涤,65℃真空干燥12h即得Ag3PO4光催化剂;
S3、银氨辅助法制备Ag3PO4:称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,逐滴滴加一定量的稀氨水使溶液由混浊变为无色透明液体,搅拌10min后滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后洗涤、干燥即得Ag3PO4光催化剂;
S4、微波加热法制备Ag/Ag3PO4复合光催化剂:将上述方法得到的Ag3PO4与1.2g聚乙烯吡咯烷酮K-30(PVP)混合均匀后加入到90mL乙二醇中,避光下磁力搅拌30min,缓慢滴加吡啶0.2mL后在微波化学反应仪中加热一段时间,保持120℃,将产物用去离子水和无水乙醇洗涤多次,然后在70℃下真空干燥12h,得到Ag/Ag3PO4复合光催化剂。
S5、光致还原法制备Ag/Ag3PO4复合光催化剂:将上述方法S1得到的Ag3PO4悬浮于200mL去离子水中,在磁力搅拌状态下用300W氙灯(滤掉420nm以下紫外光)照射10min,将产物用去离子水和无水乙醇洗涤多次,在70℃下真空干燥12h,得到Ag/Ag3PO4复合光催化剂。
优选的,所述步骤S4中时间控制在20、30、40、50或60min。
与相关技术相比较,本发明提供的磷酸银复合光催化剂及其制备方法具有如下有益效果:
本发明提供一种磷酸银复合光催化剂及其制备方法,一种简单的沉淀法成功地制备出Ag3PO4,在此基础上采用微波化学反应仪加热制备出Ag/Ag3PO4复合光催化剂,所制备的复合光催化剂光催化降解环境雌激素双酚A的反应活性较高,在可见光下光催化活性比纯Ag3PO4高出两倍,而且显著降低了贵金属银的使用量。
本发明和已有技术相比,其技术进步是显著的。本发明在磷酸银光催化剂的基础之上,合成出了一种活性较高的Ag/Ag3PO4复合光催化剂。本发明的制备方法简单,且产品的光催化活性高,不需要复杂昂贵的设备、合成条件温和。有利于大规模的推广,可用于水中环境雌激素双酚A的降解。
附图说明
图1是本发明的Ag/Ag3PO4复合光催化剂的X射线衍射(XRD)图。
图2是本发明的Ag/Ag3PO4复合光催化剂的紫外-可见漫反射谱。
图3是本发明的Ag/Ag3PO4复合光催化剂的扫描电镜(SEM)图和表面能谱(EDX)分析。
图4是本发明的Ag/Ag3PO4复合光催化剂的光电流密度-时间曲线。
图5是不同Ag3PO4光催化剂利用可见光(波长大于420nm)光降解双酚A的活性情况。
图6是不同Ag/Ag3PO4复合光催化剂利用可见光(波长大于420nm)光降解双酚A的活性情况。
图7是本发明的Ag/Ag3PO4复合光催化剂作为光催化剂,不同可见光(波长大于420nm)光源强度对双酚A降解的影响。
图8是本发明的Ag/Ag3PO4复合光催化剂作为光催化剂,不同催化剂剂量对双酚A降解的影响。
图9是本发明的Ag/Ag3PO4复合光催化剂作为光催化剂,不同双酚A初始浓度对降解的影响。
具体实施方式
实施例1
光催化材料的制备步骤如下:称取Ag3PO4和Na2HPO4·12H2O分别溶解于超纯水中,制得浓度均为0.1mol/L的溶液,将40mL Na2HPO4·12H2O溶液逐滴加至60mLAgNO3溶液中,避光下磁力搅拌1h,将沉淀离心多次得到Ag3PO4光催化剂。
称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,向上述AgNO3溶液中逐滴滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后避光下搅拌2h,减压抽滤、洗涤,65℃真空干燥12h即得Ag3PO4光催化剂;
称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,逐滴滴加一定量的稀氨水使溶液由混浊变为无色透明液体,搅拌10min后滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后洗涤、干燥即得Ag3PO4光催化剂;
将上述方法1制备好的Ag3PO4与1.2g聚乙烯吡咯烷酮K-30(PVP)混合均匀后加入到90mL乙二醇中,避光下磁力搅拌30min,缓慢滴加吡啶0.2mL后在微波化学反应仪中加热一段时间(时间控制在20、30、40、50和60min),保持120℃,将产物用去离子水和无水乙醇洗涤多次,然后在70℃下真空干燥12h,得到Ag/Ag3PO4光催化剂,标记为AAP-20、AAP-30、AAP-40、AAP-50和AAP-60。
将上述方法1制备好的Ag3PO4悬浮于200ml去离子水中,在磁力搅拌状态下用300W氙灯(滤掉420nm以下紫外光)照射10min,将产物用去离子水和无水乙醇离心洗涤多次,在70℃下真空干燥12h,得到Ag/Ag3PO4光催化剂,标记为AAP-G。
所述的Ag/Ag3PO4复合光催化剂的X射线衍射(XRD)图如图1所示,紫外-可见漫反射谱如图2所示,扫描电镜(SEM)图和表面能谱(EDX)分析如图3所示,光电流密度-时间曲线如图4所示。
实施例2
将得到的Ag/Ag3PO4复合光催化剂进行双酚A的光催化降解实验。将制备好的催化剂加入到250mL双酚A溶液中,盖上玻璃片,开启磁力搅拌器,调节转速为350r/min,在光照降解实验开始前,避光下磁力搅拌15min确保催化剂均匀悬浮于溶液中达到吸附-脱附平衡,氙灯打开后光线自上而下照入反应容器中,每隔一定时间取15mL左右反应液,经0.22μm滤膜过滤后测定TOC。根据总有机碳分析仪测定双酚A溶液中总有机碳(TOC)的变化以检测双酚A溶液的降解程度。光源利用300W氙灯,使用滤光片使入射光为可见光(420nm<<800nm)。自来水换热玻璃皿上有2个小孔进出冷却水以保证反应体系温度恒定,下方为磁力搅拌器使反应容器中水流保持旋转状态。
实施例3
不同方法制备的Ag3PO4在可见光下对双酚A的降解情况如图5所示,双酚A初始浓度为10mg/L,催化剂剂量为500mg/L,催化剂在黑暗搅拌状态下对双酚A的吸附能力较弱,不同形貌Ag3PO4样品降解双酚A的活性均优于TiO2(P25),Ag3PO4-0活性最好,光反应60min时双酚A溶液的TOC去除率接近77.9%,加入Ag3PO4-1的双酚A溶液光反应60min时TOC去除率为71.6%,Ag3PO4-2的活性最差,光反应60min时TOC去除率只有41.1%,Ag3PO4-0、Ag3PO4-1、Ag3PO4-2分别为方法S1、S2、S3制备的Ag3PO4光催化剂。
实施例4
不同样品在可见光下对双酚A的降解情况如图6所示,双酚A初始浓度为10mg/L,催化剂剂量为400mg/L,微波加热法合成的Ag/Ag3PO4降解性能均优于Ag3PO4和光照法合成的Ag/Ag3PO4,微波加热50min时合成的Ag/Ag3PO4光催化性能最好,相比Ag3PO4光照30min对双酚A的TOC去除率,微波加热50min的Ag/Ag3PO4比其大接近2倍。
实施例5
不同光源强度对双酚A降解的影响如图7所示,取10mg/L的双酚A溶液250mL,Ag/Ag3PO4的剂量为400mg/L,设置氙灯光源电流强度分别为14A、17A、20A,当光源电流强度由14A提高到17A光照30min时,光强提高21.4%TOC去除率仅提高10.1%,而光源电流强度由17A提高到20A光照30min时,光强提高17.6%TOC去除率却提高了28.9%,随着光源强度的增加,双酚A的TOC去除率逐渐增大,在光源强度为20A时双酚A的降解程度达到最大。
实施例6
不同催化剂剂量对双酚A降解的影响如图8所示,在双酚A初始浓度10mg/L,光源电流强度20A下,未使用Ag/Ag3PO4时,光照120min后双酚A的降解率仅接近3%,调整催化剂浓度分别为200mg/L、300mg/L、400mg/L、500mg/L,Ag/Ag3PO4的浓度达到400mg/L时,反应半小时双酚A的降解率即可达到80%左右,反应时间的增长并没有明显增加双酚A的降解率,增加Ag/Ag3PO4剂量至500mg/L降解120min后,双酚A的降解率没有发生明显提高。因此,认为400mg/L是催化剂最佳剂量。
实施例7
双酚A不同初始浓度对降解的影响如图9所示,在光源电流强度为20A,Ag/Ag3PO4剂量为400mg/L下,调整双酚A的初始浓度为5mg/L、10mg/L、15mg/L、20mg/L、25mg/L,双酚A初始浓度为10mg/L时光照30min TOC去除率为78.69%,而双酚A初始浓度为5mg/L时为61.98%,两种初始浓度下随着光照时间的延长,双酚A不再降解,初始浓度为15mg/L、20mg/L、25mg/L时,光照30minTOC去除率分别为51.42%、46.8%、27.96%,随着光照时间的延长,双酚A仍然发生降解,因此,认为初始浓度为10mg/L的双酚A溶液降解30min是实验最佳条件。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种磷酸银复合光催化剂,其特征在于:为Ag和Ag3PO4组成的复合光催化材料,其中Ag的重量份为10-30克,Ag3PO4的重量份为50-70克。
2.根据权利要求1所述的磷酸银复合光催化剂,其特征在于,所述的Ag/Ag3PO4由Ag3PO4在微波化学反应仪中加热不同时间进行制备,对比实验的Ag/Ag3PO4由Ag3PO4悬浮于去离子水中由可见光照射10min来制备。
3.根据权利要求1-2任一项所述的磷酸银复合光催化剂的制备方法,其特征在于,包括以下步骤:
S1、共沉淀法制备Ag3PO4
S2、共沉淀法制备Ag3PO4
S3、银氨辅助法制备Ag3PO4
S4、微波加热法制备Ag/Ag3PO4复合光催化剂。
S5、光致还原法制备Ag/Ag3PO4复合光催化剂。
4.根据权利要求3所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S1、共沉淀法制备Ag3PO4:将AgNO3和Na2HPO4·12H2O分别溶解于超纯水中,制的浓度均为0.1mol/L的溶液,将40mL Na2HPO4·12H2O溶液逐滴加至60mLAgNO3溶液中,避光下磁力搅拌1h,将沉淀离心多次得到Ag3PO4光催化剂。
5.根据权利要求3所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S2、共沉淀法制备Ag3PO4:称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,向上述AgNO3溶液中逐滴滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后避光条件下搅拌2h,减压抽滤、洗涤,65℃真空干燥12h即得Ag3PO4光催化剂。
6.根据权利要求3所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S3、银氨辅助法制备Ag3PO4:称取1.02g AgNO3加入到40mL去离子水中,开启磁力搅拌器持续搅拌至完全溶解,逐滴滴加一定量的稀氨水使溶液由混浊变为无色透明液体,搅拌10min后滴加30mL0.1mol/L的Na3PO4溶液,滴加完成后洗涤、干燥即得Ag3PO4光催化剂。
7.根据权利要求3所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S4、微波加热法制备Ag/Ag3PO4复合光催化剂:将上述方法S1得到的Ag3PO4与1.2g聚乙烯吡咯烷酮K-30(PVP)混合均匀后加入到90mL乙二醇中,避光下磁力搅拌30min,缓慢滴加吡啶0.2mL后在微波化学反应仪中加热一段时间,保持120℃,将产物用去离子水和无水乙醇洗涤多次,然后在70℃下真空干燥12h,得到Ag/Ag3PO4复合光催化剂。
8.根据权利要求3所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S5、光致还原法制备Ag/Ag3PO4复合光催化剂:将上述方法S1得到的Ag3PO4悬浮于200mL去离子水中,在磁力搅拌状态下用300W氙灯(滤掉420nm以下紫外光)照射10min,将产物用去离子水和无水乙醇洗涤多次,在70℃下真空干燥12h,得到Ag/Ag3PO4复合光催化剂。
9.根据权利要求7所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S4中微波加热时长为50min。
10.根据权利要求7所述的磷酸银复合光催化剂的制备方法,其特征在于,所述S4中避光下磁力搅拌30min,缓慢滴加吡啶0.2mL后在微波化学反应仪中加热时间为50min。
CN202210943484.8A 2022-08-08 2022-08-08 一种磷酸银复合光催化剂及其制备方法 Pending CN115090307A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210943484.8A CN115090307A (zh) 2022-08-08 2022-08-08 一种磷酸银复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210943484.8A CN115090307A (zh) 2022-08-08 2022-08-08 一种磷酸银复合光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN115090307A true CN115090307A (zh) 2022-09-23

Family

ID=83300165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210943484.8A Pending CN115090307A (zh) 2022-08-08 2022-08-08 一种磷酸银复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN115090307A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000594A (zh) * 2010-11-26 2011-04-06 大连理工大学 可见光光催化剂银和磷酸银的制备方法及其应用
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN103626146A (zh) * 2013-12-13 2014-03-12 扬州大学 一种多面体磷酸银的制备方法
CN108067279A (zh) * 2017-11-03 2018-05-25 镇江市高等专科学校 纳米复合材料、其制备方法及其应用
CN109865523A (zh) * 2019-04-10 2019-06-11 安徽建筑大学 一种降解罗丹明b的复合光催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000594A (zh) * 2010-11-26 2011-04-06 大连理工大学 可见光光催化剂银和磷酸银的制备方法及其应用
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN103626146A (zh) * 2013-12-13 2014-03-12 扬州大学 一种多面体磷酸银的制备方法
CN108067279A (zh) * 2017-11-03 2018-05-25 镇江市高等专科学校 纳米复合材料、其制备方法及其应用
CN109865523A (zh) * 2019-04-10 2019-06-11 安徽建筑大学 一种降解罗丹明b的复合光催化剂的制备方法

Similar Documents

Publication Publication Date Title
Hoseini et al. Photocatalytic degradation of 2, 4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes
Zhang et al. Immobilized NC/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: From batch to continuous process
CN108855076B (zh) 一种Ag/ZnO复合光催化剂及其制备方法和应用
Neves et al. Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation
Xing et al. Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation
Dong et al. AgBr@ Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability
CN107456983B (zh) 一种Ag/AgCl/TiO2复合光催化材料及其制备方法和应用
CN110064408B (zh) 一种负载了硫化铁的α晶型羟基氧化铁催化剂的制备方法
Chen et al. Large-scale synthesis and enhanced visible-light-driven photocatalytic performance of hierarchical Ag/AgCl nanocrystals derived from freeze-dried PVP–Ag+ hybrid precursors with porosity
CN107758639B (zh) Keggin型饱和磷钼酸盐及其包覆材料的制备与光催化应用
Luenloi et al. Photodegradation of phenol catalyzed by TiO2 coated on acrylic sheets: kinetics and factorial design analysis
CN108993550A (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
Qi et al. In situ fabrication of ZnO@ N-doped nanoporous carbon core-shell heterostructures with high photocatalytic and adsorption capacity by a calcination of ZnO@ MOF strategy
Wang et al. Hydrothermal in situ preparation of the copper phthalocyanine tetrasulfonate modified titanium dioxide photocatalyst
Yuan et al. Degradation of bisphenol A through Ti–BiOI/ZIF-8/peroxymonosulfate (PMS): catalyst preparation, experimental design and catalytic mechanism
Ahirwar et al. Synthesis of mesoporous TiO 2 and its role as a photocatalyst in degradation of indigo carmine dye
Silva Ribeiro et al. Facile solvo-hydrothermal synthesis of Bi 2 MoO 6 for the photocatalytic reduction of CO 2 into ethanol in water under visible light
Zhang et al. Promoting the Photo-Fenton catalytic activity with carbon dots: Broadening light absorption, higher applicable pH and better reuse performance
Xueyan et al. New insight into enhanced photocatalytic selectivity of g-C3N4 by nitrogen vacancy introduction: experimental study and theoretical calculation
CN114933709A (zh) 一种高收率UiO-66金属有机框架材料的制备方法及应用
CN107417503A (zh) 一种利用太阳光氧化芳香醇制取芳香醛的方法
CN108479812B (zh) 一种AgInS2/Bi2WO6异质结纳米片的制备方法和应用
CN108043390A (zh) 纳米片Bi2WO6/SnO2催化降解液相污染物的方法
CN115090307A (zh) 一种磷酸银复合光催化剂及其制备方法
Liu et al. Effective construction of Cu, S-CQDs/BiVO4 composites through a facile and efficient route

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination