CN115074774A - 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用 - Google Patents

一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用 Download PDF

Info

Publication number
CN115074774A
CN115074774A CN202210657195.1A CN202210657195A CN115074774A CN 115074774 A CN115074774 A CN 115074774A CN 202210657195 A CN202210657195 A CN 202210657195A CN 115074774 A CN115074774 A CN 115074774A
Authority
CN
China
Prior art keywords
rhodium
nickel foam
hollow porous
electrode
porous microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210657195.1A
Other languages
English (en)
Other versions
CN115074774B (zh
Inventor
侯阳
何洪波
李中坚
杨彬
雷乐成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Quzhou Research Institute of Zhejiang University
Original Assignee
Zhejiang University ZJU
Quzhou Research Institute of Zhejiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Quzhou Research Institute of Zhejiang University filed Critical Zhejiang University ZJU
Priority to CN202210657195.1A priority Critical patent/CN115074774B/zh
Publication of CN115074774A publication Critical patent/CN115074774A/zh
Application granted granted Critical
Publication of CN115074774B publication Critical patent/CN115074774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及能源催化材料制备技术领域,公开了一种铑基中空多孔微球/镍泡沫电极的制备方法:将六氯铑酸钾溶解后加入二苯胺的醇溶液,得到悬浊液;将上述悬浊液与镍泡沫在密闭反应容器中水热反应得到铑基中空多孔微球/镍泡沫电极Rh/NiOOH/DPA/NF。本发明还公开了上述制备方法制备的铑基中空多孔微球/镍泡沫电极及作为工作电极在电解水析氢反应中的应用。本发明提供的Rh/NiOOH/DPA/NF电极表现出优异的碱性电解水析氢性能,克服了现有技术中铑基电极材料中析氢过电势高、易团聚和活性位点暴露率低等问题。

