CN115072671B - 一种锗铋碲基热电材料及其制备方法 - Google Patents

一种锗铋碲基热电材料及其制备方法 Download PDF

Info

Publication number
CN115072671B
CN115072671B CN202110274145.0A CN202110274145A CN115072671B CN 115072671 B CN115072671 B CN 115072671B CN 202110274145 A CN202110274145 A CN 202110274145A CN 115072671 B CN115072671 B CN 115072671B
Authority
CN
China
Prior art keywords
sintering
source
thermoelectric material
based thermoelectric
bismuth tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110274145.0A
Other languages
English (en)
Other versions
CN115072671A (zh
Inventor
满娜
熊成龙
刘国强
谈小建
蒋俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202110274145.0A priority Critical patent/CN115072671B/zh
Publication of CN115072671A publication Critical patent/CN115072671A/zh
Application granted granted Critical
Publication of CN115072671B publication Critical patent/CN115072671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

本申请公开了一种锗铋碲基热电材料及其制备方法,所述锗铋碲基热电材料包括化学式GeAxBi2‑xTe4的化合物。本申请通过改变A、Bi的掺杂比例,特别是在掺杂Sb元素后,改变Bi和Sb的比例,能有效调控材料的载流子浓度,达到最佳范围,获得较大的功率因子。且得到的锗铋碲基热电材料为组织和性能分布均匀的单一相。

Description

一种锗铋碲基热电材料及其制备方法
技术领域
本申请涉及一种锗铋碲基热电材料及其制备方法,属于热电材料领域。
背景技术
随着社会经济的发展,有限的化石能源面临着即将枯竭的问题,因此人们转而探索新型的可再生能源,如风能、热能等,同时能源的存储、输运、转化等关键技术也吸引了高度的关注。在不断的探索与研究中,人们发现热电材料具有无噪音、污染少、系统体积小、适用温度广等优点,这些优势使得热电材料在各种民用与军事领域得到了广泛的应用。热电材料的热电性能衡量标准是ZT值,ZT=S2σT/k,其中S为塞贝克系数,σ为电导率,T为绝对温度,κ为总热导率。理想的高ZT值热电材料需要较大的功率因数(PF=S2σ)和较小的热导率。然而,由于这三个系数是相互耦合,提升ZT成为了一个很大的挑战。
目前热电材料的种类繁多,有低温区的Bi2Te3体系材料;高温区的硅锗合金;中温区的PbTe、SnTe基材料等,这些二元化合物都具有较高的ZT值。同时,这些二元化合物还可以形成一系列的三元化合物(ⅣTe)x(Ⅴ2Te3)y(Ⅳ=Ge,Sn,Pb;Ⅴ=Sb,Bi),在它们之中,Ge-Sb-Te(GST)通常被用作相变储存材料而被人们熟知,类似的Ge-Bi-Te(GBT)基化合物被认为是良好的拓扑绝缘体,良好的拓扑绝缘体与热电材料之间有着密切的联系,如Bi2Te3。大多数关于GB(S)T的研究集中在薄膜以及其拓扑性质上,关于其热电性能系统性研究的报道较少。
发明内容
根据本申请的一个方面,提供了一种锗铋碲基热电材料及其制备方法,该热电材料通过元素的掺杂,并调控掺杂元素的比例,提高了锗铋碲基热电材料的热电性能。
所述锗铋碲基热电材料包括式I所示化学式的化合物;
GeAxBi2-xTe4 式I
其中,A元素为金属元素;
A元素选自IIIA族元素、VA族元素中的任意一种;
x的取值为:0<x<2.0。
可选地,所述IIIA族元素选自Al、Ga、In、Tl中的任意一种;
所述VA族元素选自As、Sb中的任意一种。
优选地,A元素选用Sb。
可选地,所述x的取值范围在0.5≤x≤1.5。
根据本申请的又一个方面,提供了锗铋碲基热电材料的制备方法,其特征在于,所述方法至少包括:
步骤1、将Ge源、A源、Bi源、Te源熔融、淬火,得到铸锭;
步骤2、对所述铸锭进行退火处理,得到前驱体;
步骤3、对所述前驱体进行烧结,得到所述锗铋碲基热电材料。
可选地,所述Ge源、Bi源、Te源独立选自各元素对应的单质原料;
A源选自A元素的单质、氯化物中的至少一种。
优选地,Ge源、Te源、A源、Bi源均采用单质,且纯度大于99.999%。
可选地,步骤1中,所述熔融条件为:
熔融温度700~1100℃,熔融时间为1~5h。
具体地,熔融温度的下限独立地选自700℃、750℃、800℃、850℃、900℃;熔融温度的上限独立地选自950℃、975℃、1000℃、1050℃、1100℃。
具体地,熔融时间可独立选自1h、2h、3h、4h、5h,或上述两点之间的任意数值。
可选地,所述熔融过程中,控制真空度为1~10Pa。
可选地,步骤1中,所述淬火条件为:
淬火温度20~25℃。
具体地,淬火温度独立地选自20℃、21℃、22℃、23℃、24℃、25℃,或上述两点之间的任意数值。
本申请对于淬火时间没有特别限定,本领域技术人员可根据所得铸锭的大小,淬火的要求等,选择淬火时间,比如仅几毫米规格的铸锭,放入冷水中,直接拿出即可实现淬火目的。
可选地,步骤2中,所述退火处理条件为:
退火温度550~650℃,退火时间为1~5天。
具体地,退火温度的下限独立地选自550℃、560℃、570℃、580℃、590℃;退火温度的上限独立地选自600℃、610℃、620℃、630℃、650℃。
具体地,退火时间可独立选自1天、1.5天、2天、2.5天、3天、3.5天、4天、4.5天、5天,或上述两点之间的任意数值。
可选地,步骤3中,所述烧结采用热压烧结。
可选地,所述烧结条件为:
烧结压力40~55Mpa,烧结温度400~550℃,烧结时间20~50min。
具体地,烧结压力的下限独立地选自40Mpa、42Mpa、44Mpa、45Mpa、47Mpa;烧结压力的上限独立地选自50Mpa、51Mpa、52Mpa、53Mpa、55Mpa。
具体地,烧结温度的下限独立地选自400℃、420℃、440℃、450℃、470℃;烧结温度的上限独立地选自500℃、520℃、530℃、540℃、550℃。
具体地,烧结时间可独立选自20min、25min、30min、35min、40min、45min、50min,或上述两点之间的任意数值。
本申请中,“Ge-Bi(Sb)-Te热电材料”,是指锗铋碲基热电材料中掺杂有一定比例的Sb,且Bi和Sb形成完全固溶体。
本申请能产生的有益效果包括:
1)本申请方法制备的得到的锗铋碲基热电材料,通过改变A、Bi的掺杂比例(即改变x的值),特别是在掺杂Sb元素后,改变Bi和Sb的比例,能有效调控材料的载流子浓度,达到最佳范围,获得较大的功率因子。
2)本申请制备方法中,起始原料采用纯度大于99.999%的单质原料,保证最终得到的热电材料纯度更高,热电性能更优。
3)本申请制备得到锗铋碲基热电材料为组织和性能分布均匀的单一相。
4)本申请采用热压烧结法制备锗铋碲基热电材料,制备工艺、设备要求都较简单。
附图说明
图1是本申请实施例1、2制备所得热电材料的XRD图;
图2是本申请实施例1-4所得热电材料的功率因子随温度变化的关系图;
图3是本申请实施例1、2所得热电材料的热电优值随温度变化的关系图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
利用X射线衍射仪(D8 Advance)进行样品的组成分析。
利用电学性能测试系统(ZEM-3)与激光热导仪(Netzsch LFA-457)进行材料的电性能和热性能分析。
根据本申请的一种实施方式,一种Ge-Bi(Sb)-Te基热电材料的制备方法,具体包括如下步骤:
(a)按一定的化学计量比称取Ge、Bi、Sb和Te混合料,加入洁净的石英玻璃管中,真空封管,然后依次进行熔炼、淬火。
(b)将上述材料在高温退火炉中进行550~650℃退火,退火时间为1~5d,退火完成后得到铸锭。将铸锭破碎,研磨过筛后得到粉末。
(c)将(b)中的粉末放入石墨模具中,在<1Pa真空,温度为400~550℃条件下进行烧结,烧结压力为40~55Mpa,热压时间为20~50min。烧结完成后取出样品,将样品磨成粉末进行XRD测试,将样品切割成3mm*3mm*10mm条状和10mm*10mm*1.5mm片状分别进行电输运性能和热输运性能的测试。
实施例1
GeBi2Te4样品的制备
制备方法具体如下:
(1)按化学计量比称取纯度为99.999%的Ge块(1.09克)、Bi块(6.26克)和Te粒(7.65克)混合。将混合物密封在直径为10mm的石英玻璃管中,保持10Pa以下的高真空度,采用乙炔焊枪封管。将石英玻璃管置于摇摆炉中在950℃熔炼摇摆1h,然后25℃冷水淬火,得到块体材料。
(2)将(1)中得到的块体材料在580℃条件下退火2d后,破碎石英管,研磨块体材料,并过125目筛后,得到GeBi2Te4粉末。
(3)将(2)中的得到的粉末放入石墨模具中,在<1Pa真空下,控制烧结温度为500℃,压力为50MPa,热压烧结30min。
实施例2
GeBi1.5Sb0.5Te4样品的制备
制备方法具体如下:
(1)按化学计量比称取纯度为99.999%的Ge块(1.14克)、Bi块(4.91克)、Sb块(0.95克)和Te粒(8.00克)混合。将混合物密封在直径为10mm的石英玻璃管中,保持10Pa以下的高真空度,采用乙炔焊枪封管。将石英玻璃管置于摇摆炉中在950℃熔炼摇摆1h,然后25℃冷水淬火,得到块体材料。
(2)将(1)中得到的块体材料在580℃条件下退火2d后,破碎石英管,研磨块体材料,并过125目筛后,得到GeBi1.5Sb0.5Te4粉末。
(3)将(2)中的得到的粉末放入石墨模具中,在<1Pa真空下,控制烧结温度为500℃,压力为50MPa,热压烧结30min。
实施例3
GeBiSbTe4样品的制备
制备方法具体如下:
(1)按化学计量比称取纯度为99.999%的Ge块(1.19克)、Bi块(3.43克)、Sb块(2.00克)和Te粒(8.38克)混合。将混合物密封在直径为10mm的石英玻璃管中,保持10Pa以下的高真空度,采用乙炔焊枪封管。将石英玻璃管置于摇摆炉中在950℃熔炼摇摆1h,然后25℃冷水淬火,得到块体材料。
(2)将(1)中得到的块体材料580℃条件下进行退火2d后,破碎石英管,研磨块体材料,并过125目筛后,得到GeBiSbTe4粉末。
(3)将(2)中的得到的粉末放入石墨模具中,在<1Pa真空下,控制烧结温度为500℃,压力为50MPa,热压烧结30min。
实施例4
GeBi0.5Sb1.5Te4样品的制备
制备方法具体如下:
(1)按化学计量比称纯度为99.999%的Ge块(1.25克)、Bi块(1.80克)Sb块(3.15克)和Te粒(8.80克)混合。将混合物密封在直径为10mm的石英玻璃管中,保持10Pa以下的高真空度,采用乙炔焊枪封管。将石英玻璃管置于摇摆炉中在950℃熔炼摇摆1h,然后25℃冷水淬火得到块体材料。
(2)将(1)中得到的块体材料在580℃条件下退火2d后,破碎石英管,研磨块体材料,并过125目筛后,得到GeBi0.5Sb1.5Te4粉末。
(3)将(2)中的得到的粉末放入石墨模具中,在<1Pa真空下,控制烧结温度为500℃,压力为50MPa,热压烧结30min。
实施例5
GeIn0.08Bi1.82Te4样品的制备
制备方法具体如下:
(1)按化学计量比称取纯度为99.999%的Ge块(1.00克)、Bi块(6.24克)In粒(0.14克)和Te粒(7.62克)混合。将混合物密封在直径为10mm的石英玻璃管中,保持10Pa以下的高真空度,采用乙炔焊枪封管。将石英玻璃管置于摇摆炉中在950℃熔炼摇摆2h,然后20℃冷水淬火,得到块体材料。
(2)将(1)中得到的块体材料580℃条件下进行退火3d后,破碎石英管,研磨块体材料,并过125目筛后,得到GeIn0.08Sb1.82Te4粉末。
(3)将(2)中的得到的粉末放入石墨模具中,在<1Pa真空下,控制烧结温度为450℃,压力为55MPa,热压烧结50min。
实施例5
将实施例1-4所得样品磨成粉末进行XRD测试,将样品切割成3mm*3mm*10mm条状和10mm*10mm*1.5mm片状分别进行电输运性能和热输运性能的测试。
采用X射线衍射仪对实施例1-4制得的热电材料进行检测,其中图1为是实施例1、实施例2得到的XRD图,从图中可以观察到,与标准卡片对比,实施例1、2与标准PDF卡片峰位对应,证明得到了单一的纯相热电材料,Sb掺杂后,形成了GeBi(Sb)Te相固熔体。
对实施例1-4所得样品制成的条状、片状样品分别经ZEM-3仪器与激光热导仪测试电性能跟热性能后,计算其功率因子和热电优值,由图2所示,相比于未掺杂Sb元素的材料,在Sb的固溶后,材料的功率因子得到进一步提升,但是随着固溶量的增加,功率因子又呈现下降趋势,最终结果显示最优Sb固熔比例的样品为实施例2,即GeBi1.5Sb0.5Te4。根据图3可知,实施例2样品的热电优值相对于实施例1有明显提升。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种锗铋碲基热电材料,其特征在于,所述锗铋碲基热电材料包括式I所示化学式的化合物;
GeAxBi2-xTe4式I
其中,A元素为金属元素;
A元素选自IIIA族元素、VA族元素中的任意一种;
x的取值为:0<x<2.0;
所述IIIA族元素选自Al、Ga、In、Tl中的任意一种;
所述VA族元素选自Sb中的任意一种。
2.根据权利要求1所述的锗铋碲基热电材料,其特征在于,所述x的取值范围在0.5≤x≤1.5。
3.权利要求1-2任一项所述的锗铋碲基热电材料的制备方法,其特征在于,所述方法至少包括:
步骤1、将Ge源、A源、Bi源、Te源熔融、淬火,得到铸锭;
步骤2、对所述铸锭进行退火处理,得到前驱体;
步骤3、对所述前驱体进行烧结,得到所述锗铋碲基热电材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤1中,所述Ge源、Bi源、Te源独立选自各元素对应的单质原料;
A源选自A元素的单质、氯化物中的至少一种。
5.根据权利要求3所述的制备方法,其特征在于,步骤1中,所述熔融条件为:
熔融温度700~1100℃,熔融时间为1~5h。
6.根据权利要求3所述的制备方法,其特征在于,步骤1中,所述熔融过程中,控制真空度为1~10Pa。
7.根据权利要求3所述的制备方法,其特征在于,步骤1中,所述淬火条件为:
淬火温度20~25℃。
8.根据权利要求3所述的制备方法,其特征在于,步骤2中,所述退火处理条件为:
退火温度550~650℃,退火时间为1~5天。
9.根据权利要求3所述的制备方法,其特征在于,步骤3中,所述烧结采用热压烧结。
10.根据权利要求9所述的制备方法,其特征在于,所述烧结条件为:
烧结压力40~55Mpa,烧结温度400~550℃,烧结时间20~50min。
CN202110274145.0A 2021-03-15 2021-03-15 一种锗铋碲基热电材料及其制备方法 Active CN115072671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110274145.0A CN115072671B (zh) 2021-03-15 2021-03-15 一种锗铋碲基热电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110274145.0A CN115072671B (zh) 2021-03-15 2021-03-15 一种锗铋碲基热电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115072671A CN115072671A (zh) 2022-09-20
CN115072671B true CN115072671B (zh) 2024-02-06

Family

ID=83240546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110274145.0A Active CN115072671B (zh) 2021-03-15 2021-03-15 一种锗铋碲基热电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115072671B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444006A (en) * 1963-12-16 1969-05-13 Westinghouse Electric Corp Thermoelectric element having a diffusion bonded coating
JP2004014804A (ja) * 2002-06-06 2004-01-15 Central Res Inst Of Electric Power Ind 熱電材料および熱電素子
CN103060750A (zh) * 2012-11-20 2013-04-24 深圳大学 一种铋锑碲基热电薄膜的制备方法
CN106830940A (zh) * 2017-01-10 2017-06-13 同济大学 一种GeTe基高性能热电材料及其制备方法
CN108807654A (zh) * 2018-06-15 2018-11-13 同济大学 高性能低成本MnGeTe2基热电材料及其制备
CN111435698A (zh) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
CN111477736A (zh) * 2019-01-24 2020-07-31 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444006A (en) * 1963-12-16 1969-05-13 Westinghouse Electric Corp Thermoelectric element having a diffusion bonded coating
JP2004014804A (ja) * 2002-06-06 2004-01-15 Central Res Inst Of Electric Power Ind 熱電材料および熱電素子
CN103060750A (zh) * 2012-11-20 2013-04-24 深圳大学 一种铋锑碲基热电薄膜的制备方法
CN106830940A (zh) * 2017-01-10 2017-06-13 同济大学 一种GeTe基高性能热电材料及其制备方法
CN108807654A (zh) * 2018-06-15 2018-11-13 同济大学 高性能低成本MnGeTe2基热电材料及其制备
CN111435698A (zh) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法
CN111477736A (zh) * 2019-01-24 2020-07-31 中国科学院宁波材料技术与工程研究所 一种碲化铋基热电材料及其制备方法

Also Published As

Publication number Publication date
CN115072671A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN102194989B (zh) 一种三元类金刚石结构的热电材料的制备方法
KR101614062B1 (ko) 신규한 화합물 반도체 및 그 활용
CN103872237B (zh) 铜硫基高性能热电材料及其制备方法
CN107799646B (zh) 一种合金热电半导体材料及其制备方法
CN106830940A (zh) 一种GeTe基高性能热电材料及其制备方法
Nolas et al. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM2InTe4 (M= Zn, Cd)
CN108346736A (zh) 一种高性能银碲化合物热电半导体材料及其制备方法
CN110098310B (zh) 一种SnSe基热电材料取向多晶的制备方法
Ishtiyak et al. Intrinsic extremely low thermal conductivity in BaIn2Te4: Synthesis, crystal structure, Raman spectroscopy, optical, and thermoelectric properties
CN114506823A (zh) 一种n型PbSe基热电材料及其制备方法和应用
US20210074900A1 (en) ZrNiSn-BASED HALF-HEUSLER THERMOELECTRIC MATERIAL AND PROCESS FOR MANUFACTURING SAME AND FOR REGULATING ANTISITE DEFECTS THEREIN
CN115072671B (zh) 一种锗铋碲基热电材料及其制备方法
CN113421958B (zh) 热电化合物BaCu2Se2材料及其制备方法
KR20170037261A (ko) 신규한 화합물 반도체 및 그 활용
Aminzare et al. Effect of spark plasma sintering and Sb doping on the thermoelectric properties of Co4Ge6Te6 skutterudite
JP2020516055A (ja) カルコゲン化合物、その製造方法およびこれを含む熱電素子
CN111653662B (zh) 伪立方相结构GeTe基热电材料及其制备方法
EP3447812B1 (en) Novel compound semiconductor and use thereof
Kosuga et al. High-temperature formation phases and crystal structure of hot-pressed thermoelectric compounds with chalcopyrite-type structure
CN108425150B (zh) 新型P 基化合物Ag6Ge10P12高热电性能材料的制备方法
CN114477104B (zh) (Sb2Te3)n(GeTe)m热电材料及其制备方法
EP3454387B1 (en) Novel compound semiconductor and use thereof
Sakai et al. Investigation of a high-temperature phase of 3Bi 2 O 3· 2TeO 2 binary oxide
EP3416204B1 (en) Novel compound semiconductor and use thereof
US11306004B2 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant