CN115073202B - 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用 - Google Patents

一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用 Download PDF

Info

Publication number
CN115073202B
CN115073202B CN202210635336.XA CN202210635336A CN115073202B CN 115073202 B CN115073202 B CN 115073202B CN 202210635336 A CN202210635336 A CN 202210635336A CN 115073202 B CN115073202 B CN 115073202B
Authority
CN
China
Prior art keywords
powder
layer
ceramic
ceramic membrane
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210635336.XA
Other languages
English (en)
Other versions
CN115073202A (zh
Inventor
姚之侃
赵海洋
张�林
李鸽
苏辉
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pla 96911 Unit
Zhejiang University ZJU
Original Assignee
Pla 96911 Unit
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pla 96911 Unit, Zhejiang University ZJU filed Critical Pla 96911 Unit
Priority to CN202210635336.XA priority Critical patent/CN115073202B/zh
Publication of CN115073202A publication Critical patent/CN115073202A/zh
Application granted granted Critical
Publication of CN115073202B publication Critical patent/CN115073202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,包括以下步骤:(1)对支撑层粉层、中间层粉层和功能层粉层分别逐层进行粘结墨水喷射,制备得到陶瓷膜坯体;(2)将陶瓷膜坯体加热烧结,制备得到所述的基于粘结剂喷射的梯度孔结构陶瓷膜;所述的支撑层粉层的厚度为750‑2500μm,包括陶瓷粉末、固体粘结剂粉末和烧结助剂粉末;所述的中间层粉层的厚度为25‑150μm,包括陶瓷粉末和固体粘结剂粉末;所述的功能层粉层的厚度为1.5‑10μm,包括陶瓷粉末和固体粘结剂粉末。本发明方法工艺简单,通过对陶瓷膜各层进行结构设计制备得到具有梯度孔结构的陶瓷膜,该陶瓷膜可应用于水处理和空气过滤领域。

Description

一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用
技术领域
本发明涉及膜分离技术领域,具体涉及一种基于粘结剂喷射的梯度孔 结构陶瓷膜及其制备方法和应用。
背景技术
陶瓷膜相比有机膜来说,具有耐高温高压、抗化学腐蚀、易清洗、使 用寿命较长等优点,已广泛应用于水处理与空气过滤等领域。常见的陶瓷 膜多呈非对称结构,包含底部的支撑层、中间过渡层与顶部的分离层。但 在实际应用中发现,陶瓷膜也存在孔径难控制,衰减快,易堵塞,难再生 等特点,且常规方法制备陶瓷膜需经多次“干燥-烧结”工艺,过程繁杂 费时,成本较高。
公开号为CN110193292A的中国专利文献公开了一种复合陶瓷膜,包 括陶瓷支撑层和陶瓷过渡层、分离层,所述陶瓷过渡层具有相对设置的两 个表面,其一表面与所述陶瓷支撑层层叠结合,另一表面与所述分离层层 叠结合;其中,所述陶瓷支撑层和陶瓷过渡层至少一层是由包括疏浚底泥 烧结形成。疏浚底泥能够赋予基体材料优异的机械性能和丰富的微孔结 构,变废为宝。但该复合陶瓷膜制备过程中需要进行两次烧结处理,工艺 较为繁琐。
公开号为CN104174298A的中国专利文献公开了一种净水用梯度碳 化硅陶瓷膜,该发明采用挤出成型法制备支撑层,采用浸渍涂敷法制备中 间层和分离层,制得的陶瓷膜连通孔隙率高、气孔分布呈梯度,纯水通量 大于5m3/(m2 h),但整个制膜过程需要经历两次干燥、三次烧结步骤,工 艺复杂、耗时长。
增材制造技术(3D打印技术)融合了计算机辅助设计、材料加工与 成型技术,以数字模型文件为基础,按照挤压、光固化、烧结、喷射等方 式“自下而上”进行材料的逐层堆积,实现复杂结构实体的快速直接成型。 粘结剂喷射是一种喷射液体粘结剂粘结粉末实现完整成形体构建的增材 制造技术,可利用压辊将粉末平铺在工作台上,喷头将液体粘结剂按照加 工件截面形状进行喷射,下降工作台开始新一层的打印,重复上述过程直 至打印完成。
公开号为CN106215704A的中国专利文献公开了一种组合式平板蜂 窝陶瓷膜的制备方法,首先利用挤出成型法制备平板状蜂窝陶瓷膜单元的 支撑体;再利用喷墨打印法制备平板状蜂窝陶瓷膜单元的分离膜层;该组 合式平板蜂窝陶瓷膜由平板状蜂窝陶瓷膜单元拼合构成。在喷涂过程中, 喷头与平板陶瓷膜支撑体不直接接触,平板陶瓷膜支撑体的形状和缺陷不 会影响分离膜层的性质,但该制膜过程需要经历两次烧结步骤,工艺较为复杂。
发明内容
本发明提供了一种基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法, 该方法原料利用率高、能耗低,一次成型得到陶瓷膜坯体后烧结即可得到 具有梯度孔结构的陶瓷膜,避免了多次“干燥-烧结”的繁琐工艺程序,制备 得到的具有梯度孔径结构的陶瓷膜在水处理或空气过滤领域具有广泛的 应用前景。
具体采用的技术方案如下:
一种基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,包括以下步 骤:
(1)通过3D打印技术,对支撑层粉层、中间层粉层和功能层粉层 分别逐层进行粘结墨水喷射,制备得到陶瓷膜坯体;所述的陶瓷膜坯体包 括支撑层、中间层和功能层;
(2)将陶瓷膜坯体加热烧结,制备得到所述的基于粘结剂喷射的梯 度孔结构陶瓷膜;
所述的支撑层粉层的厚度为750-2500μm,包括陶瓷粉末、固体粘结 剂粉末和烧结助剂粉末;所述的中间层粉层的厚度为25-150μm,包括陶 瓷粉末和固体粘结剂粉末;所述的功能层粉层的厚度为1.5-10μm,包括 陶瓷粉末和固体粘结剂粉末;
其中,支撑层粉层中陶瓷粉末的平均粒径>中间层粉层中陶瓷粉末的 平均粒径>功能层粉层中陶瓷粉末的平均粒径。
本发明通过控制原料的平均粒径调节膜的孔径大小,并控制铺粉厚度 以调节膜的渗透性和分离选择性,不同孔径与厚度的膜结构的复配使制备 得到的陶瓷膜在水处理和空气过滤方面应用效果优异。
优选的,所述的陶瓷粉末为氧化铝、氧化锆、氧化钛、二氧化硅中的 至少一种;支撑层粉层中的陶瓷粉末平均粒径为50-100μm;中间层粉层 中的陶瓷粉末平均粒径为5-10μm;功能层粉层中的陶瓷粉末平均粒径为 0.5-2μm。
优选的,所述的固体粘结剂粉末为聚乙烯醇、麦芽糊精、羧甲基纤维 素、泊洛沙姆F127中的至少一种;支撑层粉层中的固体粘结剂粉末平均 粒径为50-100μm;中间层粉层中的固体粘结剂粉末平均粒径为5-10μm; 功能层粉层中的固体粘结剂粉末平均粒径为0.5-2μm。
烧结助剂的加入能够在降低烧结温度的同时保证支撑层的机械强度, 使支撑层的烧结温度与另外两层的烧结温度相匹配以促进烧结过程,保证 该梯度孔结构陶瓷膜的成功制备。
所述的烧结助剂粉末为高岭土、氧化镁、氧化钙、亚微米级氧化铝、 亚微米级氧化钛中的至少一种;其中,高岭土、氧化镁和氧化钙的平均粒 径为50-100μm;亚微米级氧化铝和亚微米级氧化钛的平均粒径为50-200 nm。
优选的,所述的支撑层粉层中,陶瓷粉末、固体粘结剂粉末和烧结助 剂粉末的质量比为97-99:0.5-2.0:0.5-1.0。
优选的,所述的中间层粉层和功能层粉层中,陶瓷粉末和固体粘结剂 粉末的质量比为98-99.5:0.5-2.0。
支撑层、中间层和功能层的主要成分是陶瓷粉末,固体粘结剂粉末、 烧结助剂粉末均为起一定作用的添加剂,在最后的烧结过程中被去除,为 了保证陶瓷膜本体的机械强度,支撑层、中间层和功能层中各组分的质量 比优选为上述范围。
优选的,步骤(1)中,所述的粘结墨水为聚乙烯吡咯烷酮水溶液, 聚乙烯吡咯烷酮水溶液的浓度为5%-20%。粘结墨水的稳定性、流变特性、 粘度等参数对3D打印过程至关重要,为了同时满足粘结效果优异、渗透 性好且不堵塞针头,聚乙烯吡咯烷酮水溶液的浓度优选为上述范围,此外, 聚乙烯吡咯烷酮水溶液具有良好的粘结性、无毒性。
所述的陶瓷膜坯体的制备过程具体包括以下步骤:
(i)将平均粒径为50-100μm的陶瓷粉末、平均粒径为50-100μm的 固体粘结剂粉末和烧结助剂粉末混合,利用辊筒在粉床上铺粉,得到支撑 层粉层;利用3D打印技术将粘结墨水聚乙烯吡咯烷酮水溶液喷射至支撑 层粉层区域,得到支撑层坯体;
(ii)将平均粒径为5-10μm的陶瓷粉末和平均粒径为5-10μm的固 体粘结剂粉末混合,利用辊筒在步骤(i)的支撑层坯体上铺粉,得到中间 层粉层;利用3D打印技术将粘结墨水聚乙烯吡咯烷酮水溶液喷射至中间 层粉层区域,得到包含支撑层与中间层的复合坯体;
(iii)将平均粒径为0.5-2μm的陶瓷粉末与平均粒径为0.5-2μm的固 体粘结剂粉末混合,利用辊筒在步骤(ii)的复合坯体上铺粉,得到功能 层粉层;利用3D打印技术将粘结墨水聚乙烯吡咯烷酮水溶液喷射至功能 层粉层区域,得到所述的陶瓷膜坯体。
优选的,步骤(2)中,加热烧结条件为:温度800-1400℃,升温速 率0.5-5℃/min,保温时间2-4h。
本发明还提供了所述的基于粘结剂喷射的梯度孔结构陶瓷膜的制备 方法制得的基于粘结剂喷射的梯度孔结构陶瓷膜。
本发明还提供了所述的基于粘结剂喷射的梯度孔结构陶瓷膜在水处 理或空气过滤领域的应用。该梯度孔结构陶瓷膜的分离机理主要是基于尺 寸筛分原理;支撑层主要起支撑作用,提供膜的机械强度;中间层起过渡 作用,避免功能层粉末渗透进入支撑层;功能层起实际的分离作用。根据 实际分离目标的需要,通过控制各层陶瓷粉末的粒径来调节膜的孔径大 小,通过控制铺粉层的厚度调节膜层厚度,以调节膜的渗透性和分离选择 性,并兼顾分离效果和机械性能。
与现有技术相比,本发明的有益效果在于:
(1)本发明方法可根据分离功能及孔径要求不同,选用不同材质和 平均粒径的陶瓷粉末进行打印,且每层厚度容易控制,可用于制备分离性 能可调的具有梯度孔径结构的陶瓷膜。
(2)本发明方法利用粘结剂喷射技术,原料利用率高,无需额外的 光源和热源,能耗低,绿色环保,可以一次成型制备陶瓷膜坯体而后进行 烧结得到梯度孔结构陶瓷膜,避免了多次“干燥-烧结”的繁琐工艺程序,工 艺简单、耗时短。
具体实施方式
下面结合实施例,进一步阐明本发明。应理解,这些实施例仅用于说 明本发明,而不用于限制本发明的范围。
实施例1
本实施例中,粘结墨水为5wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为50μm的氧化铝粉末、平均粒径为50μm的聚乙 烯醇粉末和平均粒径为50nm的亚微米级氧化钛粉末混合,其中氧化铝粉 末、聚乙烯醇粉末和亚微米级氧化钛粉末的质量比为99:0.5:0.5;利用 辊筒在粉床上铺粉,得到厚度为750μm的支撑层粉层;利用3D打印技 术将粘结墨水喷射至支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为5μm的氧化铝粉末和平均粒径为5μm的聚乙烯 醇粉末混合,其中氧化铝粉末和聚乙烯醇粉末的质量比为99.5:0.5,利用 辊筒在步骤(1)的支撑层坯体上铺粉,得到厚度为25μm的中间层粉层; 利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包含支撑层与 中间层的复合坯体;
(3)将平均粒径为0.5μm的氧化铝粉末和平均粒径为0.5μm的聚乙 烯醇粉末混合,其中氧化铝粉末和聚乙烯醇粉末的质量比为99.5:0.5,利 用辊筒在步骤(2)的复合坯体上铺粉,得到厚度为1.5μm的功能层粉层; 利用3D打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜 坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1400℃,升温速率为 0.5℃/min,保温时间为2h,制备得到所述的基于粘结剂喷射的梯度孔结 构陶瓷膜。
实施例2
本实施例中,粘结墨水为16wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为60μm的氧化锆粉末、平均粒径为50μm的聚乙 烯醇粉末和平均粒径为50μm氧化镁粉末混合,其中氧化锆粉末、聚乙烯 醇粉末和氧化镁粉末的质量比为97:2.0:1.0;利用辊筒在粉床上铺粉, 得到厚度为1200μm的支撑层粉层;利用3D打印技术将粘结墨水喷射至 支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为6μm的氧化锆粉末和平均粒径为5μm的聚乙烯 醇粉末混合,其中氧化锆粉末和聚乙烯醇粉末的质量比为98:2,利用辊 筒在步骤(1)的支撑层坯体上铺粉,得到厚度为72μm的中间层粉层; 利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包含支撑层与 中间层的复合坯体;
(3)将平均粒径为1.0μm的氧化锆粉末和平均粒径为1.0μm的聚乙 烯醇粉末混合,其中氧化锆粉末和聚乙烯醇粉末的质量比为98:2,利用 辊筒在步骤(2)的复合坯体上铺粉,得到厚度为3.0μm的功能层粉层; 利用3D打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜 坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1100℃,升温速率为 5℃/min,保温时间为4h,制备得到所述的基于粘结剂喷射的梯度孔结构 陶瓷膜。
实施例3
本实施例中,粘结墨水为20wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为80μm的氧化钛粉末、平均粒径为75μm的泊洛 沙姆F127粉末和平均粒径为200nm的亚微米级氧化铝粉末混合,其中氧 化钛粉末、泊洛沙姆F127粉末和亚微米级氧化铝粉末的质量比为98:1.0: 1.0;利用辊筒在粉床上铺粉,得到厚度为1600μm的支撑层粉层;利用 3D打印技术将粘结墨水喷射至支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为8μm的氧化钛粉末和平均粒径为7.5μm的泊洛沙 姆F127粉末混合,其中氧化钛粉末和泊洛沙姆F127粉末的质量比为98.5: 1.5,利用辊筒在步骤(1)的支撑层坯体上铺粉,得到厚度为80μm的中 间层粉层;利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包 含支撑层与中间层的复合坯体;
(3)将平均粒径为1.5μm的氧化钛粉末和平均粒径为1.0μm的泊洛 沙姆F127粉末混合,其中氧化钛粉末和泊洛沙姆F127粉末的质量比为 98.5:1.5,利用辊筒在步骤(2)的复合坯体上铺粉,得到厚度为6.0μm 的功能层粉层;利用3D打印技术将粘结墨水喷射至功能层粉层区域,得 到所述的陶瓷膜坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1100℃,升温速率为 2.5℃/min,保温时间为3h,制备得到所述的基于粘结剂喷射的梯度孔结 构陶瓷膜。
实施例4
本实施例中,粘结墨水为15wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为100μm的氧化铝粉末、平均粒径为100μm的麦 芽糊精粉末、平均粒径为100μm的羧甲基纤维素粉末和平均粒径为100 μm的高岭土粉末混合,其中氧化铝粉末、麦芽糊精粉末、羧甲基纤维素 粉末和高岭土粉末的质量比为98:0.5:0.5:1.0;利用辊筒在粉床上铺粉, 得到厚度为2500μm的支撑层粉层;利用3D打印技术将粘结墨水喷射至支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为10μm的氧化铝粉末、平均粒径为10μm的麦芽 糊精粉末和平均粒径为10μm的羧甲基纤维素粉末混合,其中氧化铝粉 末、麦芽糊精粉末和羧甲基纤维素粉末的质量比为98:1.0:1.0,利用辊 筒在步骤(1)的支撑层坯体上铺粉,得到厚度为150μm的中间层粉层; 利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包含支撑层与 中间层的复合坯体;
(3)将平均粒径为2μm的氧化铝粉末、平均粒径为2μm的麦芽糊 精粉末和平均粒径为2μm的羧甲基纤维素粉末混合,其中氧化铝粉末、 麦芽糊精粉末和羧甲基纤维素粉末的质量比为98:1.0:1.0,利用辊筒在 步骤(2)的复合坯体上铺粉,得到厚度为10μm的功能层粉层;利用3D 打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1400℃,升温速率为 5℃/min,保温时间为3h,制备得到所述的基于粘结剂喷射的梯度孔结构 陶瓷膜。
实施例5
本实施例中,粘结墨水为12wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为60μm的二氧化硅粉末、平均粒径为50μm的聚 乙烯醇粉末、平均粒径为50μm的羧甲基纤维素粉末和平均粒径为60μm 的氧化钙粉末混合,其中二氧化硅粉末、聚乙烯醇粉末、羧甲基纤维素粉 末和氧化钙粉末的质量比为97.6:0.8:0.8:0.8;利用辊筒在粉床上铺粉, 得到厚度为1500μm的支撑层粉层;利用3D打印技术将粘结墨水喷射至支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为6.0μm的二氧化硅粉末、平均粒径为5.0μm的聚 乙烯醇粉末和平均粒径为5.0μm的羧甲基纤维素粉末混合,其中二氧化 硅粉末、聚乙烯醇粉末和羧甲基纤维素粉末的质量比为98.4:0.8:0.8, 利用辊筒在步骤(1)的支撑层坯体上铺粉,得到厚度为80μm的中间层 粉层;利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包含支撑层与中间层的复合坯体;
(3)将平均粒径为0.5μm的二氧化硅粉末、平均粒径为0.5μm的聚 乙烯醇粉末和平均粒径为0.5μm的羧甲基纤维素混合,其中二氧化硅粉 末、聚乙烯醇粉末和羧甲基纤维素粉末的质量比为98.4:0.8:0.8,利用 辊筒在步骤(2)的复合坯体上铺粉,得到厚度为2.5μm的功能层粉层; 利用3D打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为800℃,升温速率为 1℃/min,保温时间为2h,制备得到所述的基于粘结剂喷射的梯度孔结构 陶瓷膜。
实施例6
本实施例中,粘结墨水为18wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为80μm的氧化铝粉末、平均粒径为75μm的氧化 钛粉末、平均粒径为75μm的聚乙烯醇粉末和平均粒径为150nm的亚微 米级氧化钛粉末混合,其中氧化铝粉末、氧化钛粉末、聚乙烯醇粉末和亚 微米级氧化钛粉末的质量比为74:24:1.0:1.0;利用辊筒在粉床上铺粉, 得到厚度为2000μm的支撑层粉层;利用3D打印技术将粘结墨水喷射至支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为8μm的氧化铝粉末、平均粒径为8μm的氧化钛 粉末、平均粒径为8μm的聚乙烯醇粉末混合,其中氧化铝粉末、氧化钛 粉末、聚乙烯醇粉末的质量比为74:24:2,利用辊筒在步骤(1)的支撑 层坯体上铺粉,得到厚度为100μm的中间层粉层;利用3D打印技术将 粘结墨水喷射至中间层粉层区域,得到包含支撑层与中间层的复合坯体;
(3)将平均粒径为1.2μm的氧化铝粉末、平均粒径为1.0μm氧化钛 粉末、平均粒径为1.0μm聚乙烯醇粉末混合,其中氧化铝粉末、氧化钛 粉末、聚乙烯醇粉末的质量比为74:24:2,利用辊筒在步骤(2)的复合 坯体上铺粉,得到厚度为5.0μm的功能层粉层;利用3D打印技术将粘结 墨水喷射至功能层粉层区域,得到所述的陶瓷膜坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1200℃,升温速率为 5℃/min,保温时间为2h,制备得到所述的基于粘结剂喷射的梯度孔结构 陶瓷膜。
实施例7
本实施例中,粘结墨水为15wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为80μm的氧化铝粉末、平均粒径为80μm的氧化 锆粉末、平均粒径为60μm的聚乙烯醇粉末、平均粒径为60μm的羧甲基 纤维素粉末、平均粒径为80μm的氧化镁粉末和平均粒径为100nm的亚 微米级氧化钛粉末混合,其中氧化铝粉末、氧化锆粉末、聚乙烯醇粉末、 羧甲基纤维素粉末、氧化镁粉末和亚微米级氧化钛粉末的质量比为70: 27.5:0.75:0.75:0.5:0.5;利用辊筒在粉床上铺粉,得到厚度为1500μm 的支撑层粉层;利用3D打印技术将粘结墨水喷射至支撑层粉层区域,得 到支撑层坯体;
(2)将平均粒径为9μm的氧化铝粉末、平均粒径为9μm的氧化锆 粉末、平均粒径为9μm的聚乙烯醇粉末、平均粒径为9μm的羧甲基纤维 素粉末混合,其中氧化铝粉末、氧化锆粉末、聚乙烯醇粉末和羧甲基纤维 素粉末的质量比为70:28.5:0.75:0.75,利用辊筒在步骤(1)的支撑层 坯体上铺粉,得到厚度为120μm的中间层粉层;利用3D打印技术将粘 结墨水喷射至中间层粉层区域,得到包含支撑层与中间层的复合坯体;
(3)将平均粒径为1.5μm的氧化铝粉末、平均粒径为1.5μm的氧化 锆粉末、平均粒径为1.5μm的聚乙烯醇粉末、平均粒径为1.5μm的羧甲 基纤维素粉末混合,其中氧化铝粉末、氧化锆粉末、聚乙烯醇粉末和羧甲 基纤维素粉末的质量比为70:28.5:0.75:0.75,利用辊筒在步骤(2)的 复合坯体上铺粉,得到厚度为6.0μm的功能层粉层;利用3D打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜坯体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1150℃,升温速率为 5℃/min,保温时间为2h,制备得到所述的基于粘结剂喷射的梯度孔结构 陶瓷膜。
实施例8
本实施例中,粘结墨水为17wt%的聚乙烯吡咯烷酮水溶液;
(1)将平均粒径为100μm的氧化钛粉末、平均粒径为100μm的二 氧化硅粉末、平均粒径为100μm的泊洛沙姆F127粉末、平均粒径为100 μm的高岭土粉末混合,其中氧化钛粉末、二氧化硅粉末、泊洛沙姆F127 粉末和高岭土粉末的质量比为64:34:1.0:1.0;利用辊筒在粉床上铺粉, 得到厚度为2400μm的支撑层粉层;利用3D打印技术将粘结墨水喷射至 支撑层粉层区域,得到支撑层坯体;
(2)将平均粒径为10μm的氧化钛粉末、平均粒径为10μm的二氧 化硅粉末、平均粒径为10μm的泊洛沙姆F127粉末混合,其中氧化钛粉 末、二氧化硅粉末和泊洛沙姆F127粉末的质量比为64:35:1,利用辊 筒在步骤(1)的支撑层坯体上铺粉,得到厚度为120μm的中间层粉层; 利用3D打印技术将粘结墨水喷射至中间层粉层区域,得到包含支撑层与 中间层的复合坯体;
(3)将平均粒径为2.0μm的氧化钛粉末、平均粒径为2.0μm的二氧 化硅粉末、平均粒径为2.0μm的泊洛沙姆F127粉末混合,其中氧化钛粉 末、二氧化硅粉末和泊洛沙姆F127粉末的质量比为64:35:1,利用辊 筒在步骤(2)的复合坯体上铺粉,得到厚度为8.0μm的功能层粉层;利 用3D打印技术将粘结墨水喷射至功能层粉层区域,得到所述的陶瓷膜坯 体;
(4)将陶瓷膜坯体加热烧结;烧结温度为1000℃,升温速率为 5℃/min,保温时间为2.5h,制备得到所述的基于粘结剂喷射的梯度孔结 构陶瓷膜。
样品分析
在室温下用错流平板膜性能评价装置测试实施例1-4制得的陶瓷膜性 能,分别对产品陶瓷膜的纯水通量、葡聚糖水溶液和SiO2水悬浮液截留 率进行测试(测试温度为25℃,压力为0.1MPa),结果如表1所示。
表1实施例1-4制得的陶瓷膜性能测试结果
Figure BDA0003680082460000111
实施例1-4,分离层所选用的陶瓷粉末平均粒径逐渐增大,导致膜的 分离层孔径逐渐增加,因此膜的纯水通量逐渐增大,而截留性能逐渐下降, 截留目标物的分子量或粒径逐渐增大。本发明制备的陶瓷膜为超滤或微滤 膜,可用于水中大分子污染物、病毒或细菌等的截留。
在室温下用过滤压降测试装置测试实施例5-8制得的陶瓷膜性能,在 1m/min的过滤气体流速下测试产品膜的压降及截留率,结果如表2所示。
表2实施例5-8制得的陶瓷膜性能测试结果
Figure BDA0003680082460000112
实施例5-8,分离层所选用的陶瓷粉末平均粒径逐渐增大,导致膜的 分离层孔径逐渐增加,因此压降逐渐下降,而截留性能逐渐下降,截留目 标物的粒径逐渐增大。本发明制备的陶瓷膜为超滤或微滤膜,可用于空气 中微颗粒物的截留。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是 以上所述的仅为本发明的具体实施例,并不用于限制本发明,凡在本发明 的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发 明的保护范围之内。

Claims (6)

1.一种基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,其特征在于,包括以下步骤:
(1)通过3D打印技术,对支撑层粉层、中间层粉层和功能层粉层分别逐层进行粘结墨水喷射,制备得到陶瓷膜坯体;所述的陶瓷膜坯体包括支撑层、中间层和功能层;
(2)将陶瓷膜坯体加热烧结,制备得到所述的基于粘结剂喷射的梯度孔结构陶瓷膜;
所述的支撑层粉层的厚度为750-2500μm,包括陶瓷粉末、固体粘结剂粉末和烧结助剂粉末;所述的中间层粉层的厚度为25-150μm,包括陶瓷粉末和固体粘结剂粉末;所述的功能层粉层的厚度为1.5-10μm,包括陶瓷粉末和固体粘结剂粉末;
其中,支撑层粉层中陶瓷粉末的平均粒径>中间层粉层中陶瓷粉末的平均粒径>功能层粉层中陶瓷粉末的平均粒径;
所述的陶瓷粉末为氧化铝、氧化锆、氧化钛、二氧化硅中的至少一种;支撑层粉层中的陶瓷粉末平均粒径为50-100μm;中间层粉层中的陶瓷粉末平均粒径为5-10μm;功能层粉层中陶瓷粉末平均粒径为0.5-2μm;
所述的固体粘结剂粉末为聚乙烯醇、麦芽糊精、羧甲基纤维素、泊洛沙姆F127中的至少一种;支撑层粉层中的固体粘结剂粉末平均粒径为50-100μm;中间层粉层中的固体粘结剂粉末平均粒径为5-10μm;功能层粉层中的固体粘结剂粉末平均粒径为0.5-2μm;
所述的烧结助剂粉末为高岭土、氧化镁、氧化钙、亚微米级氧化铝、亚微米级氧化钛中的至少一种;其中,高岭土、氧化镁和氧化钙的平均粒径为50-100μm;亚微米级氧化铝和亚微米级氧化钛的平均粒径为50-200nm;
步骤(2)中,加热烧结条件为:温度800-1400℃,升温速率0.5-5℃/min,保温时间2-4h。
2.根据权利要求1所述的基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,其特征在于,所述的支撑层粉层中,陶瓷粉末、固体粘结剂粉末和烧结助剂粉末的质量比为97-99:0.5-2.0:0.5-1.0。
3.根据权利要求1所述的基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,其特征在于,所述的中间层粉层和功能层粉层中,陶瓷粉末和固体粘结剂粉末的质量比为98-99.5:0.5-2.0。
4.根据权利要求1所述的基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法,其特征在于,步骤(1)中,所述的粘结墨水为聚乙烯吡咯烷酮水溶液,聚乙烯吡咯烷酮水溶液的浓度为5%-20%。
5.根据权利要求1-4任一所述的基于粘结剂喷射的梯度孔结构陶瓷膜的制备方法制得的基于粘结剂喷射的梯度孔结构陶瓷膜。
6.根据权利要求5所述的基于粘结剂喷射的梯度孔结构陶瓷膜在水处理或空气过滤领域的应用。
CN202210635336.XA 2022-06-06 2022-06-06 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用 Active CN115073202B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210635336.XA CN115073202B (zh) 2022-06-06 2022-06-06 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210635336.XA CN115073202B (zh) 2022-06-06 2022-06-06 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115073202A CN115073202A (zh) 2022-09-20
CN115073202B true CN115073202B (zh) 2023-04-28

Family

ID=83251966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210635336.XA Active CN115073202B (zh) 2022-06-06 2022-06-06 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115073202B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267465A (ja) * 1998-03-24 1999-10-05 Teijin Ltd フィルターエレメント
JP4088199B2 (ja) * 2003-05-15 2008-05-21 富士通株式会社 膜状形成体を含む構造体の形成方法
CN102701778B (zh) * 2012-06-01 2013-10-16 清华大学 一种多级孔结构陶瓷膜的制备方法
EP3600892A1 (en) * 2017-03-30 2020-02-05 Dow Silicones Corporation Method of forming porous three-dimensional (3d) article
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
US11101468B2 (en) * 2019-05-10 2021-08-24 Xerox Corporation Flexible thin-film printed batteries with 3D printed substrates
CN110193292A (zh) * 2019-05-28 2019-09-03 南方科技大学 复合陶瓷膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柳朝阳 ; 赵备备 ; 李兰杰 ; 常福增 ; 祁健 ; 马英梁 ; .金属材料3D打印技术研究进展.粉末冶金工业.2020,(第02期),全文. *

Also Published As

Publication number Publication date
CN115073202A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
JP5302957B2 (ja) 特定の気孔形成剤を用いて多孔質支持体に無機多孔質被膜を形成する方法
WO2015083628A1 (ja) セラミックフィルタ
Zhu et al. Integrated preparation of alumina microfiltration membrane with super permeability and high selectivity
Zou et al. Design and fabrication of whisker hybrid ceramic membranes with narrow pore size distribution and high permeability via co-sintering process
JP2010528835A5 (zh)
Bouzerara et al. Shaping of microfiltration (MF) ZrO2 membranes using a centrifugal casting method
JPH04231387A (ja) チタニア支持体およびその製造方法
CN111545078A (zh) 平板陶瓷膜及其制备方法
KR19990078084A (ko) 균질 거대 다공질 세라믹 재료
Zawrah et al. Effect of CTAB as a foaming agent on the properties of alumina ceramic membranes
CN103813981B (zh) 碳膜的制造方法
CN109126482A (zh) 一种粉煤灰-氧化铝双层复合微滤膜的制备方法
Harabi et al. Preparation and characterization of tubular membrane supports using centrifugal casting
CN112044285A (zh) 一种高通量陶瓷过滤膜及其制备方法
JP2023011761A (ja) セラミック膜フィルタ
Zhu et al. Design and optimization of ceramic membrane structure: from the perspective of flux matching between support and membrane
CN115090122A (zh) 一种氧化铝晶须膜层结构的陶瓷膜及其制备方法与应用
CN115073202B (zh) 一种基于粘结剂喷射的梯度孔结构陶瓷膜及其制备方法和应用
Ha et al. The preparation and characterizations of an alumina support layer as a free-standing membrane for microfiltration
KR20120076073A (ko) 세라믹 필터 및 그 제조방법
JP2001340718A (ja) ハニカムフィルタ用基材及びその製造方法
Yin et al. Effect of boehmite sol on the performance of alumina microfiltration membranes
Taleb et al. New tubular ceramic membranes from natural moroccan clay for microfiltration application
US20070059514A1 (en) Titania composite membrane for water/alcohol separation, and preparation thereof
Ha et al. The preparation and characterizations of the diatomite-kaolin composite support layer for microfiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant