CN115066775A - 二次电池、电子设备以及电动工具 - Google Patents

二次电池、电子设备以及电动工具 Download PDF

Info

Publication number
CN115066775A
CN115066775A CN202180013098.2A CN202180013098A CN115066775A CN 115066775 A CN115066775 A CN 115066775A CN 202180013098 A CN202180013098 A CN 202180013098A CN 115066775 A CN115066775 A CN 115066775A
Authority
CN
China
Prior art keywords
active material
positive electrode
negative electrode
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180013098.2A
Other languages
English (en)
Inventor
大谷彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN115066775A publication Critical patent/CN115066775A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种二次电池,正极活性物质非覆盖部在电极卷绕体的一个端部与正极集电板接合,负极活性物质非覆盖部在电极卷绕体的另一个端部与负极集电板接合,电极卷绕体具有:至少正极活性物质非覆盖部向卷绕的结构的中心轴弯曲并重合而形成的平坦面;形成于平坦面的槽;以及仅由位于比正极以及负极的最内周靠内侧的位置的隔膜构成的内周部,正极活性物质非覆盖部从隔膜的宽度方向的一端突出的部分的长度E大于隔膜从负极的宽度方向的一端突出的部分的长度F,将内周部中的隔膜的层数设为m、将厚度设为t且Z=t×m时,满足式(1)。式(1):80≤Z≤196。

Description

二次电池、电子设备以及电动工具
技术领域
本发明涉及二次电池、电子设备以及电动工具。
背景技术
锂离子电池也被开发用于电动工具或电动汽车等需要高输出的用途。作为进行高输出的一个方法,可以列举出从电池流过比较大的电流的高速率放电。对于锂离子电池,不仅限用于高速率放电,均会发生电极在充放电时变形而导致电池的寿命缩短的问题。
例如,在下述专利文献1中记载了如下电池:通过增加隔膜的空卷绕数、或者在卷绕开始时与隔膜一起卷绕惰性材料,从而提高中心部抵抗由于电极膨胀而引起变形的耐性,增加循环寿命。
现有技术文献
专利文献
专利文献1:日本特开2004-356047号公报
发明内容
专利文献1的技术涉及使用引线作为取出电极的通常的电池,如果将该技术直接应用于高速率放电用的电池,则存在如下问题:折弯的活性物质非覆盖部进入内周部,刺破隔膜,有可能引起内部短路。
因此,本发明的目的之一在于提供一种不会引起内部短路的高速率放电用的电池。
为了解决上述课题,本发明提供一种二次电池,该二次电池将电极卷绕体、正极集电板以及负极集电板收容在电池罐中,所述电极卷绕体具有隔着隔膜层叠带状的正极和带状的负极并卷绕在中心轴的周围而成的结构,
正极在带状的正极箔上具有被正极活性物质层覆盖的正极活性物质覆盖部和正极活性物质非覆盖部,
负极在带状的负极箔上具有被负极活性物质层覆盖的负极活性物质覆盖部和负极活性物质非覆盖部,
正极活性物质非覆盖部在电极卷绕体的一个端部与正极集电板接合,
负极活性物质非覆盖部在电极卷绕体的另一个端部与负极集电板接合,
电极卷绕体具有:
至少正极活性物质非覆盖部向卷绕的结构的中心轴弯曲并重合而形成的平坦面;
形成于平坦面的槽;以及
仅由位于比正极以及负极的最内周靠内侧的位置的隔膜构成的内周部,
正极活性物质非覆盖部从隔膜的宽度方向的一端突出的部分的长度E大于隔膜从负极的宽度方向的一端突出的部分的长度F,
将内周部中的隔膜的层数设为m、将厚度设为t、且Z=t×m时,满足式(1)。
式(1):80≤Z≤196
根据本发明的至少一个实施方式,可以提供一种不发生内部短路以及焊接不良、能够高度保持初始容量的电池。需要说明的是,本发明的内容不应被解释为限定于本说明书中例示的效果。
附图说明
图1是一个实施方式所涉及的电池的剖视图。
图2是说明电极卷绕体中的正极、负极和隔膜的配置关系的一例的图。
图3A是正极集电板的俯视图,图3B是负极集电板的俯视图。
图4A至图4F是说明一个实施方式所涉及的电池的组装工序的图。
图5A以及图5B是用于说明实施例1的图。
图6A以及图6B是用于说明隔膜的层数m的图。
图7A以及图7B是用于说明比较例1的图。
图8A以及图8B是用于说明比较例2的图。
图9A以及图9B是用于说明比较例3的图。
图10是用于说明作为本发明的应用例的电池包的连接图。
图11是用于说明作为本发明的应用例的电动工具的连接图。
图12是用于说明作为本发明的应用例的电动车辆的连接图。
具体实施方式
以下,参照附图对本发明的实施方式等进行说明。需要说明的是,将按照以下顺序进行说明。
<1.一个实施方式>
<2.变形例>
<3.应用例>
以下说明的实施方式等是本发明的优选的具体例,本发明的内容并不限定于这些实施方式等。
在本发明的实施方式中,作为二次电池,以圆筒形状的锂离子电池为例进行说明。
<1.一个实施方式>
首先,对锂离子电池的整体结构进行说明。图1是锂离子电池1的概略剖视图。例如,如图1所示,锂离子电池1是圆筒型的锂离子电池1,其中电极卷绕体20收纳在电池罐11的内部。
具体而言,锂离子电池1例如在圆筒状的电池罐11的内部具备一对绝缘板12、13和电极卷绕体20。另外,锂离子电池1例如还可以在电池罐11的内部具备热敏电阻(PTC)元件以及加强部件等中的任意一种或两种以上。
[电池罐]
电池罐11是主要收纳电极卷绕体20的部件。该电池罐11例如是一端面开放而另一端面封闭的圆筒状的容器。即,电池罐11具有开放的一端面(开放端面11N)。该电池罐11例如含有铁、铝以及它们的合金等金属材料中的任意一种或两种以上。另外,在电池罐11的表面,例如也可以镀敷镍等金属材料中的任意一种或两种以上。
[绝缘板]
绝缘板12、13是具有大致垂直于电极卷绕体20的卷绕轴(图1中的Z轴)的平面的盘状板。另外,绝缘板12、13例如配置为彼此将电极卷绕体20夹在中间。
[铆接结构]
在电池罐11的开放端面11N,电池盖14以及安全阀机构30经由垫圈15铆接,从而形成铆接结构11R(卷曲结构)。由此,在电极卷绕体20等收纳在电池罐11的内部的状态下,该电池罐11被密封。
[电池盖]
电池盖14主要是在电极卷绕体20等收纳在电池罐11的内部的状态下封闭该电池罐11的开放端面11N的部件。该电池盖14例如包含与电池罐11的形成材料相同的材料。电池盖14中的中央区域例如向+Z方向突出。由此,电池盖14中的中央区域以外的区域(周边区域)例如与安全阀机构30接触。
[垫圈]
垫圈15主要是通过介于电池罐11(折弯部11P)与电池盖14之间来密封该折弯部11P与电池盖14之间的间隙的部件。另外,在垫圈15的表面例如可以涂布沥青等。
该垫圈15例如包含绝缘性材料中的任意一种或两种以上。绝缘性材料的种类没有特别限定,例如为聚对苯二甲酸丁二醇酯(PBT)以及聚丙烯(PP)等高分子材料。其中,绝缘性材料优选为聚对苯二甲酸丁二醇酯。这是因为可以在电池罐11与电池盖14彼此电分离的同时,将折弯部11P与电池盖14之间的间隙充分密封。
[安全阀机构]
当电池罐11内部的压力(内压)上升时,安全阀机构30主要通过根据需要解除电池罐11的密封状态来释放其内压。电池罐11的内压上升的原因例如是在充放电时由于电解液的分解反应而产生的气体等。
[电极卷绕体]
在圆筒形状的锂离子电池中,带状的正极21和带状的负极22隔着隔膜23卷绕成螺旋状,在浸渍于电解液中的状态下,收纳于电池罐11中。正极21是在正极箔21A的一面或两面上形成正极活性物质层而成的,正极箔21A的材料例如是由铝或铝合金制成的金属箔。负极22是在负极箔22A的一面或两面上形成负极活性物质层而成的,负极箔22A的材料例如是由镍、镍合金、铜或铜合金制成的金属箔。隔膜23是多孔质且具有绝缘性的薄膜,在使正极21和负极22电绝缘的同时,使离子、电解液等物质能够移动。
正极活性物质层和负极活性物质层分别覆盖正极箔21A和负极箔22A的大部分,但都没有有意地覆盖位于带的短边方向的一端周边。以下,将未被该活性物质层覆盖的部分适当地称为活性物质非覆盖部21C、22C,将被活性物质层覆盖的部分适当地称为活性物质覆盖部21B、22B。在圆筒形状的电池中,电极卷绕体20以正极的活性物质非覆盖部21C和负极的活性物质非覆盖部22C朝向相反方向的方式隔着隔膜23重叠卷绕。
图2示出了将正极21、负极22和隔膜23层叠在一起的卷绕前的结构的一例。正极的活性物质非覆盖部21C(图2的上侧的点部分)的宽度为A,负极的活性物质非覆盖部22C(图2的下侧的点部分)的宽度为B。在一个实施方式中,优选A>B,例如A=7(mm)、B=4(mm)。正极的活性物质非覆盖部21C从隔膜23的宽度方向的一端突出的部分的长度为C,负极的活性物质非覆盖部22C从隔膜23的宽度方向的另一端突出的部分的长度为D。在一个实施方式中,优选C>D,例如,C=4.5(mm),D=3(mm)。
正极的活性物质非覆盖部21C例如由铝等构成,负极的活性物质非覆盖部22C例如由铜等构成,因此,一般而言,正极的活性物质非覆盖部21C比负极的活性物质非覆盖部22C柔软(杨氏模量低)。因此,在一个实施方式中,更优选A>B且C>D,在该情况下,在从两极侧同时以相同的压力折弯正极的活性物质非覆盖部21C和负极的活性物质非覆盖部22C时,折弯的部分从隔膜23的前端测量的高度在正极21和负极22中为相同程度。此时,由于活性物质非覆盖部21C、22C被折弯而适度地重合,因此能够容易地通过激光焊接将活性物质非覆盖部21C、22C与集电板24、25进行接合。一个实施方式中的接合是指通过激光焊接进行接合,但接合方法并不限定于激光焊接。
在正极21中,包括活性物质非覆盖部21C和活性物质覆盖部21B之间的边界的3mm宽的区间被绝缘层101(图2中的灰色区域部分)覆盖。另外,隔着隔膜与负极的活性物质覆盖部22B对置的正极的活性物质非覆盖部21C的全部区域被绝缘层101覆盖。绝缘层101具有可靠地防止异物侵入到负极的活性物质覆盖部22B与正极的活性物质非覆盖部21C之间时的电池1的内部短路的效果。另外,绝缘层101具有在电池1受到冲击时吸收冲击,可靠地防止正极的活性物质非覆盖部21C折弯或与负极22发生短路的效果。
在包含电极卷绕体20的中心轴的区域开设有贯通孔26。贯通孔26是用于插入电极卷绕体20的组装用的卷芯和焊接用的电极棒的孔。电极卷绕体20以正极的活性物质非覆盖部21C和负极的活性物质非覆盖部22C朝向相反方向的方式重叠卷绕,因此正极的活性物质非覆盖部21C集中在电极卷绕体的端面的一方(端面41),负极的活性物质非覆盖部22C集中在电极卷绕体20的端面的另一方(端面42)。为了使与用于取出电流的集电板24、25的接触良好,活性物质非覆盖部21C、22C被弯曲,端面41、42成为平坦面。弯曲的方向是从端面41、42的外缘部27、28朝向贯通孔26的方向,在卷绕的状态下邻接的周的活性物质非覆盖部彼此重叠而弯曲。需要说明的是,在本说明书中,“平坦面”不仅包括完全平坦的面,还包括在活性物质非覆盖部和集电板能够接合的程度上具有一些凹凸或表面粗糙度的表面。
通过以活性物质非覆盖部21C、22C分别重叠的方式进行弯曲,乍一看可以认为能够使端面41、42成为平坦面,但如果在弯曲之前没有任何加工,则在弯曲时在端面41、42产生褶皱或缝隙(空隙、空间),端面41、42不会成为平坦面。在此,“褶皱”、“缝隙”是指在弯曲的活性物质非覆盖部21C、22C上产生偏移,端面41、42不会成为平坦面的部分。为了防止该褶皱或缝隙的产生,从贯通孔26沿放射方向预先形成有槽43(例如参照图4B)。槽43从端面41、42的外缘部27、28延伸至贯通孔26。在电极卷绕体20的中心具有贯通孔26,贯通孔26在锂离子电池1的组装工序中作为插入焊接器具的孔使用。在位于贯通孔26附近的、正极21和负极22的卷绕开始的活性物质非覆盖部21C、22C上有切口。这是为了在向贯通孔26弯曲时不会堵塞贯通孔26。槽43在将活性物质非覆盖部21C、22C弯曲后也残留在平坦面内,没有槽43的部分与正极集电板24或负极集电板25接合(焊接等)。需要说明的是,不仅是平坦面,槽43也可以与集电板24、25的一部分接合。
关于电极卷绕体20的详细结构,即正极21、负极22、隔膜23以及电解液各自的详细结构,将在后面进行叙述。
[集电板]
在通常的锂离子电池中,例如在正极和负极分别焊接有用于取出电流的引线,但这样电池的内部电阻大,在放电时锂离子电池会发热而成为高温,因此不适于高速率放电。因此,在一个实施方式的锂离子电池中,通过在端面41、42上配置正极集电板24和负极集电板25,并与存在于端面41、42上的正极或负极的活性物质非覆盖部21C、22C多点焊接,将电池的内部电阻抑制得低。端面41、42弯曲而成为平坦面也有助于低电阻化。
图3A以及图3B表示集电板的一例。图3A是正极集电板24,图3B是负极集电板25。正极集电板24的材料例如是由铝或铝合金的单体或复合材料制成的金属板,负极集电板25的材料例如是由镍、镍合金、铜或铜合金的单体或复合材料制成的金属板。如图3A所示,正极集电板24的形状为在呈平坦的扇形的板状部31上带有矩形的带状部32的形状。在板状部31的中央附近开设有孔35,孔35的位置是与贯通孔26对应的位置。
图3A的用点表示的部分是在带状部32上粘贴有绝缘带或涂布有绝缘材料的绝缘部32A,附图的点部下侧的部分是与兼作外部端子的封口板连接的连接部32B。需要说明的是,在贯通孔26不具备金属制的中心销(未图示)的电池结构的情况下,带状部32与负极电位的部位接触的可能性低,因此也可以没有绝缘部32A。在这种情况下,通过将正极21和负极22的宽度增加与绝缘部32A的厚度对应的量,能够增加充放电容量。
负极集电板25的形状是与正极集电板24几乎相同的形状,但带状部不同。图3B的负极集电板的带状部34比正极集电板的带状部32短,没有相当于绝缘部32A的部分。在带状部34上具有由多个圆形标记表示的圆形的突起部(突出部)37。在电阻焊接时,电流集中在突起部,突起部熔化,带状部34焊接在电池罐11的底部。与正极集电板24同样地,在负极集电板25上,在板状部33的中央附近开设有孔36,孔36的位置是与贯通孔26对应的位置。由于正极集电板24的板状部31和负极集电板25的板状部33呈扇形的形状,因此覆盖端面41、42的一部分。不覆盖全部的理由是,为了在组装电池时使电解液向电极卷绕体顺利地浸透,或者使电池成为异常的高温状态或过充电状态时产生的气体容易向电池外排出。
[正极]
正极活性物质层至少包含能够嵌入以及脱嵌锂的正极材料(正极活性物质),还可以包含正极粘结剂以及正极导电剂等。正极材料优选含锂复合氧化物或含锂磷酸化合物。含锂复合氧化物例如具有层状岩盐型或尖晶石型的结晶结构。含锂磷酸化合物例如具有橄榄石型的结晶结构。
正极粘结剂包含合成橡胶或高分子化合物。合成橡胶为丁苯系橡胶、氟系橡胶以及三元乙丙橡胶等。高分子化合物为聚偏氟乙烯(PVdF)以及聚酰亚胺等。
正极导电剂为石墨、炭黑、乙炔黑或科琴黑等碳材料。另外,正极导电剂也可以是金属材料以及导电性高分子。
正极箔21A的厚度优选为5μm以上且20μm以下。这是因为,通过将正极箔21A的厚度设为5μm以上,能够在重叠卷绕正极21、负极22和隔膜23时正极21不会断裂的情况下进行制造。这是因为,通过将正极箔21A的厚度设为20μm以下,能够防止电池1的能量密度的降低,并且正极21和负极22的对置面积变大,能够制成输出大的电池1。
[负极]
为了提高与负极活性物质层的密合性,负极箔22A的表面优选被粗糙化。负极活性物质层至少包含能够嵌入以及脱嵌锂的负极材料(负极活性物质),并且还可以包含负极粘结剂以及负极导电剂等。
负极材料例如包含碳材料。碳材料为易石墨化碳、难石墨化碳、石墨、低结晶性碳或非晶质碳。碳材料的形状具有纤维状、球状、粒状或鳞片状。
另外,负极材料例如包含金属系材料。作为金属系材料的例子,可以列举出Li(锂)、Si(硅)、Sn(锡)、Al(铝)、Zr(锌)、Ti(钛)。金属系元素与其他元素形成化合物、混合物或合金,作为其例子,可以列举出氧化硅(SiOx(0<x≤2))、碳化硅(SiC)或碳与硅的合金、钛酸锂(LTO)。
负极箔22A的厚度优选为5μm以上且20μm以下。这是因为,通过将负极箔22A的厚度设为5μm以上,能够在重叠卷绕正极21、负极22和隔膜23时负极22不会断裂的情况下进行制造。这是因为,通过将负极箔22A的厚度设为20μm以下,能够防止电池1的能量密度的降低,并且正极21和负极22的对置面积变大,能够制成输出大的电池1。
[隔膜]
隔膜23为含有树脂的多孔质膜,也可以是两种以上的多孔质膜的层叠膜。树脂为聚丙烯以及聚乙烯等。隔膜23可以使用多孔质膜作为基材层,在基材层的一面或两面上包含树脂层。这是因为可以提高隔膜23分别相对于正极21以及负极22的密合性,从而防止电极卷绕体20变形。
树脂层含有PVdF等树脂。在形成该树脂层的情况下,在基材层上涂布在有机溶剂中溶解有树脂的溶液后,使该基材层干燥。需要说明的是,也可以在使基材层浸渍于溶液中后,使该基材层干燥。从提高耐热性、电池的安全性的观点出发,优选在树脂层中含有无机粒子或有机粒子。无机粒子的种类为氧化铝、氮化铝、氢氧化铝、氢氧化镁、勃姆石、滑石、二氧化硅、云母等。另外,也可以使用通过溅射法、ALD(原子层堆积)法等形成的以无机粒子为主成分的表面层来代替树脂层。
隔膜23的厚度优选为4μm以上且30μm以下。通过将隔膜的厚度设为4μm以上,可以防止由于隔着隔膜23对置的正极21和负极22的接触而引起的内部短路。通过使隔膜23的厚度为30μm以下,锂离子或电解液可以容易地通过隔膜23,另外,在卷绕时,能够提高正极21和负极22的电极密度。
[电解液]
电解液包含溶剂以及电解质盐,并且根据需要还可以包含添加剂等。溶剂为有机溶剂等非水溶剂或水。将含有非水溶剂的电解液称为非水电解液。非水溶剂为环状碳酸酯、链状碳酸酯、内酯、链状羧酸酯或腈(单腈)等。
电解质盐的代表例是锂盐,但也可以含有锂盐以外的盐。锂盐为六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)、甲磺酸锂(LiCH3SO3)、三氟甲磺酸锂(LiCF3SO3)、六氟硅酸二锂(Li2SF6)等。也可以混合使用这些盐,其中,从提高电池特性的观点出发,优选混合使用LiPF6、LiBF4。电解质盐的含量没有特别限定,但优选相对于溶剂为0.3mol/kg~3mol/kg。
[锂离子电池的制作方法]
参照图4A至图4F,对一个实施方式的锂离子电池1的制作方法进行说明。首先,将正极活性物质涂覆在带状正极箔21A的表面上,将其用作正极21的覆盖部,将负极活性物质涂覆在带状负极箔22A的表面上,将其用作负极22的覆盖部。此时,在正极21的短边方向的一端和负极22的短边方向的一端,制作没有涂覆正极活性物质和负极活性物质的活性物质非覆盖部21C、22C。在活性物质非覆盖部21C、22C的一部分、即相当于卷绕时的卷绕开始的部分制作切口。对正极21和负极22进行干燥等工序。然后,以正极的活性物质非覆盖部21C和负极的活性物质非覆盖部22C成为相反方向的方式隔着隔膜23重叠,以在中心形成贯通孔26的方式、并且以将制作的切口配置在中心轴附近的方式卷绕成螺旋状,制作图4A那样的电极卷绕体20。
接着,如图4B所示,通过将薄的平板(例如厚度为0.5mm)等的端部相对于端面41、42垂直地按压,在端面41和端面42的一部分上制作槽43。通过该方法制作从贯通孔26沿放射状延伸的槽43。图4B所示的槽43的数量和配置仅是一例。然后,如图4C所示,从两极侧同时沿相对于端面41、42大致垂直的方向施加相同的压力,将正极的活性物质非覆盖部21C和负极的活性物质非覆盖部22C折弯,使端面41、42成为平坦面。此时,以位于端面41、42的活性物质非覆盖部朝向中心轴弯曲并重合的方式,在平板的板面等施加载荷。然后,在端面41上激光焊接正极集电板24的板状部31,在端面42上激光焊接并接合负极集电板25的板状部33。
然后,如图4D所示,将集电板24、25的带状部32、34折弯,将绝缘板12、13(或绝缘带)粘贴在正极集电板24和负极集电板25上,将如上所述组装的电极卷绕体20插入图4E所示的电池罐11内,进行电池罐11的底部的焊接。在将电解液注入到电池罐11内之后,如图4F所示,用垫圈15以及电池盖14进行密封。
实施例
以下,使用如上所述制作的锂离子电池1、并基于比较了开路电压不良率、初始容量以及焊接不良率的实施例来具体说明本发明。需要说明的是,本发明并不限定于以下说明的实施例。
在以下所有的实施例以及比较例中,将电池尺寸设为21700(直径21mm,高度70mm),以覆盖正极的活性物质覆盖部21B和负极的活性物质覆盖部22B的整个范围的方式重叠隔膜23。图5A是折弯位于端面41的正极的活性物质非覆盖部21C之前的电极卷绕体20(参照图4A)的局部剖视图。如图5A所示,沿着电极卷绕体20的中心轴方向(图1中的Z轴方向),正极的活性物质非覆盖部21C从隔膜23的宽度方向上的一端突出的部分的长度为E,隔膜23从负极22的宽度方向上的一端突出的部分的长度为F。
将隔膜23的厚度设为t,在电极卷绕体20的内周部配置多层隔膜23,将内周部的隔膜23中的层数设为m,Z=t×m。在此,如图5A所示,内周部是指电极卷绕体中的正极21以及负极22的最内周的层内侧的部位。另外,电极卷绕体20的外周部是指电极卷绕体20的周面。图6A是表示电极卷绕体的一例的剖视图,省略了隔膜23。图6B是由图6A的划线L1包围的部分的放大图。图6B示出了从负极22的卷绕开始侧(电极卷绕体的内周侧)的端部到电极卷绕体20的中心轴的单点划线L2。内周部的隔膜23的层数m的值是与图6B中描绘的单点划线L2相交的隔膜23的层数。在图6B的示例中,m=4。
槽43的数量为8个,配置成大致等角度间隔。相邻的正极的活性物质非覆盖部21C的距离和相邻的负极的活性物质非覆盖部22C的距离为0.2mm。在比较例3以外的实施例和比较例中,形成具有正极的活性物质非覆盖部21C彼此的重叠的结构,在比较例3中,形成没有正极的活性物质非覆盖部21C彼此的重叠的结构。
图5A以及图7A至图9A是折弯正极的活性物质非覆盖部21C之前的电极卷绕体20(参照图4A)的局部剖视图,图5B以及图7B至图9B是折弯正极的活性物质非覆盖部21C之后的电极卷绕体20(参照图4C)的局部剖视图。图的右侧是电极卷绕体20的内周部侧,图的左侧是电极卷绕体20的外周部侧。尽管没有具体图示,但在图中右端的隔膜23的位置的右侧相邻的空白部分是电极卷绕体20的贯通孔26,在图5A~图9A以及图5B~图9B中,省略了电极卷绕体的贯通孔26的右侧。
[实施例1]
如图5A所示,E=4.5mm,F=1mm,E>F,如图5B所示,在将正极的活性物质非覆盖部21C折弯时,正极的活性物质非覆盖部21C彼此重叠。t=14μm,m=6,Z=84。
[比较例1]
如图7A所示,E=4.5mm,F=1mm,E>F,如图7B所示,在将正极的活性物质非覆盖部21C折弯时,正极的活性物质非覆盖部21C彼此重叠。t=14μm,m=4,Z=56。
[比较例2]
如图8A所示,E=4.5mm,F=4.5mm,E≤F,如图8B所示,在将正极的活性物质非覆盖部21C折弯时,正极的活性物质非覆盖部21C彼此重叠。t=14μm,m=6,Z=84。
[比较例3]
如图9A所示,E=0.2mm,F=0.15mm,E>F,如图9B所示,在将正极的活性物质非覆盖部21C折弯时,正极的活性物质非覆盖部21C彼此不重叠。t=14μm,m=6,Z=84。
[评价]
对于实施例1以及比较例1至比较例3的电池1,求出开路电压不良率、初始容量和焊接不良率。开路电压不良率如下求出:在环境温度25℃下,以500mA进行恒流恒压充电,将刚达到4.2V后(1小时以内)的电池1的电压设为V1,将之后放置两周后的电池1的电压设为V2,此时,V1-V2≥50mV的电池1为开路电压不良,对其数量进行计数,求出相对于整体的比例。初始容量是对没有开路电压不良的电池1以500mA的电流值进行恒流放电直至电压达到3V,作为此时放电的电流值与时间的积而求得的,将实施例1的值设为100%。焊接不良率是进行正极集电板24和正极的活性物质非被覆部21C的激光焊接,对产生了开孔或溅射等焊接不良的电池的数量进行计数,求出相对于整体的比例。试验数分别为25个。结果如表1所示。
[表1]
Figure BDA0003784125410000141
在实施例1中,开路电压不良率低,为0%,焊接不良率低,为0%。这是因为,如图5B所示,由于E比较大,因此被折弯的正极的活性物质非覆盖部21C适当地重叠,由于m的值比较大,因此被折弯的正极的活性物质非覆盖部21C没有刺破内周部的隔膜23。在比较例1中,开路电压不良率比较高。可以认为,这是因为,如图7B所示,由于m的值比较小,因此被折弯的正极的活性物质非覆盖部21C刺破内周部的隔膜23而引起内部短路。在比较例2中,初期容量比较低。可以认为,这是因为,如图8A以及图8B所示,在所有示例中使用相同尺寸的电池罐11,并且F的值比较大,因此正极的活性物质覆盖部21B的宽度和负极的活性物质覆盖部22B的宽度小于其它示例。
在比较例3中,开路电压不良率比较高。可以认为,这是因为,如图9B所示,被折弯的正极的活性物质非覆盖部21C彼此不重叠,因此正极的活性物质非覆盖部21C折弯时产生的金属粉混入到电极卷绕体20的内部。此外,在比较例3中,焊接不良率比较高。可以认为,这是因为,如图9B所示,由于E的值较小,因此相对于正极集电板24的厚度,被折弯的正极的活性物质非覆盖部21C的厚度不充分。由表1可以判断,在实施例1(E>F,m=6(Z=84),存在正极的活性物质非覆盖部21C的重叠的情况)中,在电池1中,不会发生内部短路,也不会发生焊接不良,能够较高地保持电池1的初始容量。
接着,对于实施例1的电池,改变t的值和m的值,调查Z的值的可取范围。
[实施例2]
E=4.5mm,F=1mm,E>F,在将正极的活性物质非覆盖部21C折弯时,正极的活性物质非覆盖部21C彼此重叠。t=10μm,m=8,Z=80。
[实施例3]
除了使t=8μm,m=10,Z=80以外,与实施例2相同。
[实施例4]
除了使t=14μm,m=14,Z=196以外,与实施例2相同。
[比较例4]
除了使t=8μm,m=8,Z=64以外,与实施例2相同。
[比较例5]
除了使t=12μm,m=6,Z=72以外,与实施例2相同。
[比较例6]
除了使t=20μm,m=10,Z=200以外,与实施例2相同。
[评价]
对于实施例2至实施例4以及比较例4至比较例6的电池1,与上述同样地求出开路电压不良率、初始容量和焊接不良率。同样地,试验数分别为25个。结果如表2所示。
[表2]
Figure BDA0003784125410000161
在实施例2至实施例4中,开路电压不良率低,为0%,初始容量高,为100%,焊接不良率低,为0%,与此相对,在比较例4至比较例6中,初始容量高,为100%,焊接不良率低,为0%,开路电压不良率比较高,为4%以上。此时,实施例2至实施例4的Z的范围为80以上且196以下。
由表2可以判断,在80≤Z≤196时,电池1不会发生内部短路,也不会发生焊接不良,能够较高地保持初始容量。
<2.变形例>
以上,对本发明的一个实施方式进行了具体说明,但本发明的内容并不限定于上述的实施方式,能够基于本发明的技术思想进行各种变形。
在实施例以及比较例中,槽43的数量为8,但也可以是除此以外的数量。电池尺寸为21700(直径21mm,高度70mm),但也可以是18650(直径18mm,高度65mm)或除此以外的尺寸。
正极集电板24和负极集电板25具备扇形形状的板状部31、33,但也可以是除此以外的形状。
只要不脱离本发明的主旨,本发明也能够适用于锂离子电池以外的其他电池、圆筒形状以外的电池(例如层压型电池、方型电池、硬币型电池、纽扣型电池)。在这种情况下,“电极卷绕体的端面”的形状不仅可以采用圆筒形状,也可以采用椭圆形状或扁平形状等。
<3.应用例>
(1)电池包
图10是表示将本发明的实施方式或实施例的电池1应用于电池包300时的电路结构例的框图。电池包300具备电池组301、包括充电控制开关302a和放电控制开关303a的开关部304、电流检测电阻307、温度检测元件308、控制部310。控制部310进行各设备的控制,进而能够在异常发热时进行充放电控制,或者进行电池包300的剩余容量的计算和修正。电池包300的正极端子321以及负极端子322与充电器或电子设备连接,进行充放电。
电池组301通过串联和/或并联连接多个二次电池301a而构成。在图10中,作为示例示出了6个二次电池301a以2并联3串联(2P3S)的方式连接的情况。
温度检测部318与温度检测元件308(例如热敏电阻)连接,测定电池组301或电池包300的温度,将测定温度提供给控制部310。电压检测部311测定电池组301以及构成电池组301的各二次电池301a的电压,对该测定电压进行A/D转换,并提供给控制部310。电流测定部313使用电流检测电阻307测定电流,将该测定电流提供给控制部310。
开关控制部314基于从电压检测部311以及电流测定部313输入的电压以及电流来控制开关部304的充电控制开关302a以及放电控制开关303a。开关控制部314在二次电池301a成为过充电检测电压(例如4.20V±0.05V)以上或过放电检测电压(2.4V±0.1V)以下时,向开关部304发送关闭的控制信号,由此防止过充电或过放电。
在充电控制开关302a或放电控制开关303a关闭之后,可以仅通过二极管302b或二极管303b进行充电或放电。这些充放电开关能够使用MOSFET等半导体开关。需要说明的是,在图10中,在+侧设置了开关部304,但也可以设置在-侧。
存储器317由RAM、ROM构成,存储并改写由控制部310运算出的电池特性的值、满充电容量、剩余容量等。
(2)电子设备
上述的本发明的实施方式或实施例所涉及的电池1可以搭载在电子设备或电动输送设备、蓄电装置等设备中,用于供给电力。
作为电子设备,例如可以列举出笔记本型个人计算机、智能手机、平板终端、PDA(便携信息终端)、移动电话、可穿戴终端、数码相机、电子书籍、音乐播放器、游戏机、助听器、电动工具、电视机、照明设备、玩具、医疗设备、机器人。另外,后述的电动输送设备、蓄电装置、电动工具、电动式无人飞机在广义上也可以包含在电子设备中。
作为电动输送设备,可以列举出电动汽车(包括混合动力汽车。)、电动摩托车、电动助力自行车、电动公共汽车、电动推车、无人搬运车(AGV)、铁路车辆等。另外,还包括电动客机和运输用的电动式无人飞机。本发明所涉及的二次电池不仅可以用作这些设备的驱动用电源,还可以用作辅助用电源、能量再生用电源等。
作为蓄电装置,可以列举出商业用或家庭用的蓄电模块,住宅、大厦、办公室等建筑物用或发电设备用的电力储存用电源等。
(3)电动工具
参照图11,对作为能够应用本发明的电动工具的电动改锥的例子进行概略说明。在电动改锥431上设置有向轴434传递旋转动力的电机433和用户操作的触发开关432。在电动改锥431的把手的下部壳体内收纳有本发明所涉及的电池包430以及电机控制部435。电池包430内置于电动改锥431,或者能够自由装卸。可以将本发明的电池1应用于构成电池包430的电池。
电池包430以及电机控制部435分别具备微型计算机(未图示),电池包430的充放电信息可以相互通信。电机控制部435能够控制电机433的动作,并且在过放电等异常时切断对电机433的电源供给。
(4)电动车辆用蓄电系统
作为将本发明应用于电动车辆用的蓄电系统的例子,在图12中概略地示出了采用了串联混合动力系统的混合动力车辆(HV)的结构例。串联混合动力系统是使用由将发动机作为动力的发电机发电的电力、或者将其暂时储存在电池中的电力,通过电力驱动力转换装置行驶的汽车。
在该混合动力车辆600中搭载有发动机601、发电机602、电力驱动力转换装置603(直流电机或交流电机。以下简称为“电机603”。)、驱动轮604a、驱动轮604b、车轮605a、车轮605b、电池608、车辆控制装置609、各种传感器610、充电口611。作为电池608,可以应用本发明的电池包300或搭载有多个本发明的电池1的蓄电模块。
电机603通过电池608的电力进行工作,电机603的旋转力传递到驱动轮604a、604b。通过由发动机601产生的旋转力,能够将由发电机602生成的电力蓄积在电池608中。各种传感器610经由车辆控制装置609控制发动机转速,或控制未图示的节流阀的开度。
当通过未图示的制动机构使混合动力车辆600减速时,该减速时的阻力作为旋转力施加在电机603上,由该旋转力生成的再生电力蓄积在电池608中。电池608能够通过经由混合动力车辆600的充电口611与外部的电源连接来进行充电。将这样的HV车辆称为插电式混合动力车(PHV或PHEV)。
需要说明的是,也能够将本发明所涉及的二次电池应用于小型化的一次电池,并用作内置于车轮604、605的气压传感器系统(TPMS:Tire Pressure Monitoring system)的电源。
以上,以串联混合动力车为例进行了说明,但本发明也能够应用于并用发动机和电机的并联方式、或者组合了串联方式和并联方式的混合动力车。此外,本发明也能够应用于不使用发动机而仅通过驱动电机来行驶的电动汽车(EV或BEV)、燃料电池车(FCV)。
符号说明
1…锂离子电池,12…绝缘板,21…正极,21A…正极箔,21B…正极活性物质覆盖部,21C…正极的活性物质非覆盖部,22…负极,22A…负极箔,22B…负极活性物质覆盖部,22C…负极的活性物质非覆盖部,23…隔膜,24…正极集电板,25…负极集电板,26…贯通孔,27、28…外缘部,41、42…端面,43…槽。

Claims (6)

1.一种二次电池,
该二次电池将电极卷绕体、正极集电板以及负极集电板收容在电池罐中,所述电极卷绕体具有隔着隔膜层叠带状的正极和带状的负极并卷绕在中心轴的周围而成的结构,
所述正极在带状的正极箔上具有被正极活性物质层覆盖的正极活性物质覆盖部和正极活性物质非覆盖部,
所述负极在带状的负极箔上具有被负极活性物质层覆盖的负极活性物质覆盖部和负极活性物质非覆盖部,
所述正极活性物质非覆盖部在所述电极卷绕体的一个端部与所述正极集电板接合,
所述负极活性物质非覆盖部在所述电极卷绕体的另一个端部与所述负极集电板接合,
所述电极卷绕体具有:
至少所述正极活性物质非覆盖部向所述卷绕的结构的中心轴弯曲并重合而形成的平坦面;
形成于所述平坦面的槽;以及
仅由位于比所述正极以及所述负极的最内周靠内侧的位置的所述隔膜构成的内周部,
所述正极活性物质非覆盖部从所述隔膜的宽度方向的一端突出的部分的长度E大于所述隔膜从所述负极的宽度方向的一端突出的部分的长度F,
将所述内周部中的所述隔膜的层数设为m、将厚度设为t且Z=t×m时,满足式(1),
式(1):80≤Z≤196。
2.根据权利要求1所述的二次电池,其中,
所述隔膜的厚度为4μm以上且30μm以下。
3.根据权利要求1或2所述的二次电池,其中,
所述正极箔的厚度为5μm以上且20μm以下,所述负极箔的厚度为5μm以上且20μm以下。
4.根据权利要求1至3中任一项所述的二次电池,其中,
所述电极卷绕体具有:
所述负极活性物质非覆盖部向所述卷绕的结构的中心轴弯曲并重合而形成的平坦面;以及
形成于所述平坦面的槽。
5.一种电子设备,
具有权利要求1至4中任一项所述的二次电池。
6.一种电动工具,
具有权利要求1至4中任一项所述的二次电池。
CN202180013098.2A 2020-03-06 2021-02-26 二次电池、电子设备以及电动工具 Pending CN115066775A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020039147 2020-03-06
JP2020-039147 2020-03-06
PCT/JP2021/007248 WO2021177149A1 (ja) 2020-03-06 2021-02-26 二次電池、電子機器及び電動工具

Publications (1)

Publication Number Publication Date
CN115066775A true CN115066775A (zh) 2022-09-16

Family

ID=77614285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180013098.2A Pending CN115066775A (zh) 2020-03-06 2021-02-26 二次电池、电子设备以及电动工具

Country Status (5)

Country Link
US (1) US20220367922A1 (zh)
JP (1) JP7251686B2 (zh)
CN (1) CN115066775A (zh)
DE (1) DE112021001462T5 (zh)
WO (1) WO2021177149A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163480A1 (ja) * 2021-01-26 2022-08-04 株式会社村田製作所 二次電池、電子機器及び電動工具
JPWO2023054582A1 (zh) * 2021-10-01 2023-04-06
CN114104685B (zh) * 2022-01-24 2022-11-15 深圳市泽诚自动化设备有限公司 一种用于锂电池电芯的分档生产线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628899B2 (ja) * 1999-03-11 2005-03-16 トヨタ自動車株式会社 積層型電池
JP2002075319A (ja) 2000-08-31 2002-03-15 Yuasa Corp 密閉形電池
JP2004356047A (ja) 2003-05-30 2004-12-16 Canon Inc リチウム二次電池
JP2006004729A (ja) * 2004-06-17 2006-01-05 Matsushita Electric Ind Co Ltd 電気化学素子
US8703330B2 (en) 2005-04-26 2014-04-22 Powergenix Systems, Inc. Nickel zinc battery design

Also Published As

Publication number Publication date
JPWO2021177149A1 (zh) 2021-09-10
JP7251686B2 (ja) 2023-04-04
WO2021177149A1 (ja) 2021-09-10
DE112021001462T5 (de) 2022-12-15
US20220367922A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP7251686B2 (ja) 二次電池、電子機器及び電動工具
CN115066776A (zh) 二次电池、电子设备以及电动工具
JP7405239B2 (ja) 二次電池、電子機器及び電動工具
CN114207918A (zh) 二次电池、电池包、电子设备、电动工具及电动车辆
US20220367882A1 (en) Secondary battery, electronic device, and power tool
US20220344724A1 (en) Secondary battery, electronic device, and power tool
WO2022168623A1 (ja) 二次電池、電子機器及び電動工具
WO2021251121A1 (ja) 二次電池、電子機器及び電動工具
CN114946061A (zh) 二次电池、电子设备和电动工具
CN114223079A (zh) 二次电池、电池组、电子设备、电动工具以及电动车辆
JP7409398B2 (ja) 二次電池、電子機器及び電動工具
WO2022153647A1 (ja) 二次電池、電子機器及び電動工具
WO2022054642A1 (ja) 二次電池、電子機器及び電動工具
CN114424375B (zh) 二次电池、二次电池的制造方法、电子设备、电动工具
WO2022085561A1 (ja) 二次電池、電子機器及び電動工具
US20230029111A1 (en) Secondary battery, electronic device, and electric tool
WO2021149555A1 (ja) 二次電池、電子機器及び電動工具
WO2022168622A1 (ja) 二次電池、電子機器及び電動工具
WO2022163049A1 (ja) 二次電池、電子機器及び電動工具
CN116745950A (zh) 二次电池、电子设备以及电动工具
CN116711105A (zh) 二次电池、电子设备以及电动工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination