WO2022163480A1 - 二次電池、電子機器及び電動工具 - Google Patents

二次電池、電子機器及び電動工具 Download PDF

Info

Publication number
WO2022163480A1
WO2022163480A1 PCT/JP2022/001900 JP2022001900W WO2022163480A1 WO 2022163480 A1 WO2022163480 A1 WO 2022163480A1 JP 2022001900 W JP2022001900 W JP 2022001900W WO 2022163480 A1 WO2022163480 A1 WO 2022163480A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2022/001900
Other languages
English (en)
French (fr)
Inventor
彬 大谷
彩 松塚
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022578298A priority Critical patent/JPWO2022163480A1/ja
Priority to CN202280008949.9A priority patent/CN116745950A/zh
Publication of WO2022163480A1 publication Critical patent/WO2022163480A1/ja
Priority to US18/211,955 priority patent/US20230335863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to secondary batteries, electronic devices, and power tools.
  • Lithium-ion batteries are also being developed for applications that require high output, such as power tools and automobiles.
  • Patent Document 1 describes a cylindrical lithium ion battery.
  • Patent Literature 1 lacks such a viewpoint, and is insufficient as a technique for ensuring the safety and the like of secondary batteries.
  • one of the objects of the present invention is to provide a secondary battery that minimizes the contact of metal powder falling off a positive electrode current collector (foil) with a negative electrode.
  • Another object of the present invention is to provide a secondary battery in which deformation of a separator is suppressed as much as possible in a process of sucking metal powder.
  • Another object of the present invention is to provide an electronic device and a power tool using these secondary batteries.
  • the present invention A secondary battery in which an electrode winding body in which a strip-shaped positive electrode and a strip-shaped negative electrode are laminated with a separator interposed therebetween, and a positive electrode current collector plate and a negative electrode current collector plate are housed in a battery can,
  • the positive electrode has a positive electrode active material coated portion coated with a positive electrode active material layer and a positive electrode active material uncoated portion on a strip-shaped positive electrode foil
  • the negative electrode has a negative electrode active material coated portion coated with a negative electrode active material layer on a strip-shaped negative electrode foil and a negative electrode active material uncoated portion extending at least in the longitudinal direction of the negative electrode foil,
  • the positive electrode active material non-coated portion is joined to the positive electrode current collector plate at one end of the electrode winding body,
  • the negative electrode active material non-coated portion is joined to the negative electrode current collector plate at the other end of the electrode winding body,
  • the electrode winding body has a flat surface formed by bending and overlapping one or both of
  • the present invention it is possible to minimize the contact of the metal powder falling off the positive electrode current collector (foil) with the negative electrode. Moreover, deformation of the separator can be suppressed as much as possible in the step of sucking the metal powder. It should be noted that the contents of the present invention should not be construed as being limited by the effects exemplified in this specification.
  • FIG. 1 is a cross-sectional view of a lithium ion battery according to an embodiment.
  • 2A and 2B are diagrams for explaining the positive electrode according to the embodiment.
  • 3A and 3B are diagrams for explaining the negative electrode according to the embodiment.
  • FIG. 4 is a diagram showing a positive electrode, a negative electrode, and a separator before winding.
  • FIG. 5A is a plan view of a positive collector plate according to the embodiment
  • FIG. 5B is a plan view of a negative collector plate according to the embodiment.
  • 6A to 6F are diagrams for explaining the assembly process of the lithium ion battery according to the embodiment.
  • FIG. 7 is a diagram for explaining a flat surface on the positive electrode side according to the embodiment.
  • FIG. 8 is a diagram showing a cross section of the positive electrode side of the lithium ion battery according to the embodiment.
  • FIG. 9 is a diagram for explaining the end joining process according to the embodiment.
  • FIG. 10 is a diagram for explaining the second embodiment.
  • FIG. 11 is a diagram for explaining Examples 1 and 2.
  • FIG. FIG. 12 is a diagram for explaining Comparative Example 1.
  • FIG. FIG. 13 is a connection diagram used for explaining a battery pack as an application example of the present invention.
  • FIG. 14 is a connection diagram used for explaining a power tool as an application example of the present invention.
  • FIG. 15 is a connection diagram used for explaining an electric vehicle as an application example of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a lithium ion battery 1.
  • the lithium ion battery 1 is, for example, a cylindrical lithium ion battery 1 in which an electrode winding body 20 is housed inside a battery can 11 as shown in FIG. In the following description, unless otherwise specified, the horizontal direction toward the paper surface of FIG.
  • the Z-axis direction is the X-axis direction
  • the depth direction is the Y-axis direction
  • the vertical direction 1, and the extending direction of the axis )) indicated by the dashed line in FIG. 1 is appropriately referred to as the Z-axis direction.
  • the lithium ion battery 1 has a roughly cylindrical battery can 11 , and inside the battery can 11 , a pair of insulating plates 12 and 13 and an electrode winding 20 are provided.
  • the lithium ion battery 1 may further include, for example, one or more of a thermal resistance (PTC) element and a reinforcing member inside the battery can 11 .
  • PTC thermal resistance
  • the battery can 11 is mainly a member that houses the electrode winding body 20 .
  • the battery can 11 is, for example, a cylindrical container that is open at one end and closed at the other end. That is, the battery can 11 has one open end surface (open end surface 11N).
  • the battery can 11 contains, for example, one or more of metal materials such as iron, aluminum, and alloys thereof.
  • the surface of the battery can 11 may be plated with, for example, one or more of metal materials such as nickel.
  • the insulating plates 12 and 13 are disk-shaped having surfaces substantially perpendicular to the central axis of the electrode winding body 20 (a direction passing through substantially the center of the end face of the electrode winding body 20 and parallel to the Z axis in FIG. 1). It is a board of Also, the insulating plates 12 and 13 are arranged, for example, so as to sandwich the electrode winding body 20 between them.
  • the battery lid 14 and the safety valve mechanism 30 are crimped to the open end surface 11N of the battery can 11 via a gasket 15 to form a crimp structure 11R (crimp structure).
  • crimp structure 11R crimp structure
  • the battery lid 14 is a member that mainly closes the open end face 11N of the battery can 11 in a state where the electrode wound body 20 and the like are housed inside the battery can 11 .
  • the battery lid 14 contains, for example, the same material as the battery can 11 forming material.
  • a central region of the battery lid 14 protrudes, for example, in the +Z direction.
  • the area (peripheral area) of the battery lid 14 other than the central area is in contact with the safety valve mechanism 30, for example.
  • Gasket 15 is a member that is mainly interposed between battery can 11 (bent portion 11P) and battery lid 14 to seal the gap between bent portion 11P and battery lid 14 .
  • the surface of the gasket 15 may be coated with, for example, asphalt.
  • the gasket 15 contains, for example, one or more of insulating materials.
  • the type of insulating material is not particularly limited, but polymer materials such as polybutylene terephthalate (PBT) and polypropylene (PP) can be used. Among them, the insulating material is preferably polybutylene terephthalate. This is because the gap between the bent portion 11P and the battery lid 14 can be sufficiently sealed while the battery can 11 and the battery lid 14 are electrically separated from each other.
  • the safety valve mechanism 30 mainly releases the internal pressure by releasing the sealed state of the battery can 11 as necessary when the internal pressure (internal pressure) of the battery can 11 increases.
  • the cause of the rise in the internal pressure of the battery can 11 is, for example, the gas generated due to the decomposition reaction of the electrolytic solution during charging and discharging.
  • a strip-shaped positive electrode 21 and a strip-shaped negative electrode 22 are laminated with a separator 23 interposed therebetween, and are spirally wound and impregnated with an electrolytic solution. It's settled.
  • the positive electrode 21 is formed by forming a positive electrode active material layer 21B on one side or both sides of a positive electrode foil 21A, and the material of the positive electrode foil 21A is, for example, a metal foil made of aluminum or an aluminum alloy.
  • the negative electrode 22 is formed by forming a negative electrode active material layer 22B on one side or both sides of a negative electrode foil 22A, and the material of the negative electrode foil 22A is, for example, metal foil made of nickel, nickel alloy, copper, or copper alloy.
  • the separator 23 is a porous and insulating film that electrically insulates the positive electrode 21 and the negative electrode 22 while enabling movement of substances such as ions and electrolytic solution.
  • FIG. 2A is a front view of the positive electrode 21 before winding
  • FIG. 2B is a side view of the positive electrode 21 in FIG. 2A
  • the positive electrode 21 has a portion (dotted portion) covered with the positive electrode active material layer 21B on one main surface and the other main surface of the positive electrode foil 21A, and the portion not covered with the positive electrode active material layer 21B. It has a positive electrode active material uncoated portion 21C.
  • the portion covered with the positive electrode active material layer 21B is appropriately referred to as the positive electrode active material covered portion 21B.
  • the positive electrode foil 21A may have a configuration in which the positive electrode active material covering portion 21B is provided on one main surface.
  • FIG. 3A is a front view of the negative electrode 22 before winding
  • FIG. 3B is a side view of the negative electrode 22 in FIG. 3A.
  • the negative electrode 22 has a portion (dotted portion) covered with the negative electrode active material layer 22B on one main surface and the other main surface of the negative electrode foil 22A, and the portion not covered with the negative electrode active material layer 22B. It has a certain negative electrode active material uncoated portion 22C.
  • the portion covered with the negative electrode active material layer 22B is appropriately referred to as the negative electrode active material covered portion 22B.
  • the negative electrode foil 22A may have a configuration in which the negative electrode active material covering portion 22B is provided on one main surface of the negative electrode foil 22A.
  • the negative electrode active material uncoated portion 22C includes, for example, a first negative electrode active material uncoated portion 221A extending in the longitudinal direction of the negative electrode 22 (X-axis direction in FIG. A second negative electrode active material non-coated portion 221B extending in the lateral direction of the negative electrode 22 (the Y-axis direction in FIG. 3; also referred to as the width direction as appropriate) on the winding start side of the negative electrode 22, and the winding of the negative electrode 22 It has a third negative electrode active material uncovered portion 221C extending in the lateral direction of the negative electrode 22 (the Y-axis direction in FIG. 3) on the rotation termination side.
  • a first negative electrode active material uncoated portion 221A extending in the longitudinal direction of the negative electrode 22 (X-axis direction in FIG.
  • a second negative electrode active material non-coated portion 221B extending in the lateral direction of the negative electrode 22 (the Y-axis direction in FIG. 3; also referred to as the width direction as appropriate)
  • the electrode winding body 20 is configured such that the positive electrode active material uncoated portion 21C and the first negative electrode active material uncoated portion 221A face opposite directions to each other, and the separator 23 are stacked and wound.
  • a through hole 26 is provided in the center of the electrode winding body 20 .
  • the through-hole 26 is a hole formed substantially at the center of the laminate in which the positive electrode 21 , the negative electrode 22 and the separator 23 are laminated.
  • the through-hole 26 is used as a hole for inserting a rod-shaped welding tool (hereinafter referred to as a welding rod as appropriate) or the like in the process of assembling the lithium ion battery 1 .
  • FIG. 4 shows an example of the structure before winding in which the positive electrode 21, the negative electrode 22 and the separator 23 are laminated.
  • the positive electrode 21 includes an insulating layer 101 (the gray area in FIG. 4) that covers the boundary between the positive electrode active material covered portion 21B (the portion sparsely dotted in FIG. 4) and the positive electrode active material non-coated portion 21C. further has The length of the insulating layer 101 in the width direction is, for example, about 3 mm.
  • An insulating layer 101 covers the entire region of the positive electrode active material uncovered portion 21C facing the negative electrode active material covered portion 22B with the separator 23 interposed therebetween.
  • the insulating layer 101 has the effect of reliably preventing an internal short circuit of the lithium ion battery 1 when foreign matter enters between the negative electrode active material covered portion 22B and the positive electrode active material uncovered portion 21C. Moreover, the insulating layer 101 absorbs the impact when the lithium ion battery 1 is impacted, and has the effect of reliably preventing the positive electrode active material uncoated portion 21C from bending and short-circuiting with the negative electrode 22 .
  • the length in the width direction of the positive electrode active material uncoated portion 21C is D5, and the length in the width direction of the first negative electrode active material uncoated portion 221A is D6.
  • the positive electrode foil 21A and the positive electrode active material uncoated portion 21C are made of, for example, aluminum, and the negative electrode foil 22A and the negative electrode active material uncoated portion 22C are made of, for example, copper.
  • the positive electrode active material uncoated portion 21C is generally softer (lower Young's modulus) than the negative electrode active material uncoated portion 22C.
  • the height of the bent portion measured from the tip of the separator 23 is about the same for the positive electrode 21 and the negative electrode 22 .
  • the positive electrode active material uncoated portion 21C is bent and overlaps appropriately, laser welding of the positive electrode active material uncoated portion 21C and the positive electrode current collector plate 24 in the manufacturing process of the lithium ion battery 1 (details will be described later) is performed. can be easily joined.
  • the negative electrode active material non-coated portion 22C is bent and overlaps appropriately, in the manufacturing process of the lithium ion battery 1, the negative electrode active material non-coated portion 22C and the negative electrode current collector plate 25 can be easily joined by laser welding. be able to.
  • the positive electrode collector plate 24 is arranged on one end surface 41 of the electrode wound body 20
  • the negative electrode collector plate is arranged on the other end surface 42 of the electrode wound body 20 .
  • a collector plate 25 is arranged.
  • the positive electrode current collector plate 24 and the positive electrode active material uncoated portion 21C present on the end face 41 are welded at multiple points, and the negative electrode current collector plate 25 and the negative electrode active material uncoated portion 22C present on the end face 42 (specifically, Specifically, the internal resistance of the lithium ion battery 1 is suppressed to a low level by welding to the first negative electrode active material non-coated portion 221A) at multiple points, enabling high rate discharge.
  • FIGS. 5A and 5B An example of a current collector plate is shown in FIGS. 5A and 5B.
  • FIG. 5A shows the positive collector plate 24 and FIG. 5B shows the negative collector plate 25 .
  • the positive collector plate 24 and the negative collector plate 25 are accommodated in the battery can 11 (see FIG. 1).
  • the material of the positive electrode current collector plate 24 is, for example, a metal plate made of aluminum or an aluminum alloy alone or a composite material
  • the material of the negative electrode current collector plate 25 is, for example, nickel, a nickel alloy, copper, or a copper alloy alone. Or a metal plate made of composite material.
  • the shape of the positive electrode current collector plate 24 is such that a flat fan-shaped fan-shaped portion 31 is attached to a rectangular band-shaped portion 32 .
  • a hole 35 is formed near the center of the fan-shaped portion 31 , and the position of the hole 35 corresponds to the through hole 26 .
  • the portion indicated by dots in FIG. 5A is an insulating portion 32A in which an insulating tape is attached to the belt-like portion 32 or an insulating material is applied. This is the connecting portion 32B.
  • the strip-shaped portion 32 is less likely to come into contact with the portion of the negative electrode potential. good.
  • the charge/discharge capacity can be increased by increasing the width between the positive electrode 21 and the negative electrode 22 by an amount corresponding to the thickness of the insulating portion 32A.
  • the shape of the negative electrode current collector plate 25 is almost the same as that of the positive electrode current collector plate 24, but the shape of the strip portion is different.
  • the strip portion 34 of the negative electrode current collector plate in FIG. 5B is shorter than the strip portion 32 of the positive electrode current collector plate 24, and there is no portion corresponding to the insulating portion 32A.
  • the band-shaped portion 34 is provided with a plurality of circular protrusions (projections) 37 indicated by circles. During resistance welding, the current concentrates on the protrusion 37 , melting the protrusion 37 and welding the belt-like portion 34 to the bottom of the battery can 11 .
  • the negative collector plate 25 has a hole 36 near the center of the fan-shaped portion 33 , and the position of the hole 36 corresponds to the through hole 26 . Since the fan-shaped portion 31 of the positive electrode current collector plate 24 and the fan-shaped portion 33 of the negative electrode current collector plate 25 are fan-shaped, they partially cover the end surfaces 41 and 42 . By not covering the entire lithium ion battery 1, the electrolytic solution can be smoothly penetrated into the electrode winding body 20 when assembling the lithium ion battery 1, and the lithium ion battery 1 is in an abnormally high temperature state or an overcharged state. It is possible to make it easier to release the gas that is sometimes generated to the outside of the lithium ion battery 1 .
  • the positive electrode active material layer 21B contains at least a positive electrode material (positive electrode active material) capable of intercalating and deintercalating lithium, and may further contain a positive electrode binder, a positive electrode conductor, and the like.
  • the positive electrode material is preferably a lithium-containing composite oxide or a lithium-containing phosphate compound.
  • the lithium-containing composite oxide has, for example, a layered rock salt type or spinel type crystal structure.
  • a lithium-containing phosphate compound has, for example, an olivine-type crystal structure.
  • the positive electrode binder contains synthetic rubber or a polymer compound.
  • Synthetic rubbers include styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • Polymer compounds include polyvinylidene fluoride (PVdF) and polyimide.
  • the positive electrode conductor is a carbon material such as graphite, carbon black, acetylene black, or ketjen black.
  • the positive electrode conductor may be a metal material or a conductive polymer.
  • the surface of the negative electrode foil 22A that constitutes the negative electrode 22 is preferably roughened in order to improve adhesion with the negative electrode active material layer 22B.
  • the negative electrode active material layer 22B contains at least a negative electrode material (negative electrode active material) capable of intercalating and deintercalating lithium, and may further contain a negative electrode binder, a negative electrode conductor, and the like.
  • the negative electrode material includes, for example, a carbon material.
  • the carbon material is graphitizable carbon, non-graphitizable carbon, graphite, low-crystalline carbon, or amorphous carbon.
  • the shape of the carbon material is fibrous, spherical, granular or scaly.
  • the negative electrode material includes, for example, a metal-based material.
  • metallic materials include Li (lithium), Si (silicon), Sn (tin), Al (aluminum), Zr (zinc), and Ti (titanium).
  • Metallic elements form compounds, mixtures, or alloys with other elements, examples of which include silicon oxide (SiO x (0 ⁇ x ⁇ 2)), silicon carbide (SiC), or an alloy of carbon and silicon , lithium titanate (LTO).
  • the separator 23 is a porous film containing resin, and may be a laminated film of two or more kinds of porous films. Resins include polypropylene and polyethylene. The separator 23 may contain a resin layer on one side or both sides of a porous membrane as a base layer. This is because the adhesion of the separator 23 to each of the positive electrode 21 and the negative electrode 22 is improved, so that distortion of the wound electrode body 20 is suppressed.
  • the resin layer contains resin such as PVdF.
  • resin such as PVdF.
  • a solution in which a resin is dissolved in an organic solvent is applied to the substrate layer, and then the substrate layer is dried.
  • the base layer may be dried after the base layer is immersed in the solution.
  • the resin layer preferably contains inorganic particles or organic particles from the viewpoint of improving heat resistance and battery safety. Types of inorganic particles include aluminum oxide, aluminum nitride, aluminum hydroxide, magnesium hydroxide, boehmite, talc, silica, mica, and the like.
  • a surface layer containing inorganic particles as a main component and formed by a sputtering method, an ALD (atomic layer deposition) method, or the like may be used instead of the resin layer.
  • the electrolytic solution contains a solvent and an electrolyte salt, and may further contain additives and the like as necessary.
  • the solvent is a non-aqueous solvent such as an organic solvent, or water.
  • An electrolytic solution containing a non-aqueous solvent is called a non-aqueous electrolytic solution.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, lactones, chain carboxylates, nitriles (mononitriles), and the like.
  • a representative example of the electrolyte salt is a lithium salt, but salts other than the lithium salt may be included.
  • Lithium salts include lithium hexafluorophosphate ( LiPF6 ), lithium tetrafluoroborate ( LiBF4 ), lithium perchlorate (LiClO4), lithium methanesulfonate ( LiCH3SO3 ) , trifluoromethanesulfonic acid.
  • Lithium (LiCF 3 SO 3 ) dilithium hexafluorosilicate (Li 2 SF 6 ), and the like.
  • a mixture of these salts can also be used, and among them, a mixture of LiPF 6 and LiBF 4 is preferably used from the viewpoint of improving battery characteristics.
  • the content of the electrolyte salt is not particularly limited, it is preferably 0.3 mol/kg to 3 mol/kg with respect to the solvent.
  • the positive electrode active material is applied to the surface of the strip-shaped positive electrode foil 21A to form the positive electrode active material coating portion 21B, and the negative electrode active material is coated onto the surface of the strip-shaped negative electrode foil 22A, which is used as the negative electrode active material.
  • the material covering portion 22B is used.
  • a positive electrode active material non-coated portion 21C not coated with a positive electrode active material is provided on one end side in the width direction of the positive electrode foil 21A, and a negative electrode active material non-coated portion 21C not coated with a negative electrode active material is provided on the negative electrode foil 22A.
  • Covered portions 22C (first negative electrode active material uncovered portion 221A, second negative electrode active material uncovered portion 221B, and third negative electrode active material uncovered portion 221C) were provided.
  • processes such as drying were performed on the positive electrode 21 and the negative electrode 22 .
  • the positive electrode active material uncoated portion 21C and the negative electrode active material uncoated portion 22C are stacked in opposite directions with the separator 23 interposed therebetween, and spirally wound so as to form a through hole 26 on the central axis.
  • An electrode winding body 20 such as 6A was produced.
  • grooves 43 were formed (fabricated) as shown in FIG. 6B using a groove forming jig (not shown) having flat plates or the like on the end faces (groove forming step). Specifically, a groove 43 was formed in a part of the end face 41 and a part of the end face 42 by pressing a plate or the like of a groove forming jig vertically against the end faces 41 and 42 . By this method, grooves 43 radially extending from the through-holes 26 were produced. The groove 43 extends, for example, from the outer edges 27 , 28 of the end faces 41 , 42 respectively to the through hole 26 . Note that the number and arrangement of the grooves 43 shown in FIG. 6B are merely examples, and are not limited to the illustrated example.
  • a flat surface forming jig (not shown) was used to form a flat surface as shown in FIG. 6C (flat surface forming step).
  • the flat end surfaces of the flat surface forming jig were simultaneously pressed against the end surfaces 41 and 42 with the same pressure from both pole sides, and a load was applied in a substantially vertical direction.
  • the positive electrode active material uncoated portion 21C and the negative electrode active material uncoated portion 22C are overlapped toward the central axis of the winding structure.
  • the end surfaces 41 and 42 are made to be flat surfaces by bending them. For example, as shown in FIG.
  • a bent portion 71 is formed by overlapping the bent positive electrode active material non-coated portion 21C, and the outer surface of the bent portion 71 is a flat surface 72 .
  • a bent portion (a bent portion 81 described later) and a flat surface (a flat surface 82 described later) are also formed by bending the first negative electrode active material uncoated portion 221A.
  • end joining step the ends of predetermined separators were joined by heat welding using, for example, a sheathed heater. Details of the end joining step will be described later.
  • a suction device (not shown) is used to remove metal powder that may have fallen off from the positive electrode active material non-coated portion 21C and the first negative electrode active material non-coated portion 221A during the groove forming step and the flat surface forming step.
  • Aspirated suction step
  • suction is performed in a state in which a suction device is brought close to or in contact with one end surface of the electrode winding body 20 (a state in which air can flow in from the other end surface through the through holes 26).
  • the suction device is moved to the other end face side to perform suction in the same manner. This removed the metal powder.
  • the fan-shaped portion 31 of the positive electrode collector plate 24 was laser-welded to the end surface 41
  • the fan-shaped portion 33 of the negative electrode collector plate 25 was laser-welded to the end surface 42 to join them.
  • the strip-shaped portion 32 of the positive electrode current collector plate 24 and the strip-shaped portion 34 of the negative electrode current collector plate 25 are bent, and the insulating plate 12 is attached to the positive electrode current collector plate 24 and the insulating plate 13 is attached to the negative electrode current collector plate 25 .
  • the electrode winding body 20 assembled as described above was inserted into the battery can 11 shown in FIG. 6E.
  • the negative electrode current collector plate 25 was welded to the bottom of the battery can 11 by pressing a welding rod (not shown). After the electrolytic solution was injected into the battery can 11, it was sealed with a gasket 15 and a battery lid 14 as shown in FIG. 6F. Lithium ion battery 1 was produced as described above.
  • the insulating plate 12 and the insulating plate 13 may be insulating tapes.
  • the joining method may be a method other than laser welding.
  • the groove 43 remains in the flat surface even after the positive electrode active material uncoated portion 21C and the first negative electrode active material uncoated portion 221A are bent, and the portion without the groove 43 is the positive electrode current collector plate 24 or The groove 43 may be joined to a part of the positive electrode current collector plate 24 or the negative electrode current collector plate 25 , although it is joined to the negative electrode current collector plate 25 .
  • the “flat surface” in this specification means not only a completely flat surface, but also the positive electrode active material uncoated portion 21C and the positive electrode current collector plate 24, and the first negative electrode active material uncoated portion 221A and the negative electrode. It is meant to include a surface having some unevenness or surface roughness to the extent that it can be bonded to the current collector plate 25 .
  • the diameter of the through-hole 26 must be large enough to insert the welding rod. must.
  • a necessary size as the diameter of the through hole 26 can be secured.
  • the positive electrode active material uncoated portion 21C which was pushed inward during the formation of the flat surface, has no place to go, and the positive electrode active material uncoated portion 21C is partially broken, increasing the risk of generating metal powder. Metal dust can also be generated during the groove forming process.
  • the generated metal powder may contact the innermost negative electrode (hereinafter referred to as the innermost negative electrode) of the negative electrodes of the electrode roll 20, causing an internal short circuit. Therefore, in the lithium ion battery 1 according to the present embodiment, a configuration is adopted in which the metal powder generated from the positive electrode active material uncoated portion 21C does not come into contact with the negative electrode 22 .
  • FIG. 8 is a diagram showing a part of a cross section obtained by cutting at least the positive electrode side of the electrode-wound body 20 according to the present embodiment along a plane including the central axis of the electrode-wound body 20 .
  • Cross-sectional observation is performed, for example, as follows. A lithium ion battery 1 is cut into round slices about half the height and embedded in resin. Next, the lithium ion battery 1 is cut along a plane including the central axis.
  • Cross-sectional observation can be performed by observing with a microscope. The cross-sectional observation can be performed in the same manner for the negative electrode side of the electrode winding body 20 as well.
  • the positive electrode side of the wound electrode body 20 means a region including the end face 41 of both end faces of the wound electrode body 20 having a substantially cylindrical shape. Further, the negative electrode side of the wound electrode body 20 means a region including the end face 42 among both end faces of the wound electrode body 20 having a substantially cylindrical shape.
  • the peripheral surface of the through-hole 26 is composed of, for example, the separator 23A.
  • the separator 23A is located on the innermost peripheral side of the electrode winding body 20.
  • Separators 23B, 23C, and 23D are laminated toward the outside (in the X-axis direction in FIG. 8) of the separator 23A.
  • the innermost negative electrode 22D is positioned outside the separator 23D, and the separator 23E is positioned outside the innermost negative electrode 22D.
  • the ends of the separators are joined together.
  • the bonding is, for example, bonding by thermal fusion using a heater.
  • the innermost negative electrode 22D is covered with the mutually bonded separators 23D and 23E.
  • metal powder is likely to fall off from the positive electrode active material uncoated portion 21C near the inside of the bent portion 71 .
  • the innermost negative electrode 22D is covered with the separators 23D and 23E, the metal powder and the innermost negative electrode 22D do not come into contact with each other, and internal short-circuiting occurs due to the contact between the two. can be prevented.
  • a rod-shaped heater for example, a sheathed heater
  • heater 110 is inserted 1.5 to 3.0 mm below flat surface 72 .
  • the heater 110 is energized, and the temperature of the heater 110 rises to 120-200.degree.
  • the heater 110 heats and melts the separators 23A to 23E.
  • the heating time is set to about 1 to 10 seconds.
  • the heater 110 is taken out from the through-hole 26, and the melted separators 23A to 23E are cooled and hardened, so that the separators 23D and 23E are heat-sealed.
  • the separators 23A to 23C located inside the separator 23D are also melted, the ends of the separators 23A to 23E are heat-sealed to each other as shown in FIGS. is spliced with
  • separators located outside the separator 23E do not need to be heat-sealed. This is because when the positive electrode active material non-coated portion 21C is bent toward the center, a bending force is also applied to the separator 23 (the separator located outside the separator 23E), and accordingly the end portion of the separator 23 is inclined inward. do. By covering the negative electrode 22 with the slanted end of the separator 23, the intrusion of metal powder is prevented. However, since the separators 23A to 23D (especially the separator 23D) do not have the positive electrode 21 and the negative electrode 22 on both sides, the positions of the separators 23A to 23D are not stable and relatively free.
  • the space between the innermost negative electrode 22D and the positive electrode active material uncoated portion 21C is less likely to be covered with the separator 23E or the like, increasing the risk of metal powder entering the innermost negative electrode 22D.
  • the separators 23D and 23E by heat-sealing at least the separators 23D and 23E, it is possible to block a portion where there is a high possibility that metal powder will enter. Furthermore, since only the minimum necessary portions are heat-sealed, it is possible to prevent the manufacturing process of the lithium ion battery 1 from becoming complicated.
  • At least the separators (separators 23D, 23E) located on both sides of the innermost negative electrode 22D are heat-sealed so as to cover the innermost negative electrode 22D, so that metal powder penetrates into the innermost negative electrode 22D. can be prevented. Therefore, it is possible to prevent the occurrence of an internal short due to contact between the innermost peripheral side negative electrode 22D and metal powder.
  • the electrode winding body 20 When the ends of a thin flat plate (for example, a thickness of 0.5 mm) are pressed vertically against the end surfaces 41 and 42 (when performing the step shown in FIG. 6B) during the production of a lithium ion battery, the electrode winding body
  • the negative electrode active material may peel off from the negative electrode active material covering portion 22B on the winding start side of 20 (longitudinal end side of the positive electrode or negative electrode at the innermost circumference of the electrode wound body 20). This peeling is considered to be caused by the stress generated when pressing against the end surface 42 .
  • the peeled negative electrode active material may enter the inside of the electrode winding body 20, thereby causing an internal short circuit.
  • the second negative electrode active material non-coated portion 221B and the third negative electrode active material non-coated portion 221C are provided, it is possible to prevent the negative electrode active material from peeling off, thereby preventing the occurrence of an internal short circuit. Such an effect can also be obtained by providing only one of the second negative electrode active material uncovered portion 221B and the third negative electrode active material uncovered portion 221C, but it is more preferable to provide both.
  • the negative electrode 22 can have a region of the negative electrode active material uncoated portion 22C on the principal surface of the side not facing the positive electrode active material coated portion 21B. This is because even if the negative electrode active material coating portion 22B is provided on the main surface that does not face the positive electrode active material coating portion 21B, it is considered that the contribution to charging and discharging is low. It is preferable that the area of the negative electrode active material non-coated portion 22C is 3/4 or more and 5/4 or less of the electrode wound body 20 . At this time, since the negative electrode active material coating portion 22B that contributes little to charging and discharging is not provided, the initial capacity can be increased with respect to the same volume of the electrode wound body 20 .
  • the electrode wound body 20 is wound so that the positive electrode active material uncoated portion 21C and the first negative electrode active material uncoated portion 221A face opposite directions. , the positive electrode active material uncoated portions 21C gather, and the end surface 42 of the electrode winding body 20 gathers the first negative electrode active material uncoated portions 221A.
  • the positive electrode active material uncoated portion 21C and the first negative electrode active material uncoated portion 221A are bent to form flat end surfaces 41 and 42 .
  • the bending direction is the direction from the outer edges 27, 28 of the end faces 41, 42 toward the through hole 26, and in the wound state, adjacent active material non-coated portions are overlapped with each other and bent.
  • the end surface 41 is a flat surface, the contact between the positive electrode active material uncoated portion 21C and the positive electrode current collector plate 24 can be improved, and the first negative electrode active material uncoated portion 221A and the negative electrode current collector can be improved. Good contact with the plate 25 can be achieved. In addition, since the end surfaces 41 and 42 are curved to form flat surfaces, the resistance of the lithium ion battery 1 can be reduced.
  • the end surfaces 41 and 42 can be made flatter.
  • Either one of the positive electrode active material uncoated portion 21C and the first negative electrode active material uncoated portion 221A may be bent, but both are preferably bent.
  • a lithium-ion battery (lithium-ion battery 1A) according to the second embodiment has an electrode winding body 20 like the lithium-ion battery 1 does.
  • the electrode roll 20 has a plurality of layers of separators including a separator 23D joined to a separator 23E inside an innermost negative electrode 22D, that is, separators 23A to 23D.
  • FIG. 10 is a cross-sectional view of the negative electrode side of the electrode winding body 20 of the lithium ion battery 1A in the same cross section as in the first embodiment.
  • a bent portion 81 is formed by bending the first negative electrode active material uncoated portion 221A. Further, the outer surface of the bent portion 81 is a flat surface 82 .
  • the ends of the multiple layers of separators (separators 23A to 23D) located inside the innermost negative electrode 22D are joined to each other.
  • the separator 23E located outside the innermost negative electrode 22D and the separators 23A to 23D are not joined.
  • the separator 23E can also melt, but since the first negative electrode active material uncoated portion 221A of the innermost negative electrode 22D is interposed between the separator 23D and the separator 23E, the separator 23D and the separator 23E are not heat-sealed.
  • the ends of the separators 23A to 23E are heat-sealed on the positive electrode side. Also, the ends of the separators 23A to 23D are thermally fused to each other on the negative electrode side. Since the ends of the multiple layers of separator 23 are heat-sealed to each other on the positive and negative electrode sides, the strength is improved compared to a single-layer separator 23 . As a result, the separator 23 is not deformed when the suction step is performed, and deformation of the electrode-wound body 20 can be suppressed as much as possible. In addition, it is possible to prevent the separator 23 from being sucked into the suction device as much as possible.
  • the battery size is 21700 (diameter: 21 mm, height: 70 mm), the length of the negative electrode active material coating portion 22B in the width direction is 62 mm, and the length of the separator 23 in the width direction is 64 mm, the clearance between the positive electrode active material coating portion 21B and the negative electrode active material coating portion 22B is 1.5 mm, and the clearance between the negative electrode active material coating portion 22B and the separator 23 is 1.5 mm.
  • the separator 23 was superimposed so as to cover the entire range of the positive electrode active material covered portion 21B and the negative electrode active material covered portion 22B, and the length in the width direction of the positive electrode active material non-covered portion 21C was set to 5 mm.
  • FIG. 11 is a diagram corresponding to the first embodiment
  • FIGS. 10 and 11 are diagrams corresponding to the second embodiment
  • FIG. 12 is a diagram corresponding to the first comparative example.
  • Example 1 A lithium ion battery 1 was produced by the steps described above. At this time, in the end joining step, on the positive electrode side, a sheathed heater is inserted into the through-hole 26 to a depth of 2 mm and heated at 150° C. for 3 seconds, thereby The ends of the separators (separators 23A to 23E) including the separators located at the positions were joined by heat sealing (see FIG. 11).
  • Example 2 In the end joining step of Example 2, on the negative electrode side, a sheathed heater is inserted to a depth of 2 mm into the through-hole 26 and heated at 150° C. for 3 seconds to join the ends of the separators 23A to 23D together. They were joined by heat sealing. Otherwise, a lithium ion battery 1 was produced in the same manner as in Example 1 (see FIGS. 10 and 11).
  • Comparative Example 1 In Comparative Example 1, the end joining step was not performed, and the ends of the separator 23 on both the positive and negative sides were not joined (see FIG. 12). Lithium ion battery 1 was produced in the same manner as in Example 1 except for the above.
  • Examples 1 and 2 and Comparative Example 1 were evaluated using the process defect rate and the open circuit voltage defect rate.
  • the process defect rate was evaluated as follows. For the purpose of sucking the metal powder, suction was performed for 5 seconds at a flow rate of 60 L/min in a state in which the suction device was in complete contact with the negative electrode side end face of the electrode roll 20 after molding. When the through hole 26 was completely blocked by the separator 23 on the inner peripheral side, it was determined to be defective by the appearance inspection. The process defect rate was calculated by dividing the number of through-holes 26 blocked by the number of test pieces.
  • Example 1 the process defect rate was 3%, which was better than the process defect rate (8%) of Comparative Example 1 in which the ends were not joined. This is because the ends of the separators 23A to 23E are joined to each other to increase the strength, and when the metal powder is sucked, the separator 23 located on the inner peripheral side may deform and block the through hole 26. Presumably because it is less.
  • the open circuit voltage defect rate was 2%, which was better than the open circuit voltage defect rate (6%) of Comparative Example 1 in which the ends were not joined. This is because the protection of the innermost negative electrode 22D prevents metal powder generated from the positive electrode active material uncoated portion 21C during the molding of the electrode roll 20 from coming into contact with the innermost negative electrode 22D. It is considered that the open circuit voltage defect rate decreased because it could be suppressed.
  • Example 2 the process defect rate is 0%, which is better than the process defect rate (8%) of Comparative Example 1 in which the ends are not joined, and is better than the process defect rate (3%) of Example 1. also improved further. This is because the ends of the separators on both the positive and negative sides are joined to each other, so that the strength of both sides is increased, and when the metal powder is sucked, the separator 23 located on the inner peripheral side deforms and closes the through holes 26 . It is thought that this is because there are even fewer cases where the In Example 2, the open circuit voltage defect rate was 2%, which was better than the open circuit voltage defect rate (6%) of Comparative Example 1 in which the ends were not joined.
  • Example 1 since the innermost negative electrode 22D is protected, the metal powder generated from the positive electrode active material uncoated portion 21C during the molding of the electrode wound body 20 is It is considered that the open-circuit voltage defect rate decreased because contact with the negative electrode 22D could be suppressed.
  • the process defect rate was as high as 8%. This is because the ends of the separators on the positive and negative sides are not joined to each other, so when the metal powder is sucked, the separator 23 located on the inner peripheral side is often deformed and closes the through holes 26 . This is thought to be because In Comparative Example 1, the open circuit voltage defect rate was as high as 6%. This is because the innermost negative electrode 22D is not covered, and metal powder generated from the positive electrode active material non-coated portion 21C during the molding of the electrode roll 20 comes into contact with the innermost negative electrode 22D, causing an internal short circuit. This is probably because there are more things to do. From the above, it can be said that the configurations shown in Examples 1 and 2 are preferable configurations of the lithium ion battery 1 .
  • the separator on the inner peripheral side has a configuration in which four layers of separators (separators 23A to 23D) are laminated, but it may be one layer, or a plurality of layers other than four layers. .
  • the configuration in which the second negative electrode active material uncovered portion 221B and the third negative electrode active material uncovered portion 221C are provided is preferable, but the present invention is also applicable to a lithium ion battery without these. be able to.
  • a heat fusion method is used as an example of the bonding method.
  • the number of the grooves 43 is eight in the above-described embodiment and comparative example, the number may be other than this.
  • the battery size is 21700 (diameter 21 mm, height 70 mm), it may be 18650 (diameter 18 mm, height 65 mm) or other sizes.
  • the fan-shaped portions 31 and 33 according to the embodiment may have a shape other than the fan-shaped shape.
  • the present invention can be applied to batteries other than lithium ion batteries and batteries other than cylindrical batteries (for example, laminate type batteries, square batteries, coin type batteries, button type batteries). is also possible.
  • the shape of the "end surface of the wound electrode" may be not only cylindrical but also rectangular, elliptical, or flat.
  • the present invention can also be implemented as a method for manufacturing a battery.
  • FIG. 13 is a block diagram showing a circuit configuration example when the secondary battery according to the embodiment or example of the present invention is applied to the battery pack 300.
  • the battery pack 300 includes an assembled battery 301 , a switch section 304 including a charge control switch 302 a and a discharge control switch 303 a , a current detection resistor 307 , a temperature detection element 308 and a control section 310 .
  • the control unit 310 can control each device, control charging/discharging when abnormal heat is generated, and calculate and correct the remaining capacity of the battery pack 300 .
  • a positive terminal 321 and a negative terminal 322 of the battery pack 300 are connected to a charger or an electronic device, and charging and discharging are performed.
  • the assembled battery 301 is formed by connecting a plurality of secondary batteries 301a in series and/or in parallel.
  • FIG. 13 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
  • the secondary battery of the present invention can be applied to the secondary battery 301a.
  • the temperature detection unit 318 is connected to a temperature detection element 308 (eg, a thermistor), measures the temperature of the assembled battery 301 or the battery pack 300, and supplies the measured temperature to the control unit 310.
  • the voltage detection unit 311 measures the voltage of the assembled battery 301 and the secondary batteries 301 a that constitute it, A/D-converts the measured voltage, and supplies it to the control unit 310 .
  • a current measurement unit 313 measures current using a current detection resistor 307 and supplies the measured current to the control unit 310 .
  • the switch control section 314 controls the charge control switch 302a and the discharge control switch 303a of the switch section 304 based on the voltage and current input from the voltage detection section 311 and the current measurement section 313.
  • the switch control unit 314 controls the switch unit 304 when the secondary battery 301a reaches the overcharge detection voltage (for example, 4.20V ⁇ 0.05V) or higher or the overdischarge detection voltage (2.4V ⁇ 0.1V) or lower. Overcharge or overdischarge is prevented by sending an OFF control signal to .
  • the charge control switch 302a or the discharge control switch 303a After the charge control switch 302a or the discharge control switch 303a is turned off, charging or discharging is possible only through the diode 302b or the diode 303b.
  • Semiconductor switches such as MOSFETs can be used for these charge/discharge switches. Note that although the switch section 304 is provided on the + side in FIG. 13, it may be provided on the - side.
  • the memory 317 consists of RAM and ROM, and stores and rewrites the values of the battery characteristics calculated by the control unit 310, the full charge capacity, the remaining capacity, and the like.
  • the secondary battery according to the embodiment or example of the present invention described above can be mounted on devices such as electronic devices, electric transportation devices, and power storage devices, and used to supply electric power.
  • Examples of electronic devices include notebook computers, smartphones, tablet terminals, PDAs (personal digital assistants), mobile phones, wearable terminals, digital still cameras, e-books, music players, game machines, hearing aids, electric tools, televisions, and lighting equipment. , toys, medical devices, and robots. In a broad sense, electronic devices also include electric transportation equipment, power storage devices, power tools, electric unmanned aerial vehicles, and the like, which will be described later.
  • Electric transportation equipment includes electric vehicles (including hybrid vehicles), electric motorcycles, electrically assisted bicycles, electric buses, electric carts, automated guided vehicles (AGV), and railway vehicles. It also includes electric passenger aircraft and electric unmanned aerial vehicles for transportation.
  • the secondary battery according to the present invention can be used not only as a driving power source, but also as an auxiliary power source, an energy regeneration power source, and the like.
  • power storage devices include power storage modules for commercial or domestic use, power storage power sources for buildings such as houses, buildings, and offices, or for power generation equipment.
  • the electric driver 431 is provided with a motor 433 that transmits rotational power to a shaft 434 and a trigger switch 432 that is operated by a user.
  • a battery pack 430 and a motor control unit 435 are accommodated in a lower housing of the handle of the electric driver 431 .
  • the battery pack 430 is built into the electric driver 431 or is detachable therefrom.
  • the secondary battery of the present invention can be applied to the batteries forming battery pack 430 .
  • Each of the battery pack 430 and the motor control unit 435 may be provided with a microcomputer (not shown) so that charge/discharge information of the battery pack 430 can be communicated with each other.
  • the motor control unit 435 can control the operation of the motor 433 and cut off the power supply to the motor 433 in the event of an abnormality such as overdischarge.
  • FIG. 15 schematically shows a configuration example of a hybrid vehicle (HV) employing a series hybrid system.
  • a series hybrid system is a vehicle that runs with a power driving force conversion device using power generated by a generator driven by an engine or power temporarily stored in a battery.
  • This hybrid vehicle 600 includes an engine 601, a generator 602, a power driving force conversion device (DC motor or AC motor, hereinafter simply referred to as "motor 603"), driving wheels 604a, driving wheels 604b, wheels 605a, wheels 605b, A battery 608, a vehicle control device 609, various sensors 610, and a charging port 611 are mounted.
  • the battery 608 the secondary battery of the present invention or a power storage module equipped with a plurality of secondary batteries of the present invention can be applied.
  • the electric power of the battery 608 operates the motor 603, and the rotational force of the motor 603 is transmitted to the driving wheels 604a and 604b.
  • the rotational power produced by engine 601 allows power generated by generator 602 to be stored in battery 608 .
  • Various sensors 610 control the engine speed via the vehicle control device 609 and control the opening of a throttle valve (not shown).
  • HV plug-in hybrid vehicles
  • the secondary battery according to the present invention can be applied to a miniaturized primary battery and use it as a power supply for the tire pressure monitoring system (TPMS) built into the wheels 604 and 605.
  • TPMS tire pressure monitoring system
  • the present invention can also be applied to a parallel system that uses both an engine and a motor, or a hybrid vehicle that combines a series system and a parallel system. Furthermore, the present invention can also be applied to an electric vehicle (EV or BEV) that runs only with a drive motor that does not use an engine, or a fuel cell vehicle (FCV).
  • EV or BEV electric vehicle
  • FCV fuel cell vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

内部ショートの発生を抑制する。 正極は、帯状の正極箔上に、正極活物質層が被覆された正極活物質被覆部と、正極活物質非被覆部とを有し、負極は、帯状の負極箔上に、負極活物質層が被覆された負極活物質被覆部と、少なくとも負極箔の長手方向に延在する負極活物質非被覆部とを有し、正極活物質非被覆部は、電極巻回体の端部の一方において、正極集電板と接合され、負極活物質非被覆部は、電極巻回体の端部の他方において、負極集電板と接合され、電極巻回体は、正極活物質非被覆部及び負極活物質非被覆部の何れか一方又は両方が、巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面と、平坦面に形成された溝とを有し、電極巻回体の少なくとも正極側を、中心軸を含む平面で切断した断面を断面視した場合に、負極のうち最内周側に位置する最内周側負極の少なくとも両側に位置するセパレータの端部同士が、互いに接合している二次電池である。

Description

二次電池、電子機器及び電動工具
 本発明は、二次電池、電子機器及び電動工具に関する。
 リチウムイオン電池は、電動工具や自動車といった高出力を要する用途に向けても開発されるようになってきている。例えば、下記の特許文献1には、円筒型のリチウムイオン電池が記載されている。
特開2012-9249号公報
 二次電池の構造によっては、正極集電体(箔)から脱落した金属粉が負極と接触することで内部ショートが発生する虞がある。また、金属粉を除去する工程において、二次電池の構造が変形してしまうことは好ましくない。上述した特許文献1に記載の技術では、係る観点が欠如しており、二次電池の安全性等を確保する技術としては不十分であった。
 従って、本発明は、正極集電体(箔)から脱落した金属粉が負極と接触することを極力抑制する二次電池を提供することを目的の一つとする。また、金属粉を吸引する工程でのセパレータの変形を極力抑制するようにした二次電池を提供することを目的の一つとする。また、これらの二次電池を用いた電子機器及び電動工具を提供することを目的の一つとする。
 本発明は、
 セパレータを介して帯状の正極と帯状の負極とが積層された電極巻回体と、正極集電板及び負極集電板とが、電池缶に収容された二次電池であって、
 正極は、帯状の正極箔上に、正極活物質層が被覆された正極活物質被覆部と、正極活物質非被覆部とを有し、
 負極は、帯状の負極箔上に、負極活物質層が被覆された負極活物質被覆部と、少なくとも負極箔の長手方向に延在する負極活物質非被覆部とを有し、
 正極活物質非被覆部は、電極巻回体の端部の一方において、正極集電板と接合され、
 負極活物質非被覆部は、電極巻回体の端部の他方において、負極集電板と接合され、
 電極巻回体は、正極活物質非被覆部及び負極活物質非被覆部の何れか一方又は両方が、巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面と、平坦面に形成された溝とを有し、
 電極巻回体の少なくとも正極側を、中心軸を含む平面で切断した断面を断面視した場合に、負極のうち最内周側に位置する最内周側負極の少なくとも両側に位置するセパレータの端部同士が、互いに接合している
 二次電池である。
 本発明の少なくとも実施形態によれば、正極集電体(箔)から脱落した金属粉が負極と接触することを極力抑制できる。また、金属粉を吸引する工程で、セパレータが変形してしまうことを極力抑制できる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。
図1は、実施形態に係るリチウムイオン電池の断面図である。 図2A及び図2Bは、実施形態に係る正極を説明するための図である。 図3A及び図3Bは、実施形態に係る負極を説明するための図である。 図4は、巻回前の正極、負極、及び、セパレータを示す図である。 図5Aは実施形態に係る正極集電板の平面図であり、図5Bは実施形態に係る負極集電板の平面図である。 図6Aから図6Fは、実施形態に係るリチウムイオン電池の組み立て工程を説明する図である。 図7は、実施形態に係る正極側の平坦面を説明するための図である。 図8は、実施形態に係るリチウムイオン電池の正極側の断面を示す図である。 図9は、実施形態に係る端部接合工程を説明するための図である。 図10は、第2の実施形態を説明するための図である。 図11は、実施例1、2を説明するための図である。 図12は、比較例1を説明するための図である。 図13は、本発明の応用例としての電池パックの説明に使用する接続図である。 図14は、本発明の応用例としての電動工具の説明に使用する接続図である。 図15は、本発明の応用例としての電動車両の説明に使用する接続図である。
 以下、本発明の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<第1の実施形態>
<第2の実施形態>
<変形例>
<応用例>
 以下に説明する実施形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。なお、説明の理解を容易とするために、各図における一部の構成を拡大、強調したり、若しくは縮小したり、一部の図示を簡略化する場合もある。
<第1の実施形態>
[リチウムイオン電池の構成例]
 本発明の実施形態では、二次電池として、円筒形状のリチウムイオン電池を例にして説明する。図1~図5を参照しつつ、第1の実施形態に係るリチウムイオン電池(リチウムイオン電池1)の構成例に関して説明する。図1は、リチウムイオン電池1の概略断面図である。リチウムイオン電池1は、例えば、図1に示すように、電池缶11の内部に電極巻回体20が収納されている円筒型のリチウムイオン電池1である。なお、以下の説明において、特に断らない限り、図1の紙面に向かって水平方向をX軸方向、奥行方向をY軸方向、垂直方向(リチウムイオン電池1の中心軸(巻回軸とも適宜、称し、図1において一点鎖線で示される軸))の延在方向)をZ軸方向と適宜、称する。
 リチウムイオン電池1は、概略的には円筒状の電池缶11を有し、電池缶11の内部に、一対の絶縁板12,13と、電極巻回体20とを備えている。なお、リチウムイオン電池1は、電池缶11の内部に、例えば、熱感抵抗(PTC)素子及び補強部材などのうちのいずれか1種類又は2種類以上をさらに備えていてもよい。
(電池缶)
 電池缶11は、主に、電極巻回体20を収納する部材である。この電池缶11は、例えば、一端面が開放されると共に他端面が閉塞された円筒状の容器である。すなわち、電池缶11は、開放された一端面(開放端面11N)を有している。この電池缶11は、例えば、鉄、アルミニウム及びそれらの合金などの金属材料のうちのいずれか1種類又は2種類以上を含んでいる。電池缶11の表面に、例えば、ニッケルなどの金属材料のうちのいずれか1種類又は2種類以上が鍍金されていてもよい。
(絶縁板)
 絶縁板12,13は、電極巻回体20の中心軸(電極巻回体20の端面の略中心を通り図1のZ軸と平行な方向)に対して略垂直な面を有する円板状の板である。また、絶縁板12,13は、例えば、互いに電極巻回体20を挟むように配置されている。
(かしめ構造)
 電池缶11の開放端面11Nには、電池蓋14及び安全弁機構30がガスケット15を介してかしめられており、かしめ構造11R(クリンプ構造)が形成されている。これにより、電池缶11の内部に電極巻回体20などが収納された状態において、その電池缶11は密閉されている。
(電池蓋)
 電池蓋14は、主に、電池缶11の内部に電極巻回体20などが収納された状態において、その電池缶11の開放端面11Nを閉塞する部材である。この電池蓋14は、例えば、電池缶11の形成材料と同様の材料を含んでいる。電池蓋14のうちの中央領域は、例えば、+Z方向に突出している。これにより、電池蓋14のうちの中央領域以外の領域(周辺領域)は、例えば、安全弁機構30に接触している。
(ガスケット)
 ガスケット15は、主に、電池缶11(折り曲げ部11P)と電池蓋14との間に介在することにより、その折り曲げ部11Pと電池蓋14との間の隙間を封止する部材である。ガスケット15の表面に、例えば、アスファルトなどが塗布されていてもよい。
 ガスケット15は、例えば、絶縁性材料のうちのいずれか1種類又は2種類以上を含んでいる。絶縁性材料の種類は、特に限定されないが、例えば、ポリブチレンテレフタレート(PBT)及びポリプロピレン(PP)などの高分子材料を用いることができる。中でも、絶縁性材料としては、ポリブチレンテレフタレートであることが好ましい。電池缶11と電池蓋14とを互いに電気的に分離しながら、折り曲げ部11Pと電池蓋14との間の隙間を十分に封止することができるからである。
(安全弁機構)
 安全弁機構30は、主に、電池缶11の内部の圧力(内圧)が上昇した際に、必要に応じて電池缶11の密閉状態を解除することにより、その内圧を開放する。電池缶11の内圧が上昇する原因は、例えば、充放電時において電解液の分解反応に起因して発生するガスなどである。
(電極巻回体)
 円筒形状のリチウムイオン電池1では、帯状の正極21と帯状の負極22とがセパレータ23を挟んで積層され、且つ、渦巻き状に巻回されて電解液に含浸された状態で、電池缶11に収まっている。正極21は正極箔21Aの片面又は両面に正極活物質層21Bを形成したものであり、正極箔21Aの材料は例えば、アルミニウムやアルミニウム合金でできた金属箔である。負極22は負極箔22Aの片面又は両面に負極活物質層22Bを形成したものであり、負極箔22Aの材料は例えば、ニッケル、ニッケル合金、銅や銅合金でできた金属箔である。セパレータ23は多孔質で絶縁性のあるフィルムであり、正極21と負極22とを電気的に絶縁しながら、イオンや電解液等の物質の移動を可能にしている。
 図2Aは巻回前の正極21を正面から視た図であり、図2Bは図2Aの正極21を側面から視た図である。正極21は、正極箔21Aの一方の主面及び他方の主面に正極活物質層21Bで被覆した部分(ドットを付した部分)を有するとともに、正極活物質層21Bで被覆していない部分である正極活物質非被覆部21Cを有する。なお、以下の説明において、正極活物質層21Bで被覆した部分を正極活物質被覆部21Bと適宜、称する。また、正極箔21Aの一方の主面に、正極活物質被覆部21Bが設けられる構成でもよい。
 図3Aは巻回前の負極22を正面から視た図であり、図3Bは図3Aの負極22を側面から視た図である。負極22は、負極箔22Aの一方の主面及び他方の主面に負極活物質層22Bで被覆した部分(ドットを付した部分)を有するとともに、負極活物質層22Bで被覆していない部分である負極活物質非被覆部22Cを有する。なお、以下の説明において、負極活物質層22Bで被覆した部分を負極活物質被覆部22Bと適宜、称する。また、負極箔22Aの一方の主面に、負極活物質被覆部22Bが設けられる構成でもよい。
 図3Aに示すように、負極活物質非被覆部22Cは、例えば、負極22の長手方向(図3におけるX軸方向)に延在している第1の負極活物質非被覆部221Aと、負極22の巻回開始側において負極22の短手方向(図3におけるY軸方向。幅方向とも適宜、称する)に延在している第2の負極活物質非被覆部221Bと、負極22の巻回終止側において負極22の短手方向(図3におけるY軸方向)に延在している第3の負極活物質非被覆部221Cとを有している。なお、図3Aにおいて、第1の負極活物質非被覆部221Aと第2の負極活物質非被覆部221Bとの境界、及び、第1の負極活物質非被覆部221Aと第3の負極活物質非被覆部221Cとの境界のそれぞれには点線を付している。
 本実施形態に係る円筒形状のリチウムイオン電池1では、電極巻回体20は正極活物質非被覆部21Cと第1の負極活物質非被覆部221Aとが互いに逆方向を向くようにしてセパレータ23を介して重ねられて巻回されている。
 電極巻回体20の中心には貫通孔26が設けられている。具体的には、貫通孔26は、正極21、負極22及びセパレータ23が積層した積層物の略中心にできる孔部である。貫通孔26はリチウムイオン電池1の組み立て工程で、棒状の溶接器具(以下、溶接棒と適宜、称する)等を挿入する孔として使用される。
 電極巻回体20の詳細について説明する。図4に正極21、負極22とセパレータ23を積層した巻回前の構造の一例を示す。正極21は、正極活物質被覆部21B(図4においてドットが疎に付された部分)と正極活物質非被覆部21Cとの境界を被覆する絶縁層101(図4における灰色の領域部分)とを更に有している。絶縁層101の幅方向の長さは、例えば、3mm程度である。セパレータ23を介して負極活物質被覆部22Bに対向する正極活物質非被覆部21Cの全ての領域が絶縁層101で覆われている。絶縁層101は、負極活物質被覆部22Bと正極活物質非被覆部21Cとの間に異物が侵入したときのリチウムイオン電池1の内部短絡を確実に防ぐ効果がある。また、絶縁層101は、リチウムイオン電池1に衝撃が加わったときに衝撃を吸収し、正極活物質非被覆部21Cが折れ曲がりや、負極22との短絡を確実に防ぐ効果がある。
 ここで、図4に示すように、正極活物質非被覆部21Cの幅方向の長さをD5とし、第1の負極活物質非被覆部221Aの幅方向の長さをD6とする。一実施形態ではD5>D6であることが好ましく、例えばD5=7(mm)、D6=4(mm)である。正極活物質非被覆部21Cがセパレータ23の幅方向の一端から突出した部分の長さをD7とし、第1の負極活物質非被覆部221Aがセパレータ23の幅方向の他端から突出した部分の長さをD8とした場合に、一実施形態ではD7>D8であることが好ましく、例えば、D7=4.5(mm)、D8=3(mm)である。
 正極箔21Aと正極活物質非被覆部21Cとは例えばアルミニウムなどからなり、負極箔22Aと負極活物質非被覆部22Cとは例えば銅などからなる。このように、一般的に正極活物質非被覆部21Cの方が負極活物質非被覆部22Cよりも柔らかい(ヤング率が低い)。このため、一実施形態では、D5>D6且つD7>D8であることがより好ましく、この場合、両極側から同時に同じ圧力で正極活物質非被覆部21Cと負極活物質非被覆部22Cとが折り曲げられるとき、折り曲げられた部分のセパレータ23の先端から測った高さは正極21と負極22とで同じくらいになることがある。このとき、正極活物質非被覆部21Cが折り曲げられて適度に重なり合うので、リチウムイオン電池1の作製工程(詳細は後述)において、正極活物質非被覆部21Cと正極集電板24とのレーザ溶接による接合を容易に行うことができる。また、負極活物質非被覆部22Cが折り曲げられて適度に重なり合うので、リチウムイオン電池1の作製工程において、負極活物質非被覆部22Cと負極集電板25とのレーザ溶接による接合を容易に行うことができる。
(集電板)
 通常のリチウムイオン電池では例えば、正極と負極との一か所ずつに電流取出し用のリードが溶接されているが、これでは電池の内部抵抗が大きく、放電時にリチウムイオン電池が発熱し高温になるため、ハイレート放電には適さない。そこで、本実施形態のリチウムイオン電池1では、電極巻回体20の一方の端面である端面41に正極集電板24を配置し、電極巻回体20の他方の端面である端面42に負極集電板25を配置する。そして、正極集電板24と端面41に存在する正極活物質非被覆部21Cとを多点で溶接し、また、負極集電板25と端面42に存在する負極活物質非被覆部22C(具体的には第1の負極活物質非被覆部221A)とを多点で溶接することで、リチウムイオン電池1の内部抵抗を低く抑え、ハイレート放電を可能としている。
 図5A及び図5Bに、集電板の一例を示す。図5Aが正極集電板24であり、図5Bが負極集電板25である。正極集電板24及び負極集電板25は電池缶11に収容される(図1参照)。正極集電板24の材料は、例えば、アルミニウムやアルミニウム合金の単体若しくは複合材でできた金属板であり、負極集電板25の材料は、例えば、ニッケル、ニッケル合金、銅や銅合金の単体若しくは複合材でできた金属板である。図5Aに示すように、正極集電板24の形状は平坦な扇形をした扇状部31に、矩形の帯状部32が付いた形状になっている。扇状部31の中央付近に孔35があいていて、孔35の位置は貫通孔26に対応する位置である。
 図5Aのドットで示す部分は帯状部32に絶縁テープが貼付されているか絶縁材料が塗布された絶縁部32Aであり、図面のドット部より下側の部分は外部端子を兼ねた封口板への接続部32Bである。なお、貫通孔26に金属製のセンターピン(図示せず)を備えていない電池構造の場合には帯状部32が負極電位の部位と接触する可能性が低いため、絶縁部32Aが無くても良い。その場合には、正極21と負極22との幅を絶縁部32Aの厚さに相当する分だけ大きくして充放電容量を大きくすることができる。
 負極集電板25の形状は正極集電板24と殆ど同じ形状だが、帯状部の形状が異なっている。図5Bの負極集電板の帯状部34は、正極集電板24の帯状部32より短く、絶縁部32Aに相当する部分がない。帯状部34には、複数の丸印で示される丸型の突起部(プロジェクション)37が設けられている。抵抗溶接時には、電流が突起部37に集中し、突起部37が溶けて帯状部34が電池缶11の底に溶接される。正極集電板24と同様に、負極集電板25には扇状部33の中央付近に孔36があいていて、孔36の位置は貫通孔26に対応する位置である。正極集電板24の扇状部31と負極集電板25の扇状部33は扇形の形状をしているため、端面41,42の一部を覆うようになっている。全部を覆わないことにより、リチウムイオン電池1を組み立てる際に電極巻回体20へ電解液を円滑に浸透させることができ、且つ、リチウムイオン電池1が異常な高温状態や過充電状態になったときに発生したガスをリチウムイオン電池1外へ放出しやすくすることができる。
(正極)
 正極活物質層21Bは、リチウムを吸蔵及び放出することが可能である正極材料(正極活物質)を少なくとも含み、さらに、正極結着剤及び正極導電剤などを含んでいてもよい。正極材料は、リチウム含有複合酸化物又はリチウム含有リン酸化合物が好ましい。リチウム含有複合酸化物は、例えば、層状岩塩型又はスピネル型の結晶構造を有している。リチウム含有リン酸化合物は、例えば、オリビン型の結晶構造を有している。
 正極結着剤は、合成ゴム又は高分子化合物を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴム及びエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン(PVdF)及びポリイミドなどである。
 正極導電剤は、黒鉛、カーボンブラック、アセチレンブラック又はケッチェンブラックなどの炭素材料である。ただし、正極導電剤は、金属材料及び導電性高分子でもよい。
(負極)
 負極22を構成する負極箔22Aの表面は、負極活物質層22Bとの密着性向上のために粗面化されていることが好ましい。負極活物質層22Bは、リチウムを吸蔵及び放出することが可能である負極材料(負極活物質)を少なくとも含み、さらに、負極結着剤及び負極導電剤などを含んでいてもよい。
 負極材料は、例えば、炭素材料を含む。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛、低結晶性炭素、又は非晶質炭素である。炭素材料の形状は、繊維状、球状、粒状又は鱗片状を有している。
 また、負極材料は、例えば金属系材料を含む。金属系材料の例としては、Li(リチウム)、Si(ケイ素)、Sn(スズ)、Al(アルミニウム)、Zr(亜鉛)、Ti(チタン)が挙げられる。金属系元素は、他の元素と化合物、混合物又は合金を形成しており、その例としては、酸化ケイ素(SiOx(0<x≦2))、炭化ケイ素(SiC)又は炭素とケイ素の合金、チタン酸リチウム(LTO)が挙げられる。
(セパレータ)
 セパレータ23は、樹脂を含む多孔質膜であり、2種類以上の多孔質膜の積層膜でもよい。樹脂は、ポリプロピレン及びポリエチレンなどである。セパレータ23は、多孔質膜を基材層として、その片面又は両面に樹脂層を含んでいてもよい。正極21及び負極22のそれぞれに対するセパレータ23の密着性が向上するため、電極巻回体20の歪みが抑制されるからである。
 樹脂層は、PVdFなどの樹脂を含んでいる。この樹脂層を形成する場合には、有機溶剤に樹脂が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。樹脂層には、無機粒子又は有機粒子を含んでいることが、耐熱性、電池の安全性向上の観点で好ましい。無機粒子の種類は、酸化アルミニウム、窒化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、ベーマイト、タルク、シリカ、雲母などである。また、樹脂層に代えて、スパッタ法、ALD(原子層堆積)法などで形成された、無機粒子を主成分とする表面層を用いてもよい。
(電解液)
 電解液は、溶媒及び電解質塩を含み、必要に応じてさらに添加剤などを含んでいてもよい。溶媒は、有機溶媒などの非水溶媒、又は水である。非水溶媒を含む電解液を非水電解液という。非水溶媒は、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステル又はニトリル(モノニトリル)などである。
 電解質塩の代表例はリチウム塩であるが、リチウム塩以外の塩を含んでいてもよい。リチウム塩は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、メタンスルホン酸リチウム(LiCH3SO3)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、六フッ化ケイ酸二リチウム(Li2SF6)などである。これらの塩を混合して用いることもでき、中でも、LiPF6、LiBF4を混合して用いることが、電池特性向上の観点で好ましい。電解質塩の含有量は特に限定されないが、溶媒に対して0.3mol/kgから3mol/kgであることが好ましい。
[リチウムイオン電池の作製方法]
 次に、図6Aから図6Fを参照して、本実施形態に係るリチウムイオン電池1の作製方法について説明する。まず、正極活物質を、帯状の正極箔21Aの表面に塗着させ、これを正極活物質被覆部21Bとし、負極活物質を、帯状の負極箔22Aの表面に塗着させ、これを負極活物質被覆部22Bとした。このとき、正極箔21Aの幅方向の一端側に正極活物質が塗着されていない正極活物質非被覆部21Cを設け、負極箔22Aに、負極活物質が塗着されていない負極活物質非被覆部22C(第1の負極活物質非被覆部221A、第2の負極活物質非被覆部221B及び第3の負極活物質非被覆部221C)を設けた。次に、正極21と負極22とに対して乾燥等の工程を行った。そして、正極活物質非被覆部21Cと負極活物質非被覆部22Cとが逆方向となるようにセパレータ23を介して重ね、中心軸に貫通孔26ができるように渦巻き状に巻回して、図6Aのような電極巻回体20を作製した。
 次に、端面に平板等が設けられた溝形成用治具(不図示)を用いて、図6Bに示すように、溝43を形成(作製)した(溝形成工程)。具体的には、溝形成用治具の平板等を端面41,42に対して垂直に押し付けることで、端面41の一部と端面42の一部とに溝43を作製した。この方法により、貫通孔26から放射状に延びる溝43を作製した。溝43は、例えば、端面41,42のそれぞれの外縁部27,28から貫通孔26まで延在している。なお、図6Bに示される、溝43の数や配置はあくまでも一例であって図示した例に限定されるものではない。
 そして、平坦面形成用治具(不図示)を用いて、図6Cのように、平坦面を形成した(平坦面形成工程)。具体的には、平坦面形成用治具の平坦な端面を両極側から同時に同じ圧力で端面41,42に対して略垂直方向に押しつけ荷重を印加した。これにより、正極活物質非被覆部21C及び負極活物質非被覆部22C(より具体的には、第1の負極活物質非被覆部221A)のそれぞれを巻回構造の中心軸に向かって重なり合うように折り曲げることで、端面41,42が平坦面となるようにした。例えば、図7に示すように、折り曲げられた正極活物質非被覆部21Cが重なった折り曲げ部71が形成され、折り曲げ部71の外側の面が平坦面72となっている。同様に、第1の負極活物質非被覆部221Aが折り曲げられることによっても折り曲げ部(後述する折り曲げ部81)及び平坦面(後述する平坦面82)が形成される。
 次に、所定のセパレータの端部同士を、例えばシーズヒーターを使用した熱溶着により接合した(端部接合工程)。なお、端部接合工程の詳細については後述する。
 次に、吸引装置(不図示)を用いて、溝形成工程や平坦面形成工程で発生し得る、正極活物質非被覆部21Cや第1の負極活物質非被覆部221Aから脱落した金属粉を吸引した(吸引工程)。例えば、電極巻回体20の一方の端面側に吸引装置を近接または接触させた状態(貫通孔26を介して他方の端面側から空気が流入可能な状態)で吸引を行う。続いて、他方の端面側に吸引装置を移動させて同様に吸引を行う。これにより金属粉を除去した。その後、端面41に正極集電板24の扇状部31をレーザ溶接し、端面42に負極集電板25の扇状部33をレーザ溶接し、接合した。
 続いて、図6D示すように、正極集電板24の帯状部32及び負極集電板25の帯状部34を折り曲げ、正極集電板24に絶縁板12、負極集電板25に絶縁板13を貼り付け、図6Eに示される電池缶11内に上記のように組立てを行った電極巻回体20を挿入した。そして、溶接棒(不図示)を押し当てることにより、負極集電板25を電池缶11の缶底に溶接した。電解液を電池缶11内に注入後、図6Fに示すように、ガスケット15及び電池蓋14にて封止を行った。以上のようにして、リチウムイオン電池1を作製した。
 なお、絶縁板12及び絶縁板13は、絶縁テープであってもよい。また、接合方法は、レーザ溶接以外の他の方法であってもよい。また、溝43は、正極活物質非被覆部21C及び第1の負極活物質非被覆部221Aを曲折した後も平坦面内に残っており、溝43の無い部分が、正極集電板24又は負極集電板25と接合されるが、溝43が正極集電板24や負極集電板25の一部と接合されていてもよい。
 なお、本明細書における「平坦面」とは、完全に平坦な面のみならず、正極活物質非被覆部21Cと正極集電板24、及び、第1の負極活物質非被覆部221Aと負極集電板25とが接合可能な程度において、多少の凹凸や表面粗さを有する表面も含む意味である。
[電極巻回体の詳細な構成について]
 ところで、リチウムイオン電池1を効率よく放電を行わせるにはセル抵抗を下げる必要がある。抵抗を下げるためには活物質非被覆部で構成する面に直接集電板を溶接する構造が重要であるものの、薄い箔に溶接を行うと溶接不良が多発する虞がある。そこで、実施形態に係るリチウムイオン電池1では、正極活物質非被覆部21Cや第1の負極活物質非被覆部221Aを中心に向かって折り曲げる。これにより、正極活物質非被覆部21Cや第1の負極活物質非被覆部221Aが重なった平坦面を形成することで、正極集電板24や負極集電板25との密着性を向上させ、穴あきのない安定した溶接を行うことが可能となる。
 一方で、負極集電板25を電池缶11の缶底に溶接する際に溶接棒を挿入するため、貫通孔26の径は溶接棒を挿入するために必要な大きさを確保しておかなければならない。貫通孔26にピン等を挿入しながら溝形成工程や平坦面形成工程を行うことにより、貫通孔26の径として必要な大きさを確保することができる。この際、例えば平坦面の形成時に内側に寄せられた正極活物質非被覆部21Cの行き場がなくなり正極活物質非被覆部21Cが部分的に破断することで金属粉が発生する虞が高くなる。金属粉は、溝形成工程においても発生し得る。発生した金属粉が、電極巻回体20が有する負極のうち最内周側に位置する負極(以下、最内周側負極と適宜、称する)と接触することにより内部ショートを引き起こす虞がある。そこで、本実施形態に係るリチウムイオン電池1では、正極活物質非被覆部21Cから発生した金属粉が負極22と接触しない構成を採用した。
 図8は、本実施形態に係る電極巻回体20の少なくとも正極側を、電極巻回体20の中心軸を含む平面で切断した断面を断面視した場合の一部を示した図である。断面観察は、例えば、以下のようにして行われる。
 リチウムイオン電池1を高さ1/2付近で輪切りにし、樹脂に埋め込む。次に、リチウムイオン電池1の中心軸を含む面で切断する。そして、マイクロスコープで観察することにより断面観察を行うことができる。電極巻回体20の負極側についても同様にして断面観察を行うことができる。なお、電極巻回体20の正極側とは略円筒状を有する電極巻回体20の両端面のうち端面41を含む領域を意味する。また、電極巻回体20の負極側とは略円筒状を有する電極巻回体20の両端面のうち端面42を含む領域を意味する。
 図8に示すように、折り曲げられた正極活物質非被覆部21Cによって、折り曲げ部71及び平坦面72が形成されている。平坦面72が、正極集電板24に溶接されている。本実施形態に係るリチウムイオン電池1では、貫通孔26の周面が、例えば、セパレータ23Aにより構成されている。換言すれば、電極巻回体20の最内周側にセパレータ23Aが位置している。セパレータ23Aに対しては、外側(図8におけるX軸方向)に向かってセパレータ23B、23C、23Dが積層している。セパレータ23Dの外側には、最内周側負極22Dが位置しており、最内周側負極22Dの外側にはセパレータ23Eが位置している。
 図8の太線の円で囲む箇所で示されるように、リチウムイオン電池1では、最内周側負極22Dの少なくとも両側に位置するセパレータ(本例におけるセパレータ23D、23E)の端部(正極側の端部)同士が、接合している。接合は、例えば、ヒーターを用いた熱融着による接合である。これによって、最内周側負極22Dが、互いに接合されたセパレータ23D、23Eによって覆われる。
 上述したように、折り曲げ部71の内側付近で正極活物質非被覆部21Cから脱落した金属粉が発生し易い。本実施形態では最内周側負極22Dがセパレータ23Dおよびセパレータ23Eで覆われているので、金属粉と最内周側負極22Dとが接触することがなくなり、両者が接触することによる内部ショートの発生を防止することができる。
 端部接合方法の一例について説明する。図9に示すように、棒状のヒーター(例えば、シーズヒーター)110が電極巻回体20の貫通孔26に挿入される。例えば、平坦面72から1.5~3.0mm下方まで、ヒーター110が挿入される。そして、ヒーター110が通電され、120~200℃までヒーター110の温度が上昇する。通電後のヒーター110が、セパレータ23A~23Eを加熱して溶融させる。加熱時間は、1~10秒程度に設定される。そして、ヒーター110を貫通孔26から取り出し、溶融したセパレータ23A~23Eを冷却、硬化させることで、セパレータ23Dとセパレータ23Eとが熱融着される。なお、本方法によれば、セパレータ23Dより内側に位置するセパレータ23A~23Cも溶融することから、図8及び図9に示すように、セパレータ23A~23Eの端部同士が熱融着されることで接合される。
 なお、セパレータ23Eより外側に位置するセパレータについては、熱融着する必要がない。これは、正極活物質非被覆部21Cを中心側に折り曲げる際に、折り曲げる力がセパレータ23(セパレータ23Eより外側に位置するセパレータ)にも加わり、これに応じてセパレータ23の端部が内側に傾斜する。傾斜したセパレータ23の端部が負極22を覆うことにより金属粉の侵入を防止する。しかしながら、セパレータ23A~23D(特に、セパレータ23D)は、両側に正極21や負極22が存在しないため、位置が安定しづらく比較的フリーな状態となる。このため、最内周側負極22Dと正極活物質非被覆部21Cとの間がセパレータ23E等によって覆われづらくなり、金属粉が最内周側負極22Dに侵入する虞がより高くなる。本実施形態では、上述したように、少なくともセパレータ23D及びセパレータ23Eを熱融着することで、金属粉の侵入の虞が高くなる箇所を閉塞することができる。更に、必要最小限の箇所のみを熱融着しているので、リチウムイオン電池1の作製工程が複雑化してしまうことを防止できる。
[本実施形態により得られる効果]
 本実施形態によれば、例えば、下記の効果を得ることができる。
 少なくとも最内周側負極22Dの両側に位置するセパレータ(セパレータ23D、23E)を熱融着し、最内周側負極22Dを覆うようにすることで、最内周側負極22Dに金属粉が侵入することを防止できる。従って、最内周側負極22Dと金属粉との接触による内部ショートの発生を防止できる。
 リチウムイオン電池の作製時において、薄い平板(例えば厚さ0.5mm)などの端を端面41,42に対して垂直に押し付ける際に(図6Bに示す工程を行う際に)、電極巻回体20の巻回開始側(電極巻回体20の最内周にある正極又は負極の長手方向の端側)において、負極活物質被覆部22Bから負極活物質が剥離することがある。この剥離は端面42に対して押し付ける際に発生するストレスが原因と考えられる。剥離した負極活物質が電極巻回体20内部に侵入し、これにより内部ショートが発生する虞がある。本実施形態では、第2の負極活物質非被覆部221B及び第3の負極活物質非被覆部221Cを設けているので負極活物質の剥離を防ぐことができ、内部ショートの発生を防止できる。係る効果は、第2の負極活物質非被覆部221B及び第3の負極活物質非被覆部221Cの一方のみを設ける構成によっても得られるが、両方設けることがより好ましい。
 電極巻回体20の巻回終止側において、負極22は、正極活物質被覆部21Bに対向しない側の主面で、負極活物質非被覆部22Cの領域を有することができる。正極活物質被覆部21Bに対向しない主面に負極活物質被覆部22Bを有したとしても、それは充放電への寄与が低いと考えられるからである。負極活物質非被覆部22Cの領域は、電極巻回体20の3/4周以上5/4周以下であることが好ましい。このとき、充放電への寄与が低い負極活物質被覆部22Bを設けていないため、同じ電極巻回体20の容積に対して、初期容量を高くすることができる。
 本実施形態では、電極巻回体20は、正極活物質非被覆部21Cと第1の負極活物質非被覆部221Aとが逆方向を向くように重ねて巻回してあるので、端面41には、正極活物質非被覆部21Cが集まり、電極巻回体20の端面42には、第1の負極活物質非被覆部221Aが集まる。係る正極活物質非被覆部21C及び第1の負極活物質非被覆部221Aが曲折されて、端面41,42が平坦面となっている。曲折する方向は端面41,42の外縁部27,28から貫通孔26に向かう方向であり、巻回された状態で隣接する周の活物質非被覆部同士が重なって曲折している。端面41が平坦面となることで、正極活物質非被覆部21Cと正極集電板24との接触を良好とすることができ、且つ、第1の負極活物質非被覆部221Aと負極集電板25との接触を良好とすることができる。また、端面41,42が曲折して平坦面となっていることで、リチウムイオン電池1の低抵抗化を実現することができる。
 また、正極活物質非被覆部21C及び第1の負極活物質非被覆部221Aを曲折することで、一見、端面41,42を平坦面にすることが可能に思われるが、曲折する前に何らの加工もないと、曲折するときに端面41,42にシワやボイド(空隙、空間)が発生して、端面41,42が平坦面とならない虞がある。ここで、「シワ」や「ボイド」とは曲折した正極活物質非被覆部21Cや第1の負極活物質非被覆部221Aに偏りが生じ、端面41,42が平坦面とはならない部分を意味する。本実施形態では、端面41及び端面42側のそれぞれに貫通孔26から放射方向に予め溝43が形成されるようにしている。溝43が形成されていることで、このシワやボイドの発生を抑制することができ、端面41,42をより平坦とすることができる。なお、正極活物質非被覆部21C及び第1の負極活物質非被覆部221Aの何れか一方を曲折してもよいが、好ましくは、両方が曲折される。
<第2の実施形態>
 次に、第2の実施形態について説明する。なお、特に断らない限り、第1の実施形態で説明した事項は、第2の実施形態に対しても適用することができる。第1の実施形態で説明した構成と同一、同質の構成については同一の参照符号を付し、重複した説明を適宜、省略する。
 第2の実施形態に係るリチウムイオン電池(リチウムイオン電池1A)は、リチウムイオン電池1と同様に電極巻回体20を有する。電極巻回体20は、最内周側負極22Dの内側に、セパレータ23Eと接合されるセパレータ23Dを含む複数層のセパレータ、即ち、セパレータ23A~23Dを有する。
 図10は、リチウムイオン電池1Aの電極巻回体20の負極側を、第1の実施形態と同様の断面で断面視した図である。図10に示すように、第1の負極活物質非被覆部221Aが折り曲げられることで折り曲げ部81が形成されている。また、折り曲げ部81の外側の面が平坦面82となっている。負極側では、最内周側負極22Dの内側に位置する複数層のセパレータ(セパレータ23A~23D)の端部同士が、互いに接合している。負極側では、最内周側負極22Dの外側に位置するセパレータ23Eとセパレータ23A~23Dとは接合されていない。熱融着の方法としては、第1の実施形態と同様の方法を適用することができる。この場合、セパレータ23Eも溶融し得るが、セパレータ23Dとセパレータ23Eとの間に、最内周側負極22Dの第1の負極活物質非被覆部221Aが介在しているため、セパレータ23Dとセパレータ23Eとが熱融着することはない。
 第2の実施形態に係るリチウムイオン電池1Aでは、正極側において、セパレータ23A~23Eの端部同士が熱融着している。また、負極側において、セパレータ23A~23Dの端部同士が熱融着している。正負極側において、複数層のセパレータ23の端部同士が熱融着していることで、1層のセパレータ23に比べて強度が向上する。これにより、吸引工程が行われる際に、セパレータ23が変形することがなくなり、電極巻回体20が変形してしまうことを極力抑制できる。また、セパレータ23が吸引装置に吸い込まれてしまうことを極力抑制できる。
 以下、上記のようにして作製したリチウムイオン電池を用い、工程不良率及び開回路電圧不良率のそれぞれについて評価した実施例及び比較例を用いて、本発明を具体的に説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。
 以下の全ての実施例及び比較例において、電池サイズを21700(直径21mm,高さ70mm)とし、負極活物質被覆部22Bの幅方向の長さを62mmとし、セパレータ23の幅方向の長さを64mmとし、正極活物質被覆部21Bと負極活物質被覆部22Bとの間のクリアランスを1.5mm、負極活物質被覆部22Bとセパレータ23との間のクリアランスを1.5mmとして電極巻回体20を作製した。セパレータ23を正極活物質被覆部21Bと負極活物質被覆部22Bの全範囲を覆うように重ね、正極活物質非被覆部21Cの幅方向の長さを5mmとした。また、溝43の数を8とし略等角間隔となるように配置した。
 図11は実施例1に対応する図であり、図10及び図11は実施例2に対応する図であり、図12は比較例1に対応する図である。
[実施例1]
 リチウムイオン電池1を上述した工程により作製した。この際、端部接合工程では、正極側において、シーズヒーターを貫通孔26に対して2mmとなる深さまで挿入し150℃で3秒加温することで、最内周側負極22Dを挟んで両側に位置するセパレータを含むセパレータ(セパレータ23A~23E)の端部同士を熱融着により接合した(図11参照)。
[実施例2]
 実施例2の端部接合工程では、負極側において、シーズヒーターを貫通孔26に対して2mmとなる深さまで挿入し150℃で3秒加温することで、セパレータ23A~23Dの端部同士を熱融着により接合した。その他は、実施例1と同様にリチウムイオン電池1を作製した(図10及び図11参照)。
[比較例1]
 比較例1では、端部接合工程を行わず、正負極側ともセパレータ23の端部同士を接合しなかった(図12参照)。その他は、実施例1と同様にリチウムイオン電池1を作製した。
[評価]
 実施例1、2及び比較例1に対して工程不良率及び開回路電圧不良率を用いた評価を行った。
(工程不良率の測定方法)
 工程不良率は、以下のようにして評価した。
 金属粉吸引を目的に、成型後の電極巻回体20に対し負極側端面に吸引装置が完全に接触する状態で60L/minの流量で5秒間吸引を行った。
 内周側のセパレータ23によって貫通孔26が完全に閉塞したものを外観検査で不良と判断した。貫通孔26が閉塞した本数を試験本数で割ることで工程不良率を算出した。
(開回路電圧不良の測定方法)
 作製したリチウムイオン電池に対し25℃環境において500mAで定電流定電圧充電を上限4.2Vまで行う。
 その後、1時間以内に測定した電圧の値を基準として、2週間後に再測定を行ったときに50mV以上電圧が低下しているものを不良と判断した。
 開回路電圧不良率は(開回路電圧不良本数/試験本数)×100で算出した。
(セパレータの端部同士の接合の確認方法)
 完全に放電したリチウムイオン電池から電極巻回体20を取り出して解体する。正極側において、少なくともセパレータ23Dとセパレータ23Eとが最内周側負極22Dを包むように接合しているかどうかを確認した。負極側において、最内周側負極22Dよりも中心軸側にある複数層のセパレータが、一部で接合しているかどうかを確認した。
 実施例1、2及び、比較例1の構成のリチウムイオン電池1を100本(試験本数)ずつ作製し評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1では、工程不良率が3%であり、端部同士の接合がなされていない比較例1の工程不良率(8%)より改善した。これは、セパレータ23A~23Eの端部同士が接合されたことで強度が高まり、金属粉を吸引した際に内周側に位置するセパレータ23が変形して貫通孔26を閉塞してしまうことが少なくなったからと考えられる。
 また、実施例1では、開回路電圧不良率が2%であり、端部同士の接合がなされていない比較例1の開回路電圧不良率(6%)より改善した。これは、最内周側負極22Dが保護されていることにより、電極巻回体20の成型時に正極活物質非被覆部21Cから発生した金属粉が、最内周側負極22Dと接触することを抑制できたので開回路電圧不良率が低下したからと考えられる。
 実施例2では、工程不良率が0%であり、端部同士の接合がなされていない比較例1の工程不良率(8%)より改善し、実施例1の工程不良率(3%)よりも更に改善した。これは、正負極側ともセパレータの端部同士が接合されたことで両極側とも強度が高まり、金属粉を吸引した際に内周側に位置するセパレータ23が変形して貫通孔26を閉塞してしまうことが更に少なくなったからと考えられる。
 また、実施例2では、開回路電圧不良率が2%であり、端部同士の接合がなされていない比較例1の開回路電圧不良率(6%)より改善した。これは、実施例1と同様に、最内周側負極22Dが保護されていることにより、電極巻回体20の成型時に正極活物質非被覆部21Cから発生した金属粉が、最内周側負極22Dと接触することを抑制できたので開回路電圧不良率が低下したからと考えられる。
 比較例1では、工程不良率が8%と高くなった。これは、正負極側ともセパレータの端部同士が接合されていないので、金属粉を吸引した際に内周側に位置するセパレータ23が変形して貫通孔26を閉塞してしまうことが多くなったからと考えられる。
 また、比較例1では、開回路電圧不良率が6%と高かった。これは、最内周側負極22Dが覆われていないため、電極巻回体20の成型時に正極活物質非被覆部21Cから発生した金属粉と最内周側負極22Dと接触し内部ショートが発生することが多くなったからと考えられる。
 以上から、実施例1、2に示す構成が、リチウムイオン電池1の好ましい構成と言える。
<変形例>
 以上、本発明の複数の実施形態について具体的に説明したが、本発明の内容は上述した実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
 上述した実施形態では、内周側のセパレータが4層のセパレータ(セパレータ23A~23D)が積層している構成であったが、1層でもよいし、4層以外の複数層であってもよい。
 上述した実施形態において、第2の負極活物質非被覆部221B及び第3の負極活物質非被覆部221Cが設けられる構成が好ましいが、これらが無いリチウムイオン電池に対しても本発明を適用することができる。
 上述した実施形態では、接合方法の一例として熱融着による方法を用いたが、これとは異なる溶着方法でもよいし、接着剤等による接着による接合であってもよい。
 上述した実施例及び比較例では、溝43の数を8としていたが、これ以外の数であってもよい。電池サイズを21700(直径21mm,高さ70mm)としていたが、18650(直径18mm,高さ65mm)やこれら以外のサイズであってもよい。
 実施形態に係る扇状部31,33の形状は、扇形の形状以外の形状であってもよい。
 本発明の趣旨を逸脱しない限り、本発明は、リチウムイオン電池以外の他の電池や、円筒形状以外の電池(例えば、ラミネート型電池、角型電池、コイン型電池、ボタン型電池)に適用することも可能である。この場合において、「電極巻回体の端面」の形状は、円筒形状のみならず、矩形、楕円形状や扁平形状なども採り得る。また、本発明は、電池の製造方法としても実現することができる。
<応用例>
(1)電池パック
 図13は、本発明の実施形態又は実施例に係る二次電池を電池パック300に適用した場合の回路構成例を示すブロック図である。電池パック300は、組電池301、充電制御スイッチ302aと、放電制御スイッチ303a、を備えるスイッチ部304、電流検出抵抗307、温度検出素子308、制御部310を備えている。制御部310は各デバイスの制御を行い、さらに異常発熱時に充放電制御を行ったり、電池パック300の残容量の算出や補正を行ったりすることが可能である。電池パック300の正極端子321及び負極端子322は、充電器や電子機器に接続され、充放電が行われる。
 組電池301は、複数の二次電池301aを直列及び/又は並列に接続してなる。図13では、6つの二次電池301aが、2並列3直列(2P3S)に接続された場合が例として示されている。二次電池301aに対して本発明の二次電池を適用可能である。
 温度検出部318は、温度検出素子308(例えばサーミスタ)と接続されており、組電池301又は電池パック300の温度を測定して、測定温度を制御部310に供給する。電圧検出部311は、組電池301及びそれを構成する各二次電池301aの電圧を測定し、この測定電圧をA/D変換して、制御部310に供給する。電流測定部313は、電流検出抵抗307を用いて電流を測定し、この測定電流を制御部310に供給する。
 スイッチ制御部314は、電圧検出部311及び電流測定部313から入力された電圧及び電流をもとに、スイッチ部304の充電制御スイッチ302a及び放電制御スイッチ303aを制御する。スイッチ制御部314は、二次電池301aが過充電検出電圧(例えば4.20V±0.05V)以上若しくは過放電検出電圧(2.4V±0.1V)以下になったときに、スイッチ部304にOFFの制御信号を送ることにより、過充電又は過放電を防止する。
 充電制御スイッチ302a又は放電制御スイッチ303aがOFFした後は、ダイオード302b又はダイオード303bを介することによってのみ、充電又は放電が可能となる。これらの充放電スイッチは、MOSFETなどの半導体スイッチを使用することができる。なお、図13では+側にスイッチ部304を設けているが、-側に設けても良い。
 メモリ317は、RAMやROMからなり、制御部310で演算された電池特性の値や、満充電容量、残容量などが記憶され、書き換えられる。
(2)電子機器
 上述した本発明の実施形態又は実施例に係る二次電池は、電子機器や電動輸送機器、蓄電装置などの機器に搭載され、電力を供給するために使用することができる。
 電子機器としては、例えばノート型パソコン、スマートフォン、タブレット端末、PDA(携帯情報端末)、携帯電話、ウェアラブル端末、デジタルスチルカメラ、電子書籍、音楽プレイヤー、ゲーム機、補聴器、電動工具、テレビ、照明機器、玩具、医療機器、ロボットが挙げられる。また、後述する電動輸送機器、蓄電装置、電動工具、電動式無人航空機等も、広義では電子機器に含まれ得る。
 電動輸送機器としては電気自動車(ハイブリッド自動車を含む。)、電動バイク、電動アシスト自転車、電動バス、電動カート、無人搬送車(AGV)、鉄道車両などが挙げられる。また、電動旅客航空機や輸送用の電動式無人航空機も含まれる。本発明に係る二次電池は、これらの駆動用電源のみならず、補助用電源、エネルギー回生用電源などとしても用いられる。
 蓄電装置としては、商業用又は家庭用の蓄電モジュールや、住宅、ビル、オフィスなどの建築物用又は発電設備用の電力貯蔵用電源などが挙げられる。
(3)電動工具
 図14を参照して、本発明が適用可能な電動工具として電動ドライバの例について概略的に説明する。電動ドライバ431には、シャフト434に回転動力を伝達するモータ433と、ユーザが操作するトリガースイッチ432が設けられている。電動ドライバ431の把手の下部筐体内に、電池パック430及びモータ制御部435が収納されている。電池パック430は、電動ドライバ431に対して内蔵されているか、又は着脱自在とされている。電池パック430を構成する電池に対して、本発明の二次電池を適用可能である。
 電池パック430及びモータ制御部435のそれぞれには、マイクロコンピュータ(図示せず)が備えられており、電池パック430の充放電情報が相互に通信できるようにしてもよい。モータ制御部435は、モータ433の動作を制御すると共に、過放電などの異常時にモータ433への電源供給を遮断することができる。
(4)電動車両用蓄電システム
 本発明を電動車両用の蓄電システムに適用した例として、図15に、シリーズハイブリッドシステムを採用したハイブリッド車両(HV)の構成例を概略的に示す。シリーズハイブリッドシステムはエンジンを動力とする発電機で発電された電力、あるいはそれをバッテリに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両600には、エンジン601、発電機602、電力駆動力変換装置(直流モータ又は交流モータ。以下単に「モータ603」という。)、駆動輪604a、駆動輪604b、車輪605a、車輪605b、バッテリ608、車両制御装置609、各種センサ610、充電口611が搭載されている。バッテリ608としては、本発明の二次電池、又は、本発明の二次電池を複数搭載した蓄電モジュールが適用され得る。
 バッテリ608の電力によってモータ603が作動し、モータ603の回転力が駆動輪604a、604bに伝達される。エンジン601によって産み出された回転力によって、発電機602で生成された電力をバッテリ608に蓄積することが可能である。各種センサ610は、車両制御装置609を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度を制御したりする。
 図示しない制動機構によりハイブリッド車両600が減速すると、その減速時の抵抗力がモータ603に回転力として加わり、この回転力によって生成された回生電力がバッテリ608に蓄積される。また、バッテリ608は、ハイブリッド車両600の充電口611を介して外部の電源に接続されることで充電することが可能である。このようなHV車両を、プラグインハイブリッド車(PHV又はPHEV)という。
 なお、本発明に係る二次電池を小型化された一次電池に応用して、車輪604、605に内蔵された空気圧センサシステム(TPMS: Tire Pressure Monitoring system)の電源として用いることも可能である。
 以上では、シリーズハイブリッド車を例として説明したが、エンジンとモータを併用するパラレル方式、又は、シリーズ方式とパラレル方式を組み合わせたハイブリッド車に対しても本発明は適用可能である。さらに、エンジンを用いない駆動モータのみで走行する電気自動車(EV又はBEV)や、燃料電池車(FCV)に対しても本発明は適用可能である。
1,1A・・・リチウムイオン電池、12・・・絶縁板、21・・・正極、21A・・・正極箔、21B・・・正極活物質層、21C・・・正極活物質非被覆部、22・・・負極、22A・・・負極箔、22B・・・負極活物質層、22C・・・負極活物質非被覆部、22D・・・最内周側負極、23,23A~23E・・・セパレータ、24・・・正極集電板、25・・・負極集電板、26・・・貫通孔、41、42・・・端面、43・・・溝、221A・・・第1の負極活物質非被覆部、221B・・・第2の負極活物質非被覆部、221C・・・第3の負極活物質非被覆部

Claims (8)

  1.  セパレータを介して帯状の正極と帯状の負極とが積層された電極巻回体と、正極集電板及び負極集電板とが、電池缶に収容された二次電池であって、
     前記正極は、帯状の正極箔上に、正極活物質層が被覆された正極活物質被覆部と、正極活物質非被覆部とを有し、
     前記負極は、帯状の負極箔上に、負極活物質層が被覆された負極活物質被覆部と、少なくとも前記負極箔の長手方向に延在する負極活物質非被覆部とを有し、
     前記正極活物質非被覆部は、前記電極巻回体の端部の一方において、前記正極集電板と接合され、
     前記負極活物質非被覆部は、前記電極巻回体の端部の他方において、前記負極集電板と接合され、
     前記電極巻回体は、前記正極活物質非被覆部及び前記負極活物質非被覆部の何れか一方又は両方が、前記巻回された構造の中心軸に向かって曲折し、重なり合うことによって形成された平坦面と、前記平坦面に形成された溝とを有し、
     前記電極巻回体の少なくとも正極側を、前記中心軸を含む平面で切断した断面を断面視した場合に、前記負極のうち最内周側に位置する最内周側負極の少なくとも両側に位置する前記セパレータの端部同士が、互いに接合している
     二次電池。
  2.  前記電極巻回体は、前記最内周側負極の内側に、前記接合されるセパレータを含む複数層のセパレータを有し、
     前記最内周側負極の外側に位置するセパレータの端部と、前記複数層のセパレータの端部とが接合されている
     請求項1に記載の二次電池。
  3.  前記電極巻回体の負極側を前記断面で断面視した場合に、
     前記最内周側負極の内側に位置する前記複数層のセパレータの端部同士が、互いに接合している
     請求項2に記載の二次電池。
  4.  前記最内周側負極の外側に位置するセパレータと前記複数層のセパレータとが接合されていない
     請求項3に記載の二次電池。
  5.  前記接合は、溶着による接合または接着による接合である
     請求項1から4までの何れかに記載の二次電池。
  6.  前記負極は、更に、長手方向の巻回開始側及び巻回終止側のそれぞれの端部に、負極活物質非被覆部を有する
     請求項1から5までの何れかに記載の二次電池。
  7.  請求項1から6までの何れかに記載の二次電池を有する電子機器。
  8.  請求項1から6までの何れかに記載の二次電池を有する電動工具。
PCT/JP2022/001900 2021-01-26 2022-01-20 二次電池、電子機器及び電動工具 WO2022163480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578298A JPWO2022163480A1 (ja) 2021-01-26 2022-01-20
CN202280008949.9A CN116745950A (zh) 2021-01-26 2022-01-20 二次电池、电子设备以及电动工具
US18/211,955 US20230335863A1 (en) 2021-01-26 2023-06-20 Secondary battery, electronic equipment, and electric tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021010583 2021-01-26
JP2021-010583 2021-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/211,955 Continuation US20230335863A1 (en) 2021-01-26 2023-06-20 Secondary battery, electronic equipment, and electric tool

Publications (1)

Publication Number Publication Date
WO2022163480A1 true WO2022163480A1 (ja) 2022-08-04

Family

ID=82654462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001900 WO2022163480A1 (ja) 2021-01-26 2022-01-20 二次電池、電子機器及び電動工具

Country Status (4)

Country Link
US (1) US20230335863A1 (ja)
JP (1) JPWO2022163480A1 (ja)
CN (1) CN116745950A (ja)
WO (1) WO2022163480A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335156A (ja) * 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2012009249A (ja) * 2010-06-24 2012-01-12 Toyota Motor Corp 電池
WO2021177149A1 (ja) * 2020-03-06 2021-09-10 株式会社村田製作所 二次電池、電子機器及び電動工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335156A (ja) * 2006-06-13 2007-12-27 Honda Motor Co Ltd 蓄電素子
JP2012009249A (ja) * 2010-06-24 2012-01-12 Toyota Motor Corp 電池
WO2021177149A1 (ja) * 2020-03-06 2021-09-10 株式会社村田製作所 二次電池、電子機器及び電動工具

Also Published As

Publication number Publication date
US20230335863A1 (en) 2023-10-19
JPWO2022163480A1 (ja) 2022-08-04
CN116745950A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP7251686B2 (ja) 二次電池、電子機器及び電動工具
JP7428235B2 (ja) 二次電池、電子機器及び電動工具
US20220149490A1 (en) Secondary battery, battery pack, electronic device, electric tool, and electric vehicle
WO2022168623A1 (ja) 二次電池、電子機器及び電動工具
US20220393253A1 (en) Secondary battery, electronic device, and power tool
US20220367917A1 (en) Secondary battery, electronic device, and power tool
US20220344724A1 (en) Secondary battery, electronic device, and power tool
US20220367882A1 (en) Secondary battery, electronic device, and power tool
WO2022163480A1 (ja) 二次電池、電子機器及び電動工具
WO2022163049A1 (ja) 二次電池、電子機器及び電動工具
JP7409398B2 (ja) 二次電池、電子機器及び電動工具
WO2022168622A1 (ja) 二次電池、電子機器及び電動工具
JP7371701B2 (ja) 二次電池、電子機器及び電動工具
WO2022153647A1 (ja) 二次電池、電子機器及び電動工具
JP7290173B2 (ja) 二次電池、二次電池の製造方法、電子機器、電動工具
WO2022163479A1 (ja) 二次電池、電子機器及び電動工具
WO2022054642A1 (ja) 二次電池、電子機器及び電動工具
WO2022163482A1 (ja) 二次電池、電子機器及び電動工具
WO2022085561A1 (ja) 二次電池、電子機器及び電動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280008949.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745701

Country of ref document: EP

Kind code of ref document: A1