Description

一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用
技术领域
本发明涉及能源催化材料制备技术领域,具体涉及一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用。
背景技术
当前,以石油、煤和天然气为代表的化石燃料依旧是社会能源的主体结构,化石能源的储量有限,短时间内不能再生,且其在使用过程会造成严重的环境污染问题。为此,开发清洁绿色的可再生能源尤为迫切。氢能以其清洁、高效、可持续等优点被人们广泛关注。在众多制氢方法中,电催化水裂解制氢可以实现可再生电能到氢能的绿色转化,是当下极具生产应用前景的能源储存和转换方法之一。
较之酸性电解水析氢技术,碱性电解水析氢技术具有工艺成熟,操作简单,设备腐蚀性小,氢气纯度高等优点,被认为是当下具有工业可行性制备绿氢的技术之一。研究表明,贵金属铑基纳米材料具有较好的碱性电解水析氢活性。如申请号为CN202010508858.4的中国专利文献公开了一种铑基电催化材料的制备方法及其应用,该方法以三氯化铑、三聚氰胺和三聚氰酸为原料,通过水热-煅烧过程制备铑基析氢电催化材料。具体方法如下:(1)将三聚氰酸溶液加入到三氯化铑和三聚氰胺溶液中,搅拌得到混合溶液;(2)混合溶液倒入高压反应釜中,然后在烘箱中180℃下,保持6h,充分反应;(3)将自组装前体在氮气的气氛下,在(450-550)℃,保温(3-5)h,冷却后即得铑基析氢电催化材料。此外,申请号为CN201910532390.X的中国专利文献公开了一种碳负载铑/磷化铑纳米复合材料及其制备方法和应用,利用煅烧法制备碳负载铑/磷化铑纳米颗粒复合材料;将三(三苯基膦)氯化铑同时含磷源和铑源作为初始反应物,在还原性气氛退火炉中,实现三(三苯基膦)氯化铑分解成碳包覆的铑/磷化铑纳米颗粒复合材料。以上报道的铑基电催化材料虽然表现出较好的电解水析氢性能,但仍存在析氢过电势高,析氢能耗高等问题。值得注意的是,这些铑基电催化材料制备过程中均用到了惰性气体保护下的高温煅烧处理。一方面,高温煅烧处理会提高生产成本,使其不具备经济和操作可行性;另一方面,高温热处理过程中会增大铑基纳米颗粒的团聚可能,不利于活性位点的充分暴露。
因此,如何提供一种操作简单且经济可行的方法来制备分散性好、过电势低和循环稳定性好的贵金属析氢电极材料是目前亟需解决的技术问题。
发明内容
本发明的目的在于提供一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用,将其应用在碱性溶液中的电解水析氢反应,克服了现有技术中铑基电极材料中析氢过电势高、易团聚和活性位点暴露率低等问题。
为实现上述目的,本发明采用的技术方案是:
一种铑基中空多孔微球/镍泡沫电极的制备方法,包括如下步骤:
(1)将六氯铑酸钾溶解后加入二苯胺的醇溶液,得到悬浊液;
(2)将上述悬浊液与镍泡沫在密闭反应容器中水热反应得到铑基中空多孔微球/镍泡沫电极。
本发明提供的铑基中空多孔微球/镍泡沫电极的制备原理为:六氯铑酸钾、二苯胺和镍泡沫基底在水热条件下,二苯胺自组装形成中空多孔微球原位生长于镍泡沫基底上;此外,镍泡沫析出的镍在水热条件下生成羟基氧化镍及铑盐水热生成的铑纳米颗粒均匀分散于二苯胺中空多孔微球之上,最终得到铑基中空多孔微球/镍泡沫电极。二苯胺中空多孔微球能给铑纳米颗粒提供大量的吸附位点,从而有效避免铑纳米颗粒的团聚,有利于暴露更多的催化活性位点,羟基氧化镍能丰富材料界面组成和加快电荷转移,三维中空多孔微球结构能有效提高界面间的传质效率,最终获得高效铑基析氢电极材料。
本发明通过简单的一步水热反应得到了一种铑基中空多孔微球/镍泡沫电极,通过中空多孔微球载体来抑制铑纳米颗粒的团聚和提高界面传质效率,进而增强电极材料的电解水析氢性能。
所述六氯铑酸钾和二苯胺均为分析级,且无需要纯化处理。
步骤(1)中六氯铑酸钾在反应体系中的浓度为0.083~0.25mg/mL,六氯铑酸钾和二苯胺的质量比为1:20~60。当前驱体中铑盐含量过低时,不能得到足够多的铑纳米颗粒和析氢活性位点;当前驱体中铑盐含量过高时,过快和过多的铑纳米颗粒生成会加剧其团聚,从而掩盖有效的活性位点,降低其电催化析氢活性。
优选地,所述六氯铑酸钾在反应体系中的浓度为0.167~0.250mg/mL,所述六氯铑酸钾和二苯胺的质量比为1:20~30。进一步优选地,所述六氯铑酸钾在反应体系中的浓度为0.167mg/mL,所述六氯铑酸钾和二苯胺的质量比为1:30。通过优化上述条件可以制备得到相对具有更好的电催化析氢性能的铑基中空多孔微球/镍泡沫电极。
步骤(2)中所述水热反应的温度为80~160℃,水热反应的时间为2~20h。水热环境对二苯胺载体形貌有很大的影响,合适的水热条件是得到中空多孔微球结构的关键,三维中空多孔微球结构有益于H2在其表面的逸出,有利于提高传质效率和析氢活性。
优选地,水热温度为120~140℃,水热时间为8~12h。进一步优选地,水热温度为120℃,水热时间为8h。通过优化上述条件可以制备得到具有更好的电催化析氢性能的铑基中空多孔微球/镍泡沫电极。
本发明提供的铑基中空多孔微球/镍泡沫电极可作为工作电极应用于碱性电解质溶液中的电催化水分解制氢。在电催化水分解析氢测试中,以Hg/HgO电极作为参比电极,以石墨棒作为对电极,以本发明提供的铑基中空多孔微球/镍泡沫电极作为工作电极,以1.0MKOH溶液作为电解液。
本发明根据所述制备方法得到的铑基中空多孔微球/镍泡沫电极,用Rh/NiOOH/DPA/NF表示,其中,DPA代表二苯胺中空多孔微球,NF代表镍泡沫基底。该催化剂中Rh/NiOOH均匀分散于二苯胺中空多孔微球之上,二苯胺中空多孔微球原位生长于镍泡沫基底表面。中空多孔微球载体能有效抑制铑纳米颗粒的团聚,暴露更多的催化活性位点,羟基氧化镍能丰富材料界面组成和加快电荷转移,特殊的中空多孔微球结构显著提升了H2的表面传质效率,使得其析氢性能显著提升。
本发明具有以下积极效果:
(1)本发明提供的铑基中空多孔微球/镍泡沫电极的制备方法,通过一步水热反应在镍泡沫表面原位生长载有Rh/NiOOH的二苯胺中空多孔微球得到Rh/NiOOH/DPA/NF电极,开发了一种适用于高分散性贵金属纳米材料的制备方法,且工艺简单,操作可行性高。
(2)本发明提供的铑基中空多孔微球/镍泡沫电极具有优异的碱性电催化析氢活性和良好的长效稳定性,在电流密度为10mA cm-2下的析氢过电势最优仅为14.7mV,塔菲尔斜率为30.1mV dec-1,且在10mA cm-2的恒流模式下析氢反应12h以上,其析氢过电势并未出现明显的爬升。本发明提供的铑基中空多孔微球/镍泡沫电极的电催化析氢性能优于商业Pt/C材料,这种铑基中空多孔微球/镍泡沫电极有望取代商业Pt/C材料,在电催化析氢领域有广阔的实际应用前景。
(3)本发明提供的铑基中空多孔微球/镍泡沫电极,中空多孔微球载体抑制了铑纳米颗粒的团聚,这能充分暴露催化活性位点,羟基氧化镍能丰富材料界面组成和加快电荷转移,特殊的中空多孔微球结构显著提升了H2的表面传质效率,从而显著提高了其电催化析氢的性能。
附图说明
图1为实施例1和对比例1所制备Rh/NiOOH/DPA/NF和NiOOH/DPA/NF电极的XRD谱图。
图2为实施例1所制备Rh/NiOOH/DPA/NF电极的SEM图。
图3为实施例1、对比例1制备的电极和Pt-C/NF电极在电解水析氢反应中的(a)极化曲线图和(b)塔菲尔斜率图。
图4为实施例1~7制备的电极在电解水析氢反应中的极化曲线图。
图5为实施例1制备Rh/NiOOH/DPA/NF电极电解水析氢反应稳定性。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。
实施例1
(1)称取2mg六氯铑酸钾溶解于10mL去离子水溶液中,充分搅拌并完全溶解备用;称取60mg二苯胺,溶解于2mL无水乙醇中,超声混合均匀备用;
(2)将二苯胺的醇溶液于搅拌条件下滴加至六氯铑酸钾溶液中,将得到的悬浊液和镍泡沫基底一起转移至密闭的高压反应釜中,120℃水热反应8h,自然冷却至室温,洗涤干燥后得到铑基中空多孔微球/镍泡沫电极,记为Rh/NiOOH/DPA/NF。
对比例1
按照实施例1的制备工艺,区别在于步骤(1)中不添加六氯铑酸钾,其他条件不变,得到的电极,记为NiOOH/DPA/NF。
实施例2
按照实施例1的工艺,区别在于步骤(1)中称取六氯铑酸钾的质量为1mg,其他条件不变,得到E2电极。
实施例3
按照实施例1的工艺,区别在于步骤(1)中称取六氯铑酸钾的质量为3mg,其他条件不变,得到E3电极。
实施例4
按照实施例1的工艺,区别在于步骤(2)中水热温度为100℃,其他条件不变,得到E4电极。
实施例5
按照实施例1的工艺,区别在于步骤(2)中水热温度为140℃,其他条件不变,得到E5电极。
实施例6
按照实施例1的工艺,区别在于步骤(2)中水热时间为4h,其他条件不变,得到E6电极。
实施例7
按照实施例1的工艺,区别在于步骤(2)中水热时间为12h,其他条件不变,得到E7电极。
材料表征
图1为实施例1和对比例1的XRD谱图,可以发现,实施例1和对比例1在衍射角为9.3°,13.9°,17.8°,18.5°,19.9°,20.3°,21.4°和25.3°处的特征衍射峰归属于二苯胺的(310),(-212),(-103),(620),(-811),(131),(-802)和(-1002)晶面,对应于标准卡片JCPDS#00-023-1677;在衍射角为18.3°和37.3°处的特征衍射峰归属于羟基氧化镍的(001)和(002)晶面,对应于标准卡片JCPDS#00-006-0141。此外,实施例1在衍射角为41.1°处的特征衍射峰归属于铑的(111)晶面,对应于标准卡片JCPDS#00-005-0685。图2为实施例1制备电极的SEM图,图2中a表明,生长于镍泡沫表面的Rh/NiOOH/DPA呈现为中空多孔微球形貌,将其放大后可以发现(图2中b),中空多孔微球表面未发现明显的颗粒团聚,说明铑纳米颗粒在微球上均匀分散。XRD和SEM表征结果表明,通过一步水热反应在镍泡沫表面原位生长载有Rh/NiOOH的二苯胺中空多孔微球电极(Rh/NiOOH/DPA/NF)。
性能测试
将实施例1-7和对比例1所制备的电极作为工作电极,评价其电解水析氢性能。图3为实施例1、对比例1和Pt-C/NF电极的电化学极化曲线图和塔菲尔斜率图,其结果表明,NiOOH/DPA/NF、Rh/NiOOH/DPA/NF和Pt-C/NF在10mA cm-2电流密度下的过电势分别为253.8、14.7和32.2mV,塔菲尔斜率分别为140.2、30.1和43.4mV dec-1。Rh/NiOOH/DPA/NF电极表现出优异的电解水析氢活性,明显优于NiOOH/DPA/NF和Pt-C/NF电极材料。
图4为实施例1~7制备的电极在电解水析氢反应中的极化曲线图。其结果表明,在六氯铑酸钾和二苯胺质量比为1:30(六氯铑酸钾在反应体系中的浓度为0.167mg/mL,图4中a),水热温度为120℃(图4中b),水热时间为8h(图4中c)条件下得到的Rh/NiOOH/DPA/NF电极表现出最佳的电解水析氢性能。图5为Rh/NiOOH/DPA/NF电极电解水析氢反应稳定性。可以发现,Rh/NiOOH/DPA/NF电极在10mA cm-2的恒流模式下析氢反应12h,其过电势并未出现明显的爬升,说明所制备的Rh/NiOOH/DPA/NF中空多孔微球电极具有良好的电催化析氢稳定性。

Claims (8)

1.一种铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将六氯铑酸钾溶解后加入二苯胺的醇溶液,得到悬浊液;
(2)将上述悬浊液与镍泡沫在密闭反应容器中水热反应得到铑基中空多孔微球/镍泡沫电极。
2.根据权利要求1所述的铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,所述六氯铑酸钾在悬浊液中的浓度为0.083~0.25mg/mL。
3.根据权利要求1所述的铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,所述六氯铑酸钾和二苯胺的质量比为1:20~60。
4.根据权利要求1所述的铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,所述镍泡沫为经预处理后的镍泡沫,预处理为:镍泡沫分别在稀盐酸、无水乙醇和去离子水中超声处理。
5.根据权利要求1所述的铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,步骤(2)中水热反应的温度为80~160℃。
6.根据权利要求1所述的铑基中空多孔微球/镍泡沫电极的制备方法,其特征在于,步骤(2)中水热反应的时间为2~20h。
7.一种权利要求1~6任一项所述的制备方法得到的铑基中空多孔微球/镍泡沫电极。
8.一种权利要求7所述的铑基中空多孔微球/镍泡沫电极作为工作电极在电解水析氢反应中的应用。
CN202210657195.1A 2022-06-10 2022-06-10 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用 Active CN115074774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210657195.1A CN115074774B (zh) 2022-06-10 2022-06-10 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210657195.1A CN115074774B (zh) 2022-06-10 2022-06-10 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115074774A true CN115074774A (zh) 2022-09-20
CN115074774B CN115074774B (zh) 2023-11-03

Family

ID=83250575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210657195.1A Active CN115074774B (zh) 2022-06-10 2022-06-10 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115074774B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438528A (zh) * 2019-08-15 2019-11-12 上海工程技术大学 一种改性泡沫镍负载贵金属催化剂析氢电极及其制备方法
CN112501631A (zh) * 2020-10-14 2021-03-16 温州大学 一种贵金属铑析氢电催化剂及应用
CN112962118A (zh) * 2021-01-28 2021-06-15 浙江工业大学 一种三元铑镍硼析氢电催化剂及其制备方法
CN113750990A (zh) * 2020-06-06 2021-12-07 重庆工商大学 一种铑基电催化材料的制备方法及应用
CN113774428A (zh) * 2021-07-28 2021-12-10 浙江大学衢州研究院 一种高效钴铑氢氧化物纳米颗粒/碳布电极的制备方法及其产品和应用
CN113930866A (zh) * 2021-10-13 2022-01-14 广州航海学院 一种胶囊结构的超级电容器电极材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438528A (zh) * 2019-08-15 2019-11-12 上海工程技术大学 一种改性泡沫镍负载贵金属催化剂析氢电极及其制备方法
CN113750990A (zh) * 2020-06-06 2021-12-07 重庆工商大学 一种铑基电催化材料的制备方法及应用
CN112501631A (zh) * 2020-10-14 2021-03-16 温州大学 一种贵金属铑析氢电催化剂及应用
CN112962118A (zh) * 2021-01-28 2021-06-15 浙江工业大学 一种三元铑镍硼析氢电催化剂及其制备方法
CN113774428A (zh) * 2021-07-28 2021-12-10 浙江大学衢州研究院 一种高效钴铑氢氧化物纳米颗粒/碳布电极的制备方法及其产品和应用
CN113930866A (zh) * 2021-10-13 2022-01-14 广州航海学院 一种胶囊结构的超级电容器电极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE MA等: ""Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 265, pages 118567 *

Also Published As

Publication number Publication date
CN115074774B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN110479329B (zh) 一种磷掺杂碲化钴纳米材料的制备及应用
CN110142058B (zh) 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
CN110813350B (zh) 一种碳基复合电催化剂及其制备方法与应用
CN112481653B (zh) 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN111701607A (zh) MnCo2O4@Ni2P/NF双功能全解水催化剂及其制备方法与应用
CN115369422A (zh) 一种低铱电解水催化剂、其制备方法和应用
CN114875442A (zh) 一种钌修饰的钼镍纳米棒复合催化剂及其制备方法和应用
CN109647536B (zh) 一种钴镍双掺杂的硫化锡纳米片、其制备方法和应用
CN112023922B (zh) 一种Pt-MnO2材料及其制备方法和应用
CN110560094B (zh) 一种3d多孔钴锡钼三金属催化剂的制备方法
CN113201759A (zh) 一种三维多孔碳支撑的硫化铋/氧化铋复合催化剂及其制备方法和应用
CN110354870B (zh) 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用
WO2024066179A1 (zh) 一种表面改性的钙钛矿氧化物电催化剂及其制备方法和应用
CN114941160B (zh) 一种IrOx@Ir复合铱基催化剂及其制备方法
CN114411195B (zh) 一种镍锰硒化物异质结电催化剂及其制备方法与应用
CN116200773A (zh) 富含孪晶结构的过渡族金属电催化剂及其制备方法和应用
CN115074774B (zh) 一种铑基中空多孔微球/镍泡沫电极及其制备方法和应用
CN115404513A (zh) 一种碳包覆型异质结构电催化剂及其制备与应用
CN114561655A (zh) 一种稀土铈掺杂硫化镍/硫化铁异质结材料的制备方法和应用
CN114855210A (zh) 一种熔融盐法原位合成碳基单原子纳米片及其制备方法和应用
CN114481160B (zh) 一种CNT-Zn单原子催化材料的制备方法
CN113913857B (zh) 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法
CN114214636B (zh) 一种含硒配体制备钴基纳米片自支撑电极的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant