CN108067279A - 纳米复合材料、其制备方法及其应用 - Google Patents

纳米复合材料、其制备方法及其应用 Download PDF

Info

Publication number
CN108067279A
CN108067279A CN201711068147.4A CN201711068147A CN108067279A CN 108067279 A CN108067279 A CN 108067279A CN 201711068147 A CN201711068147 A CN 201711068147A CN 108067279 A CN108067279 A CN 108067279A
Authority
CN
China
Prior art keywords
silver
nanocomposite
preparation
molybdate
carbon nitrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711068147.4A
Other languages
English (en)
Inventor
唐国钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang College
Original Assignee
Zhenjiang College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang College filed Critical Zhenjiang College
Priority to CN201711068147.4A priority Critical patent/CN108067279A/zh
Publication of CN108067279A publication Critical patent/CN108067279A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Water Supply & Treatment (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种纳米复合材料纳米复合材料、其制备方法及其用途,该复合材料为三元纳米复合物,其中增强相为碳氮烯、钼酸银,基础成分为Ag3PO4,其中碳氮烯的质量百分含量为2%~12%,钼酸银的质量百分含量为10%‑20%,余量为Ag3PO4。将固相烧结合成的g‑C3N4均匀分散到银氨溶液中形成碳氮烯‑银氨混合溶液;采用滴加的方式引入磷酸盐、钼源与表面活性剂的混合溶液,常温反应2‑4h,用去离子水、无水乙醇反复清洗产物,干燥、即得。提升磷酸银基复合光催化材料的光催化性能及稳定性,产率高,拓展其在光催化处理工业废水及光催化分解水产氧等领域的应用。

Description

纳米复合材料、其制备方法及其应用
技术领域
本发明涉及纳米材料领域,具体地,是一种碳氮烯、钼酸银共修饰磷酸银复合物、其制备方法及其作为纳米光催化剂的用途。
背景技术
磷酸银(Ag3PO4)作为银基光催化材料典型代表,由于具有较窄的带隙能量、较强的可见光吸收能力和明显的可见光光催化活性,因而被作为利用太阳能进行境净化和能源清洁生产的最有潜力的光催化剂之一。然而Ag3PO4微溶于水及稳定性较差的特点抑制了其广泛的应用,因此发展高稳定性与高性能的 Ag3PO4基复合光催化材料是当前光催化领域研究的热点。
目前,Ag3PO4基复合光催化材料以二元复合材料为主,如引入g-C3N4,利用其合适的带隙结构和本身的类石墨结构来提高Ag3PO4的光催化性能,同时 g-C3N4与Ag3PO4存在合适的能带匹配结构,通过两者的复合可以提高光生电子空穴的分离效率,进而提高其光催化性能。
公开号为CN103464191A的中国专利文件,报道一种石墨型氮化碳酸银复合光催化材料及其制备方法,其对有机染料具有较好降解作用。此外,银基光催化材料中的固溶体复合,可以利用固溶体效应来调节价带和导带的电势位置,从而进一步提升复合材料的光催化性能。
Ag2MoO4作为新颖的银基光催化材料,在近期受到了广泛的关注,大量的文献证明了其优异的性能。公开号为CN105771988A的中国专利文件报道了一种高催化活性分等级结构钼酸银的制备方法。公开号为CN105728010A的中国专利文件报道了一种抗菌钼酸银石墨相氮化碳复合可见光催化剂的制备方法,表明了其在光催化领域的应用前景。发明人也成功合成了Ag3PO4/Ag2MoO4固溶体,光催化实验也证明其对有机染料具有很好的降解作用,这些成果已发表在催化学报(Chinese Journal of Catalysis 38(2017)337–347)。
发明内容
针对现有技术的不足,本发明的目的之一在于提供一种复合纳米材料,采用碳氮烯、钼酸银共修饰磷酸银,形成三元增强复合光催化剂,提升磷酸银基复合光催化材料的光催化性能及稳定性,产率高,拓展其在光催化处理工业废水及光催化分解水产氧等领域的应用。
本发明的另一个目的在于提供一种复合纳米材料的制备方法,成本低廉、工艺简单。
本发明的另一个目的在于提供一种复合纳米材料用作光催化剂的用途。
上述目的是通过如下技术方案实现的:
一种纳米复合材料,为三元纳米复合物,其中增强相为碳氮烯 (g-C3N4)、钼酸银,基础相为Ag3PO4,钼酸银与磷酸银颗粒均匀的生长在g-C3N4纳米片表面;其中碳氮烯的质量百分含量为2%~ 12%,钼酸银的质量百分含量为10%-20%,余量为Ag3PO4
具体而言,生长在g-C3N4纳米片表面的磷酸银颗粒为微米级,而钼酸银为纳米级的颗粒。
纳米复合材料的制备方法,步骤如下:
(1)碳氮烯-银氨混合溶液的配制:将固相烧结合成的g-C3N4均匀分散到银氨溶液中形成碳氮烯-银氨混合溶液;
其中碳氮烯的添加量为1-4g/L;
银氨溶液中Ag+的前体为AgNO3,浓度为1-2mol/L,氨水质量浓度为10%-20%;
分散条件:避光搅拌6-10h;
(2)碳氮烯-银氨/钼酸银/磷酸银的合成:向步骤(1)的反应液中采用滴加的方式引入磷酸盐、钼源与表面活性剂的混合溶液,常温反应2-4h,用去离子水、无水乙醇反复清洗产物,干燥后得到反应产物。
步骤(2)中磷酸盐为Na2HPO4、NaH2PO4或者NH4H2PO4,其添加量为0.3-0.8mol/L;
钼源为MoO3、(NH4)2MoO4或MoCl5,其添加量为0.1-0.2 mol/L;
表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、聚乙二醇或者泊洛沙姆;其中聚乙烯吡咯烷酮或十六烷基三甲基溴化铵作为表面活性剂的添加量为0.5g/L-5g/L;聚乙二醇或者泊洛沙姆作为表面活性剂的添加量为0.2g/L-2g/L。
上述的纳米复合材料作为光催化剂,应用于能源领域,如光催化分解水产氧;环境保护领域,如有机废水中有机染料、酚类、抗生素、重金属离子的降解及空气中有机污染物的降解,增强相 Ag2MoO4和g-C3N4的加入,产氧效率为纯Ag3PO4的2-3倍,且光催化分解水产氧的能力随时间的延长而增强。
本发明采用简易的工艺合成高光催化性能石墨烯/钼酸银/磷酸银纳米复合材料,所得复合纳米材料对工业废水中的酚类与抗生素具有很好的降解效率,40min内的降解率可达60%以上;应用于光催化分解水产氧时,其产氧效率为纯Ag3PO4的2-3倍,光催化时间为0.5-1h,因此在光催化、气敏、污水处理等领域中具有重要的应用,有望用于大规模的工业生产。
附图说明
图1a为纯g-C3N4、纯Ag3PO4、Ag2MoO4和实施例1-3的不同g-C3N4含量的g-C3N4/Ag2MoO4/Ag3PO4复合材料的XRD图谱,从图中可以看出,纯Ag3PO4和Ag2MoO4的衍射峰与分别与立方相Ag3PO4的标准卡片PDF#06-0505和立方相Ag2MoO4的标准卡片PDF#08-0473相一致,并且都具有良好的结晶性能。纯 g-C3N4在2θ角度27.4°出现一个强特征峰,对应六方相g-C3N4的(002)晶面 (JCPDS NO.87-1526)。在g-C3N4/Ag2MoO4/Ag3PO4复合光催化剂XRD图谱中,Ag3PO4特征衍射峰的位置没有发生变化,然而我们并没有发现纯g-C3N4和 Ag2MoO4的特征衍射峰,这主要是由于g-C3N4和Ag2MoO4含量较低。图1b是氧化石墨烯/钼酸银/磷酸银复合物的XPS全谱图,进一步证明了样品中Ag、 C、N、P、Mo、O元素的存在,进一步证实g-C3N4、Ag3PO4及Ag2MoO4三元复合材料的形成。
图2为碳氮烯/钼酸银/磷酸银复合材料的投射电镜图(TEM),可以看出钼酸银与磷酸银颗粒均匀的生长在g-C3N4纳米片表面,其中微米级的颗粒为磷酸银,而钼酸银为纳米级的颗粒。
图3为本发明制得的碳氮烯/钼酸银/磷酸银复合光催化剂降解酚类与抗生素曲线,由图可知,可见光条件下,碳氮烯/钼酸银/磷酸银对苯酚与四环素都具有很好的降解效果,在40min内分解降解58%和75%。
图4为纯Ag3PO、Ag2MoO4和g-C3N4/Ag2MoO4/Ag3PO4复合材料光催化分解水产氧的能力随时间变化的曲线图。从图中可以看出,在50min的光照后,纯Ag2MoO4与纯Ag3PO4产氧量均较低,约为7umol·L-1和16umol·L-1,而在三元体系中,随着Ag2MoO4和g-C3N4的加入,产氧量得到进一步提升,产氧量最高可达39 umol·L-1,是纯Ag3PO4产氧量的2.4倍。
具体实施方式
以下通过具体实施方式进一步描述本发明,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
本发明所采用的所有试剂均为商业产品,可经过市售途径获得。
实施例1:
(1)将10%氨水溶液逐滴滴加到40mL、浓度为2mol/L的AgNO3溶液中,得到银氨溶液;
将0.09g g-C3N4加入上述银氨溶液,避光的条件下持续搅拌10h后形成石墨烯-银氨混合溶液;
(2)0.01mol NaH2PO4与0.0012mol Na2MoO4溶于50mL的去离子水中,超声1h后形成混合液,再将十六烷基三甲基溴化铵1g 加入该溶液,继续磁力搅拌3h。在保持磁力搅拌的条件下,将上述溶液逐滴滴加到步骤(1)的石墨烯-银氨混合溶液中,控制滴加速度2s/滴。待反应完全后,继续搅拌6h,将所获得的墨绿色沉淀物用乙醇和去离子水反复洗涤离心,最后将样品放于60℃真空干燥箱中过夜干燥8h,其产率为96%,其中g-C3N4的含量为2%,钼酸银为10%,余量磷酸银。整个反应过程与干燥过程均保持在避光条件下进行。
实施例2:
(1)将10%氨水溶液逐滴滴加到50mL的AgNO3溶液中,其浓度为1mol/L,再将0.42g石墨烯加入上述溶液,避光的条件下持续搅拌10h后形成石墨烯-银氨混合溶液。
(2)0.01mol(NH4)2HPO4与0.002mol(NH4)2MoO4溶于50mL 的去离子水中,超声1h后形成混合液,再将聚乙二醇0.4g加入上述溶液,继续磁力搅拌3h。在保持磁力搅拌的条件下,将上述溶液逐滴滴加到溶液(1)中,控制滴加速度3滴/s。待反应完全后,继续搅拌6h,将所获得的墨绿色沉淀物用乙醇和去离子水反复洗涤离心,最后将样品放于60°真空干燥箱中过夜干燥8h,其产率为92%,其中石墨烯的含量为10%,钼酸银为10%,余量磷酸银。整个反应过程与干燥过程均保持在避光条件下进行。
实施例3:
(1)将10%氨水溶液逐滴滴加到60mL的AgNO3溶液中,其浓度为1mol/L,再将石墨烯0.73g加入上述溶液,避光的条件下持续搅拌10h后形成石墨烯-银氨混合溶液。
(2)0.01molNa2HPO4与0.003mol MoO3溶于50mL的去离子水中,超声1h后形成混合液,再将聚乙烯吡咯烷酮0.5g加入上述溶液,继续磁力搅拌3h。在保持磁力搅拌的条件下,将上述溶液逐滴滴加到溶液(1)中,控制滴加速度2滴/s。待反应完全后,继续搅拌 6h,将所获得的墨绿色沉淀物用乙醇和去离子水反复洗涤离心,最后将样品放于 60°真空干燥箱中过夜干燥8h,其产率为95%,其中石墨烯的含量为1%,钼酸银为25%,余量磷酸银。整个反应过程与干燥过程均保持在避光条件下进行。

Claims (5)

1.一种纳米复合材料,其特征在于为三元纳米复合物,其中增强相为碳氮烯、钼酸银,基础成分为Ag3PO4,其中碳氮烯的质量百分含量为2%~12%,钼酸银的质量百分含量为10%-20%,余量为Ag3PO4;钼酸银与磷酸银颗粒均匀的生长在g-C3N4纳米片表面。
2.权利要求1所述的纳米复合材料的制备方法,其特征在于,包括如下步骤:
(1)碳氮烯-银氨混合溶液的配制:将固相烧结合成的g-C3N4均匀分散到银氨溶液中形成碳氮烯-银氨混合溶液;
其中碳氮烯的添加量为1-4g/L;
银氨溶液中Ag+的前体为AgNO3,浓度为1-2mol/L;
氨水质量浓度为10%-20%;
分散条件:避光搅拌6-10h;
(2)碳氮烯-银氨/钼酸银/磷酸银的合成:向步骤(1)的反应液中采用滴加的方式引入磷酸盐、钼源与表面活性剂的混合溶液,常温反应2-4h,用去离子水、无水乙醇反复清洗产物,干燥、即得。
3.根据权利要求2所述的纳米复合材料的制备方法,其特征在于步骤(2)中磷酸盐为Na2HPO4、NaH2PO4或者NH4H2PO4,其添加量为0.3-0.8mol/L;钼源为MoO3、Na2MoO4或MoCl5,其添加量为0.1-0.2mol/L。
4.根据权利要求2所述的纳米复合材料的制备方法,其特征在于步骤(2)中所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、聚乙二醇或者泊洛沙姆,聚乙烯吡咯烷酮或十六烷基三甲基溴化铵作为表面活性剂的添加量为0.5g/L-5g/L,聚乙二醇或者泊洛沙姆作为表面活性剂的添加量为0.2g/L-2g/L。
5.权利要求1所述的纳米复合材料用作光催化剂的用途,增强相Ag2MoO4和g-C3N4的加入,产氧效率为纯Ag3PO4的2-3倍,且光催化分解水产氧的能力随时间的延长而增强。
CN201711068147.4A 2017-11-03 2017-11-03 纳米复合材料、其制备方法及其应用 Pending CN108067279A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711068147.4A CN108067279A (zh) 2017-11-03 2017-11-03 纳米复合材料、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711068147.4A CN108067279A (zh) 2017-11-03 2017-11-03 纳米复合材料、其制备方法及其应用

Publications (1)

Publication Number Publication Date
CN108067279A true CN108067279A (zh) 2018-05-25

Family

ID=62159611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711068147.4A Pending CN108067279A (zh) 2017-11-03 2017-11-03 纳米复合材料、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108067279A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929925A (zh) * 2020-07-13 2022-01-14 中国石油化工股份有限公司 一种自组装纳米粒子复合材料及其制备方法和应用
CN115090307A (zh) * 2022-08-08 2022-09-23 国能南京电力试验研究有限公司 一种磷酸银复合光催化剂及其制备方法
CN117210080A (zh) * 2023-10-19 2023-12-12 青岛中氟氟碳材料有限公司 一种高铁内壁用防污染水性涂料的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464191A (zh) * 2013-09-29 2013-12-25 天津工业大学 石墨型氮化碳磷酸银复合光催化材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464191A (zh) * 2013-09-29 2013-12-25 天津工业大学 石墨型氮化碳磷酸银复合光催化材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUA TANG等: "Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants", 《CHINESE JOURNAL OF CATALYSIS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929925A (zh) * 2020-07-13 2022-01-14 中国石油化工股份有限公司 一种自组装纳米粒子复合材料及其制备方法和应用
CN113929925B (zh) * 2020-07-13 2023-08-15 中国石油化工股份有限公司 一种自组装纳米粒子复合材料及其制备方法和应用
CN115090307A (zh) * 2022-08-08 2022-09-23 国能南京电力试验研究有限公司 一种磷酸银复合光催化剂及其制备方法
CN117210080A (zh) * 2023-10-19 2023-12-12 青岛中氟氟碳材料有限公司 一种高铁内壁用防污染水性涂料的制备方法及应用
CN117210080B (zh) * 2023-10-19 2024-03-29 青岛中氟氟碳材料有限公司 一种高铁内壁用防污染水性涂料的制备方法及应用

Similar Documents

Publication Publication Date Title
Lotfi et al. Recent progress on the synthesis, morphology and photocatalytic dye degradation of BiVO4 photocatalysts: A review
Guo et al. Highly efficient activation of peroxymonosulfate by Co3O4/Bi2MoO6 pn heterostructure composites for the degradation of norfloxacin under visible light irradiation
EP3885039A1 (en) Graphite-like carbon nitride doped modified microsphere catalyst, and preparation method therefor and application thereof
Dou et al. The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures
Wang et al. Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics
Li et al. Visible-light-driven Z-scheme rGO/Bi 2 S 3–BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr (vi) reduction
Hou et al. Recent advances in gC 3 N 4-based photocatalysts incorporated by MXenes and their derivatives
CN108273492B (zh) 一种氧化铋/四氧化二铋异质结光催化剂及其制法和用途
Wang et al. Sheet-on-sheet TiO2/Bi2MoO6 heterostructure for enhanced photocatalytic amoxicillin degradation
CN105597764A (zh) 一种碳量子点/铁酸锌复合光催化材料的制备方法
CN108067279A (zh) 纳米复合材料、其制备方法及其应用
CN102600857A (zh) 一种碳球负载的CuO-BiVO4异质结复合光催化剂的制备方法
CN107362813A (zh) 一种硫化镉/碘氧化铋异质结光催化剂的制备方法和用途
Rasheed et al. Synthesis and studies of ZnO doped with g-C3N4 nanocomposites for the degradation of tetracycline hydrochloride under the visible light irradiation
Raja et al. Reduced graphene oxide supported on Gd2MoO6-ZnO nanorod photocatalysts used for the effective reduction of hexavalent chromium
CN109772375A (zh) 一种可见光响应的异质结复合材料及其制备方法与用途
Jiang et al. Construction of S-scheme heterojunction WO3/Bi2O4 with significantly enhanced visible-light-driven activity for degradation of tetracycline
Low et al. Design and fabrication of direct Z-scheme photocatalysts
Zhu et al. Construction of hierarchical core-shell Z-scheme heterojunction FeVO4@ ZnIn2S4 for boosted photocatalytic degradation of tetracycline
Kuate et al. Construction of 2D/3D black g-C3N4/BiOI S-scheme heterojunction for boosted photothermal-assisted photocatalytic tetracycline degradation in seawater
CN109046466A (zh) 一种ZIF-8衍生碳基材料负载CdS的光催化剂及其制备方法和应用
Zhang et al. In-situ fabrication of a phase continuous transition Bismuth iodide/Bismuth niobate heterojunction: Interface regulation and the enhanced photodegradation mechanism
CN106076312B (zh) 一种Nb(OH)5纳米线/还原氧化石墨烯复合光催化剂及其制备方法与应用
CN108855170B (zh) 一种康乃馨样石墨烯基铋系纳米复合材料的制备方法及纳米复合材料
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180525

WD01 Invention patent application deemed withdrawn after publication