CN115044207B - 一种三维立体树脂基碳纤维复合材料及其制备方法 - Google Patents

一种三维立体树脂基碳纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN115044207B
CN115044207B CN202210931905.5A CN202210931905A CN115044207B CN 115044207 B CN115044207 B CN 115044207B CN 202210931905 A CN202210931905 A CN 202210931905A CN 115044207 B CN115044207 B CN 115044207B
Authority
CN
China
Prior art keywords
dimensional
carbon fiber
composite material
resin
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210931905.5A
Other languages
English (en)
Other versions
CN115044207A (zh
Inventor
徐同乐
李雄
丁鹏
施利毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202210931905.5A priority Critical patent/CN115044207B/zh
Publication of CN115044207A publication Critical patent/CN115044207A/zh
Application granted granted Critical
Publication of CN115044207B publication Critical patent/CN115044207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种三维立体树脂基碳纤维复合材料及其制备方法,该方法包括如下步骤:S1、制备改性碳纤维;S2、制备三维立体碳纤维多尺度增强体;S3、将所述步骤S2中的三维立体碳纤维多尺度增强体浸入热塑性树脂,在微米级多尺度下、XYZ三维方向上均形成连续微观网络结构、且以Z方向为主延伸的微观网络结构,得到高导热、强电磁屏蔽的三维立体树脂基碳纤维复合材料。本发明的制备方法及复合材料,通过三维网络的预先构筑,有利于增大填料间的接触面积,降低填料之间的界面热阻,由此使制备的复合材料具有高导热性能和强电磁屏蔽、力学性能性能。

Description

一种三维立体树脂基碳纤维复合材料及其制备方法
技术领域
本发明涉及功能材料技术领域,具体涉及一种高导热、强电磁屏蔽三维立体树脂基碳纤维复合材料及其制备方法。尤其涉及一种三维立体碳纤维多尺度增强体及其复合材料的制备方法。
背景技术
随着通讯、电子行业的发展,特别是5G技术的兴起,移动设备、通讯基站功率日益增加,设备元器件散热问题变得日益重要。因此通讯、电子行业对高导热散热材料的需求日益增加,与传统的笨重的金属散热器相比,导热高分子材料有轻质、易加工、可再生等优点,因此新一代热塑性导热高分子复合材料有望取代金属成为散热器材料的主体。
碳纤维增强树脂基复合材料(CFRP)是以碳纤维为增强体、树脂为基体的一种复合材料,基体通常为热固性树脂或热塑性树脂。CFRP复合材料由于其比强度高、比刚度高、耐腐蚀性能好等优良性能,在航空航天、运动器材、风力发电等领域具有广泛的工程应用并稳步增长。
由于碳纤维因其聚丙烯腈原丝在制备过程中经历了高温碳化、石墨化的处理过程,导致碳纤维表面光滑且缺少活性官能团,与树脂基体形成的界面层较弱,使其复合材料的一些主要力学性能(韧性、纵向及切向强度)受到极大的限制,并且使复合材料中树脂与纤维之间的界面热阻很大,使得复合材料的导热性能降低,因此碳纤维与基体之间的界面性能很大程度上决定了碳纤维树脂基复合材料的力学性能、导热性能。
连续通路有助于提高复合材料的导热、导电及电磁屏蔽性能,然而传统的碳纤维高分子复合材料的制备过程中,碳纤维高分子复合材料大多是用碳纤维预浸料层层堆叠制成,Z轴方向尚未形成连续的通路,导致复合材料内部界面热阻较大,导电网络构建不通畅,复合材料综合性能提升局限。
发明内容
针对上述不足,本发明旨在提供一种三维立体树脂基碳纤维复合材料及其制备方法,通过XYZ三个方向的微观通路网络结构的构筑,使三维立体碳纤维多尺度增强体具有较好的力学性能和三维连续性,经过表面改性处理后增加树脂和基体间的界面结合,降低界面热阻,三维立体碳纤维多尺度增强体与树脂基体有良好的界面相容性,使制得的树脂基碳纤维复合材料不仅具有显著提高的导热性能,兼具有优异的导热、电磁屏蔽性能和力学性能。
本发明为达到上述目的所采用的技术方案是:
一种三维立体树脂基碳纤维复合材料的制备方法,其特征在于,包括以下步骤:
步骤S1、制备改性碳纤维:
A. 将功能填料稀土氧化物、石墨烯粉末和二胺单体按配比均匀分散于非质子极性溶剂并充分超声搅拌,得到分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成分散液b,将连续碳纤维浸渍于分散液b中,经低温原位聚合,使功能填料在碳纤维表面均匀分散,即可制备改性碳纤维;
步骤S2、制备三维立体碳纤维多尺度增强体:
采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后多次浸渍氧化石墨烯分散液,经干燥和高温碳化后,使改性碳纤维中的碳纤维骨架与功能填料,在微米级尺度下进行三维网络的预先构筑,在Z轴方向上也形成连续的通路,得到三维立体碳纤维多尺度增强体;
步骤S3、制备三维立体树脂基碳纤维复合材料
将步骤S2所述的三维立体碳纤维多尺度增强体浸入热塑性树脂,使三维立体碳纤维多尺度增强体与热塑性树脂,进一步在微米级多尺度下、XYZ三维方向上均形成连续微观网络结构、且以Z方向为主延伸的微观网络结构,碳纤维骨架、功能填料与热塑性树脂在制备过程中构筑形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,降低填料之间的界面热阻,制备得到可同时兼顾高导热、强电磁屏蔽及力学性能的三维立体树脂基碳纤维复合材料。
所述步骤S1中所述的稀土氧化物为氧化镧或氧化铈;所述的二胺单体为聚酰亚胺二胺单体;所述的非质子极性溶剂主要为二甲亚砜、N,N-二甲基甲酰胺、丙酮、1,3-二甲基-2-咪唑啉酮中的一种;所述的稀土氧化物、石墨烯粉末和二胺单体质量配比为1:0.5~10:1~50;所述的分散液a浓度为1g/40mL;所述的分散液b浓度为1g/50mL~1g/100mL;步骤S2所述的浸渍时间为1~60s;所述的低温温度范围为-15℃~45℃;所述的多次具体为1~100次;所述的氧化石墨烯分散液浓度为0.1~50mg/mL;所述的高温碳化温度为400~1500℃。
所述复合材料中热塑性树脂和三维立体碳纤维多尺度增强体重量占比分别为80~95%和5~20%。
所述低温原位聚合工艺主要是指先经过化学亚胺化后水相沉积后再经过热亚胺化处理,在碳纤维表面生成过渡层。
所述步骤S3中所述热塑性树脂包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合。
前述方法制备的三维立体树脂基碳纤维复合材料,其特征在于,其包括由功能填料稀土氧化物、石墨烯粉末和二胺单体制成的改性碳纤维,与三维立体碳纤维多尺度增强体及热塑性树脂基体三部分,且三部分在微米级多尺度下,XYZ三维方向上均构筑形成功能填料在碳纤维表面均匀分散的连续微观网络结构、且以Z方向为主延伸的微观网络结构,其中的碳纤维骨架、功能填料与热塑性树脂在制备过程中形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,增加热塑性树脂和基体间的界面结合,降低填料之间的界面热阻,三维立体碳纤维多尺度增强体与树脂基体有良好的界面相容性,同时具备高导热、强电磁屏蔽性能及力学性能。
所述复合材料内部构筑的三维碳网络呈现一维纤维与二维片层搭接的多孔结构,纤维间距为 30 μm~50 μm。纤维束间相互搭接,并且有氧化石墨烯的富集,高温处理尚未对rGO 片层和碳纤维表面造成破坏;由碳纤维与氧化石墨烯构筑的三维立体碳纤维多尺度增强体具有良好的三维立体结构,不易垮塌,具有良好的力学性能,为后续树脂的灌注提供了良好的骨架基础。
在所述复合材料内部构筑的三维碳网络的间隙被高分子基体填充,两相界面浸润良好,没有明显的空洞和孔隙存在;PGC-R 复合材料截面纤维呈轴向排列,导热填料均匀分散没有出现明显的团聚现象。复合材料的三维网络定向排列,微观形貌分析结果说明三维网络在制备复合材料的过程中尚未出现坍塌与变形,预先构筑的长程有序的导热通路完整保留在聚合物基体内部,有利于提升复合材料的综合性能。
在所述复合材料内部构筑的三维导热通路的立体结构中,GO 和 CFs在树脂基体中呈现有序分布的状态,填料与填料间形成有效接触,在Z轴方向形成连续的通路,实现三维网络的预先构筑,使Z轴方向上的导电网络构建均通畅,界面接触热阻较小,声子传递过程中不易发生填料界面处散射现象。
本发明提供的三维立体树脂基碳纤维复合材料及其制备方法,其有益效果为:
1、本发明通过制备工艺与组分、配比、原材料结构之间的协同,预先构筑三维网络,在高分子基体中构筑有效的声子传输路径,增大填料间的界面接触面积,形成有效的导热通路,从而提升复合材料的导热性能。
2、本发明具体采用原位聚合工艺对碳纤维进行表面修饰,实现功能填料在碳纤维表面的均匀分散;采用针刺、液相涂覆及溶液灌注工艺制备三维立体碳纤维多尺度增强体及其复合材料,在Z轴方向形成连续的通路,实现了内部微观三维网络的预先构筑,使Z轴方向上的导电网络构建均通畅,有利于增大填料间的接触面积,降低填料之间的界面热阻,由此制备的复合材料兼具有良好的导热性能和优异的电磁屏蔽性能。
上述是发明技术方案的概述,以下结合具体实施方式,对本发明做进一步说明。
附图说明:
图1为本发明三维立体树脂基碳纤维增强体及其复合材料的SEM图片;
其中:图1(a)为改性碳纤维的SEM图片;
图1(b)为三维立体碳纤维多尺度增强体的SEM图片;
图1(c)为三维立体树脂基碳纤维复合材料的SEM图片;
图2为本发明实施例复合材料三维导热通路的立体结构示意图。
具体实施方式
为更进一步阐述本发明为达到预定目的所采取的技术手段及功效,以下结合较佳实施例,对本发明的具体实施方式详细说明。
本发明提供的三维立体树脂基碳纤维复合材料的制备方法,包括以下步骤:
步骤S1、制备改性碳纤维:
A. 将功能填料稀土氧化物、石墨烯粉末和二胺单体按配比均匀分散于非质子极性溶剂并充分超声搅拌,得到分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成分散液b,将连续碳纤维浸渍于分散液b中,经低温原位聚合,使功能填料在碳纤维表面均匀分散,即可制备改性碳纤维;
步骤S2、制备三维立体碳纤维多尺度增强体:
采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后多次浸渍氧化石墨烯分散液,经干燥和高温碳化后,使改性碳纤维中的碳纤维骨架与功能填料,在微米级尺度下进行三维网络的预先构筑,在Z轴方向上也形成连续的通路,得到三维立体碳纤维多尺度增强体;
步骤S3、制备三维立体树脂基碳纤维复合材料
将步骤S2所述的三维立体碳纤维多尺度增强体浸入热塑性树脂,使三维立体碳纤维多尺度增强体与热塑性树脂,进一步在微米级多尺度下、XYZ三维方向上均形成连续微观网络结构、且以Z方向为主延伸的微观网络结构,碳纤维骨架、功能填料与热塑性树脂在制备过程中构筑形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,降低填料之间的界面热阻,制备得到可同时兼顾高导热、强电磁屏蔽及力学性能的三维立体树脂基碳纤维复合材料。
所述步骤S1中所述的稀土氧化物为氧化镧或氧化铈;所述的二胺单体为聚酰亚胺二胺单体;所述的非质子极性溶剂主要为二甲亚砜、N,N-二甲基甲酰胺、丙酮、1,3-二甲基-2-咪唑啉酮中的一种;所述的稀土氧化物、石墨烯粉末和二胺单体质量配比为1:0.5~10:1~50;所述的分散液a浓度为1g/40mL;所述的分散液b浓度为1g/50mL~1g/100mL;步骤S2所述的浸渍时间为1~60s;所述的低温温度范围为-15℃~45℃;所述的多次具体为1~100次;所述的氧化石墨烯分散液浓度为0.1~50mg/mL;所述的高温碳化温度为400~1500℃。
所述复合材料中热塑性树脂和三维立体碳纤维多尺度增强体重量占比分别为80~95%和5~20%。
所述低温原位聚合工艺主要是指先经过化学亚胺化后水相沉积后再经过热亚胺化处理,在碳纤维表面生成过渡层。
所述步骤S3中所述热塑性树脂包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合。
采用前述方法制备的三维立体树脂基碳纤维复合材料,其包括由功能填料稀土氧化物、石墨烯粉末和二胺单体制成的改性碳纤维,与三维立体碳纤维多尺度增强体及热塑性树脂基体三部分,且三部分在微米级多尺度下,XYZ三维方向上均构筑形成功能填料在碳纤维表面均匀分散的连续微观网络结构、且以Z方向为主延伸的微观网络结构,其中的碳纤维骨架、功能填料与热塑性树脂在制备过程中形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,增加热塑性树脂和基体间的界面结合,降低填料之间的界面热阻,三维立体碳纤维多尺度增强体与树脂基体有良好的界面相容性,同时具备高导热、强电磁屏蔽性能及力学性能。
所述复合材料内部构筑的三维碳网络呈现一维纤维与二维片层搭接的多孔结构,纤维间距为 30μm~50μm;纤维束间相互搭接,并且有氧化石墨烯的富集,高温处理尚未对rGO 片层和碳纤维表面造成破坏;由碳纤维与氧化石墨烯构筑的三维立体碳纤维多尺度增强体具有良好的三维立体结构,不易垮塌,具有良好的力学性能,为后续树脂的灌注提供了良好的骨架基础。
所述复合材料内部构筑的三维碳网络的间隙被高分子基体填充,两相界面浸润良好,没有明显的空洞和孔隙存在;PGC-R 复合材料截面纤维呈轴向排列,导热填料均匀分散没有出现明显的团聚现象;所述复合材料的三维网络定向排列,微观形貌分析结果说明三维网络在制备复合材料的过程中尚未出现坍塌与变形,预先构筑的长程有序的导热通路完整保留在聚合物基体内部,有利于提升复合材料的综合性能。
在所述复合材料内部构筑的三维导热通路的立体结构中,GO 和 CFs在树脂基体中呈现有序分布的状态,填料与填料间形成有效接触,在Z轴方向形成连续的通路,实现三维网络的预先构筑,使Z轴方向上的导电网络构建均通畅,界面接触热阻较小,声子传递过程中不易发生填料界面处散射现象。
以下通过四个具体实施例加以详细说明。
实施例1
参见附图1-2,本发明实施例提供的高导热、强电磁屏蔽三维立体树脂基碳纤维复合材料及其制备方法,其包括以下步骤:
S1.制备改性碳纤维
A. 将氧化铈、石墨烯粉末和聚酰亚胺二胺单体按质量配比1:0.5:1均匀分散于二甲亚砜溶剂中并充分超声搅拌,得到浓度为1g/40mL分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成浓度为1g/50mL的分散液b,将连续碳纤维浸渍于分散液b中1s,经-15℃低温原位聚合8h即可制备改性碳纤维;
S2.制备三维立体碳纤维多尺度增强体:
 采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后浸渍浓度为0.1mg/mL的氧化石墨烯分散液1次,经干燥和400℃高温碳化后即可制备三维立体碳纤维多尺度增强体;
S3. 制备三维立体树脂基碳纤维复合材料
将步骤S2制备的三维立体碳纤维多尺度增强体浸入聚酰亚胺溶液得到聚酰亚胺基碳纤维复合材料,三维立体碳纤维多尺度增强体质量占比5%,聚酰亚胺基体质量占比95%。
图1(a)为改性碳纤维的SEM图片;由图1(a)可以看出:碳纤维表面富集薄片,良好的界面修饰可显著增加碳纤维的表面粗糙度,提升界面相容性和纤维本征性能。
图1(b)为三维立体碳纤维多尺度增强体的SEM图片;由图1(b)可以看出:三维碳网络呈现一维纤维与二维片层搭接的多孔结构,纤维间距为 30 μm~50 μm。纤维束间相互搭接,并且有氧化石墨烯的富集,高温处理尚未对 rGO 片层和碳纤维表面造成破坏。由碳纤维与氧化石墨烯构筑的三维立体碳纤维多尺度增强体具有良好的三维立体结构,不易垮塌,具有良好的力学性能,为后续树脂的灌注提供了良好的骨架基础。
图1(c)为三维立体树脂基碳纤维复合材料的SEM图片;由图1(c)可以看出:。复合材料中三维碳网络的间隙被高分子基体填充,两相界面浸润良好,没有明显的空洞和孔隙存在。如图所示,PGC-R 复合材料截面纤维呈轴向排列,导热填料均匀分散没有出现明显的团聚现象。复合材料的三维网络定向排列,微观形貌分析结果说明三维网络在制备复合材料的过程中尚未出现坍塌与变形,预先构筑的长程有序的导热通路完整保留在聚合物基体内部,有利于提升复合材料的综合性能。
图2为本发明实施例复合材料三维导热通路的立体结构示意图。由图2可以看出:GO 和 CFs在 树脂基体中呈现有序分布的状态,填料与填料间形成有效接触,在Z轴方向形成连续的通路,实现了三维网络的预先构筑,使Z轴方向上的导电网络构建均通畅,界面接触热阻较小,声子传递过程中不易发生填料界面处散射现象。
本发明实施例通过制备工艺与组分、配比、结构的协同,预先构筑三维网络,在高分子基体中构筑有效的声子传输路径,增大填料间的界面接触面积,形成有效的导热通路,从而提升复合材料的导热性能。
实施例2
本发明提供的高导热、强电磁屏蔽三维立体树脂基碳纤维复合材料及其制备方法,与实施例1基本上相同,其不同之处在于,包括以下步骤:
S1制备改性碳纤维
A. 将氧化铈、石墨烯粉末和聚酰亚胺二胺单体按质量配比1:5:20均匀分散于N,N-二甲基甲酰胺溶剂中并充分超声搅拌,得到浓度为1g/40mL分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成浓度为1g/60mL的分散液b,将连续碳纤维浸渍于分散液b中15s,经10℃低温原位聚合12h即可制备改性碳纤维;
S2 采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后浸渍浓度为20mg/mL的氧化石墨烯分散液20次,经干燥和800℃高温碳化后即可制备三维立体碳纤维多尺度增强体;
S3 将步骤S2制备的三维立体碳纤维多尺度增强体浸入聚酰胺溶液得到聚酰胺基碳纤维复合材料,三维立体碳纤维多尺度增强体质量占比10%,聚酰胺基体质量占比90%。
实施例3
本发明提供的高导热、强电磁屏蔽三维立体树脂基碳纤维复合材料及其制备方法,与实施例1-2均基本上相同,其不同之处在于,包括以下步骤:
S1制备改性碳纤维
A. 将氧化镧、石墨烯粉末和聚酰亚胺二胺单体按质量配比1:8:45均匀分散于1,3-二甲基-2-咪唑啉酮溶剂中并充分超声搅拌,得到浓度为1g/40mL分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成浓度为1g/80mL的分散液b,将连续碳纤维浸渍于分散液b中50s,经30℃低温原位聚合20h即可制备改性碳纤维;
S2 采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后浸渍浓度为40mg/mL的氧化石墨烯分散液80次,经干燥和1200℃高温碳化后即可制备三维立体碳纤维多尺度增强体;
S3将步骤S2制备的三维立体碳纤维多尺度增强体浸入聚苯硫醚溶液得到聚苯硫醚基碳纤维复合材料,三维立体碳纤维多尺度增强体质量占比17%,聚苯硫醚基体质量占比83%。
实施例4
本发明提供的高导热、强电磁屏蔽三维立体树脂基碳纤维复合材料及其制备方法,与实施例1-3均基本上相同,其不同之处在于,包括以下步骤:
S1制备改性碳纤维
A. 将氧化镧、石墨烯粉末和聚酰亚胺二胺单体按质量配比1:10:50均匀分散于N,N-二甲基甲酰胺溶剂中并充分超声搅拌,得到浓度为1g/40mL分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成浓度为1g/100mL的分散液b,将连续碳纤维浸渍于分散液b中60s,经45℃低温原位聚合24h即可制备改性碳纤维;
S2采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后浸渍浓度为50mg/mL的氧化石墨烯分散液100次,经干燥和1500℃高温碳化后即可制备三维立体碳纤维多尺度增强体;
S3将步骤S2制备的三维立体碳纤维多尺度增强体浸入聚酰胺-酰亚胺溶液得到聚酰亚胺基碳纤维复合材料,三维立体碳纤维多尺度增强体质量占比20%,聚酰胺-酰亚胺基体质量占比80%。
应用实施例1
对实施例1~4所制得三维立体树脂基碳纤维复合材料的导热性能、弯曲强度和电磁屏蔽性能进行测试,结果如下表所示。
由上表可知,本发明实施例1~4所制得的三维立体树脂基碳纤维复合材料,具本发明的制备方法及复合材料,通过微观三维网络的预先构筑,有利于增大填料间的接触面积,降低填料之间的界面热阻,由此使制备的复合材料具有高导热性能和强电磁屏蔽、力学性能性能。
此外,在本发明上述记载的范围内,选择其他的制备工艺、组分及其配比而得到的其他实施方案,均可以达到本发明记载的技术效果,故不再将其一一列出。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故采用与本发明上述实施例相同或近似的技术特征,均在本发明的保护范围之内。

Claims (7)

1.一种三维立体树脂基碳纤维复合材料的制备方法,其特征在于,包括以下步骤:
步骤S1、制备改性碳纤维:
A. 将功能填料稀土氧化物、石墨烯粉末和二胺单体按配比均匀分散于非质子极性溶剂并充分超声搅拌,得到分散液a;
B. 超声搅拌条件下,将1,2,4-偏苯三酸酐酰氯缓慢滴加至分散液a中,形成分散液b,将连续碳纤维浸渍于分散液b中,经低温原位聚合,使功能填料在碳纤维表面均匀分散,即可制备改性碳纤维;
步骤S2、制备三维立体碳纤维多尺度增强体:
采用三维针刺工艺将改性碳纤维制成三维立体碳纤维针刺毡后多次浸渍氧化石墨烯分散液,经干燥和高温碳化后,使改性碳纤维中的碳纤维骨架与功能填料,在微米级尺度下进行三维网络的预先构筑,在Z轴方向上也形成连续的通路,得到三维立体碳纤维多尺度增强体;
步骤S3、制备三维立体树脂基碳纤维复合材料
将步骤S2所述的三维立体碳纤维多尺度增强体浸入热塑性树脂,使三维立体碳纤维多尺度增强体与热塑性树脂,进一步在微米级多尺度下、XYZ三维方向上均形成连续微观网络结构、且以Z方向为主延伸的微观网络结构,碳纤维骨架、功能填料与热塑性树脂在制备过程中构筑形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,降低填料之间的界面热阻,制备得到可同时兼顾高导热、强电磁屏蔽及力学性能的三维立体树脂基碳纤维复合材料;
所述步骤S1中所述的稀土氧化物为氧化镧或氧化铈;所述的二胺单体为聚酰亚胺二胺单体;所述的非质子极性溶剂主要为二甲亚砜、N,N-二甲基甲酰胺、丙酮、1,3-二甲基-2-咪唑啉酮中的一种;所述的稀土氧化物、石墨烯粉末和二胺单体质量配比为1:0.5~10:1~50;所述的分散液a浓度为1g/40mL;所述的分散液b浓度为1g/50mL~1g/100mL;步骤S2所述的浸渍时间为1~60s;所述的低温温度范围为-15℃~45℃;所述的多次具体为1~100次;所述的氧化石墨烯分散液浓度为0.1~50mg/mL;所述的高温碳化温度为400~1500℃;
所述复合材料中热塑性树脂和三维立体碳纤维多尺度增强体重量占比分别为80~95%和5~20%。
2.如权利要求1所述的制备方法,其特征在于,所述低温原位聚合工艺主要是指先经过化学亚胺化后水相沉积后再经过热亚胺化处理,在碳纤维表面生成过渡层。
3.如权利要求1所述的制备方法,其特征在于,所述步骤S3中所述热塑性树脂包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚甲醛、聚苯硫醚、聚醚砜和聚醚醚酮中的一种或者几种的组合。
4.如权利要求1-3任一项所述方法制备的三维立体树脂基碳纤维复合材料,其特征在于,其包括由功能填料稀土氧化物、石墨烯粉末和二胺单体制成的改性碳纤维,与三维立体碳纤维多尺度增强体及热塑性树脂基体三部分,且三部分在微米级多尺度下,XYZ三维方向上均构筑形成功能填料在碳纤维表面均匀分散的连续微观网络结构、且以Z方向为主延伸的微观网络结构,其中的碳纤维骨架、功能填料与热塑性树脂在制备过程中形成并且最终固化其三维导热、导电网络通路,增大填料间的接触面积,增加热塑性树脂和基体间的界面结合,降低填料之间的界面热阻,三维立体碳纤维多尺度增强体与树脂基体有良好的界面相容性,同时具备高导热、强电磁屏蔽性能及力学性能。
5. 如权利要求4所述的三维立体树脂基碳纤维复合材料,其特征在于,所述复合材料内部构筑的三维碳网络呈现一维纤维与二维片层搭接的多孔结构,纤维间距为 30μm~50μm;纤维束间相互搭接,并且有氧化石墨烯的富集,高温处理尚未对 rGO 片层和碳纤维表面造成破坏;由碳纤维与氧化石墨烯构筑的三维立体碳纤维多尺度增强体具有良好的三维立体结构,不易垮塌,具有良好的力学性能,为后续树脂的灌注提供了良好的骨架基础。
6.如权利要求4所述的三维立体树脂基碳纤维复合材料,其特征在于,所述复合材料内部构筑的三维碳网络的间隙被高分子基体填充,两相界面浸润良好,没有明显的空洞和孔隙存在;所述的PGC-R三维立体树脂基碳纤维复合材料截面纤维呈轴向排列,导热填料均匀分散没有出现明显的团聚现象;所述复合材料的三维网络定向排列,微观形貌分析结果说明三维网络在制备复合材料的过程中尚未出现坍塌与变形,预先构筑的长程有序的导热通路完整保留在聚合物基体内部,有利于提升复合材料的综合性能。
7. 如权利要求4所述的三维立体树脂基碳纤维复合材料,其特征在于,在所述复合材料内部构筑的三维导热通路的立体结构中,rGO 和 CFs在树脂基体中呈现有序分布的状态,填料与填料间形成有效接触,在Z轴方向形成连续的通路,实现三维网络的预先构筑,使Z轴方向上的导电网络构建均通畅,界面接触热阻较小,声子传递过程中不易发生填料界面处散射现象。
CN202210931905.5A 2022-08-04 2022-08-04 一种三维立体树脂基碳纤维复合材料及其制备方法 Active CN115044207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210931905.5A CN115044207B (zh) 2022-08-04 2022-08-04 一种三维立体树脂基碳纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210931905.5A CN115044207B (zh) 2022-08-04 2022-08-04 一种三维立体树脂基碳纤维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115044207A CN115044207A (zh) 2022-09-13
CN115044207B true CN115044207B (zh) 2023-04-18

Family

ID=83167969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210931905.5A Active CN115044207B (zh) 2022-08-04 2022-08-04 一种三维立体树脂基碳纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115044207B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230956A (en) * 1982-05-28 1993-07-27 Amoco Corporation Polyamide-imide sized fibers
JP2008214543A (ja) * 2007-03-06 2008-09-18 Teijin Ltd 炭素繊維複合材及びその製造方法
JP2008248457A (ja) * 2007-03-30 2008-10-16 Nano Carbon Technologies Kk 炭素繊維複合体および炭素繊維複合体の製造方法
WO2012023672A1 (ko) * 2010-08-20 2012-02-23 제일모직 주식회사 고강성 전자파 차폐 복합재
CN112480604A (zh) * 2020-11-17 2021-03-12 中国科学院金属研究所 一种具有叠层混杂结构的高导热碳纤维复合材料及其制备方法
CN113337956A (zh) * 2021-05-18 2021-09-03 南方科技大学 三维高导热聚合物基复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230956A (en) * 1982-05-28 1993-07-27 Amoco Corporation Polyamide-imide sized fibers
JP2008214543A (ja) * 2007-03-06 2008-09-18 Teijin Ltd 炭素繊維複合材及びその製造方法
JP2008248457A (ja) * 2007-03-30 2008-10-16 Nano Carbon Technologies Kk 炭素繊維複合体および炭素繊維複合体の製造方法
WO2012023672A1 (ko) * 2010-08-20 2012-02-23 제일모직 주식회사 고강성 전자파 차폐 복합재
CN112480604A (zh) * 2020-11-17 2021-03-12 中国科学院金属研究所 一种具有叠层混杂结构的高导热碳纤维复合材料及其制备方法
CN113337956A (zh) * 2021-05-18 2021-09-03 南方科技大学 三维高导热聚合物基复合材料及其制备方法

Also Published As

Publication number Publication date
CN115044207A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Song et al. A wearable microwave absorption cloth
CN109956466B (zh) 一种兼具面内方向和厚度方向高热导率的石墨烯基复合膜及其制备方法
CN112480604B (zh) 一种具有叠层混杂结构的高导热碳纤维复合材料及其制备方法
CN101531804B (zh) 三维编织镀镍碳纤维与环氧树脂电磁屏蔽复合材料及制备方法
CN110228248A (zh) 一种高导热各向异性聚合物基复合材料及其制备方法
Lee et al. Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates
Chen et al. State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source
Sun et al. Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking
CN111424421B (zh) 一种碳纤维复合毡及其增强聚合物复合材料导热导电性能的方法
CN111978732A (zh) 一种三维导热网络结构的热界面材料
Zhang et al. Ti3C2T x MXene Nanosheets Sandwiched between Ag Nanowire-Polyimide Fiber Mats for Electromagnetic Interference Shielding
CN111979609A (zh) 一种大直径石墨烯纤维的制备方法
CN110591330A (zh) 复合纤维材料及其制备方法和应用
CN110534766A (zh) 一种树脂膜法制备燃料电池双极板的材料
CN115044207B (zh) 一种三维立体树脂基碳纤维复合材料及其制备方法
Wang et al. Tuning lightweight, flexible, self-cleaning bio-inspired core–shell structure of nanofiber films for high-performance electromagnetic interference shielding
Liu et al. Lightweight sandwich fiber-welded foam-like nonwoven fabrics/graphene composites for electromagnetic shielding
Sun et al. Fabrication of high thermal and electrical conductivity composites via electroplating Cu network on 3D PEEK/CF felt skeletons
Zhang et al. Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects
CN111777776B (zh) 一种织物增强的导热填料-可溶聚合物导热复合材料及其制备方法
Luo et al. High‐performance, multifunctional, and designable carbon fiber felt skeleton epoxy resin composites EP/CF‐(CNT/AgBNs) x for thermal conductivity and electromagnetic interference shielding
Zou et al. Extreme environment-bearable polyimide film with a three-dimensional Ag microfiber conductive network for ultrahigh electromagnetic interference shielding
CN110437589A (zh) 一种用于燃料电池双极板的碳纤维复合材料及其制备方法
CN110452494B (zh) 一种复合导热材料及其制备方法
Li et al. Insight into lightweight MXene/Polyimide aerogel with high-efficient microwave absorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant