CN115011573A - 一种醇脱氢酶突变体及其应用 - Google Patents

一种醇脱氢酶突变体及其应用 Download PDF

Info

Publication number
CN115011573A
CN115011573A CN202210677668.4A CN202210677668A CN115011573A CN 115011573 A CN115011573 A CN 115011573A CN 202210677668 A CN202210677668 A CN 202210677668A CN 115011573 A CN115011573 A CN 115011573A
Authority
CN
China
Prior art keywords
ala
gly
val
leu
alcohol dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210677668.4A
Other languages
English (en)
Other versions
CN115011573B (zh
Inventor
林建平
李洁翔
朱力
吴绵斌
杨立荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210677668.4A priority Critical patent/CN115011573B/zh
Publication of CN115011573A publication Critical patent/CN115011573A/zh
Application granted granted Critical
Publication of CN115011573B publication Critical patent/CN115011573B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种醇脱氢酶突变体及其应用,属于基因工程与酶工程技术领域,特别是生物催化不对称合成手性中间体的技术领域。醇脱氢酶突变体具有如SEQ ID NO.2‑SEQ ID NO.6任一所示的氨基酸序列。该醇脱氢酶突变体能够在12h内转化的底物2‑氯‑1‑(3,4‑二氟苯基)乙酮浓度达到500g/L以上,并且产物(S)‑2‑氯‑1‑(3,4‑二氟苯基)乙醇的ee值达到99%以上,同时底物转化率接近100%,极大地提高了在工业应用上使用生物催化法制备(S)‑2‑氯‑1‑(3,4‑二氟苯基)乙醇可转化的底物浓度,并且大大缩短了反应时间。此外,使用表达该突变体的重组菌催化手性醇的生物还原不需要额外添加NAD+,进一步降低了工业生产的成本。

Description

一种醇脱氢酶突变体及其应用
技术领域
本发明属于基因工程与酶工程技术领域,特别是生物催化不对称合成手性中间体的技术领域,具体涉及一种醇脱氢酶突变体及其应用。
背景技术
替格瑞洛(Ticagrelor),曾用名替卡格雷,是英国阿斯利康(AstraZeneca)公司开发的一种新型具有选择性抗凝血药,是首个可逆的结合型P2Y12腺苷二磷酸受体(ADP)拮抗剂,用于阻止动脉硬化,治疗急性冠状动脉综合征。替格瑞洛与氯吡格雷相比,具有见效快、药效高和副作用小等优点,可明显降低患者心肌梗塞、卒中或者心血管死亡症状。2010年12月获得欧盟批准,2011年7月阿斯利康宣布FAD已批准替卡格雷用于减少急性冠脉综合征(ACS)患者的心血管死亡和心脏病发作,在全球85个国家得到批准,被列入29个国家的医疗保险目录,进入31个国家病人自付目录,具有广阔的市场前景。
(S)-2-氯-1-(3,4-二氟苯基)乙醇是替格瑞洛合成过程中的关键手性中间体,如何高效合成该S构型的手性化合物一直是本领域技术人员的研究热点,也是替格瑞洛合成领域的难点。
醇脱氢酶(EC1.1.1.1,Alcohol dehydrogenase,ADH)也被称为酮还原酶(Ketoreductase,KRED)或羰基还原酶(Carbonyl reductase,CR),他们可逆地催化酮或醛还原为醇,并需要辅因子的参与。天然酶在工业应用中普遍存在无法适应工业生产条件和对非天然底物的催化能力低等问题。借助蛋白质工程方法对酶分子进行分子修饰是提高酶学性能的有效手段。醇脱氢酶LnADH可以不对称还原2-氯-1-(3,4-二氟苯基)乙酮得到替格瑞洛中间体(S)-2-氯-1-(3,4-二氟苯基)乙醇(ee值>99%),利用分子进化技术,进一步提高该酶的催化效率,从而推动其在替格瑞洛中间体生产中的工业化应用。
专利CN 110016467 A所提供的酶可完全催化的最高底物浓度为200g/L,这个底物浓度在工业生产上并不高,并且200g/L的底物浓度下反应时间在20h以上,催化速率较慢,应用于工业生产价值不高。
专利CN 109423484 A所提供的酶可完全催化的最高底物浓度也仅为350g/L,距离工业化生产还有一定的距离。
专利CN 111763662 A和专利CN 106701840 A所提供的的酶可完全催化的最高底物浓度可达到500g/L,这个底物浓度可满足工业生产要求,但其分别需要长达24h和18h的反应时间,酶催化速率慢反应时间过长。
发明内容
为了克服上述现有技术的不足,针对现有2-氯-1-(3,4-二氟苯基)乙酮的酶催化反应存在的问题,本发明对来源于Leifsonia naganoensis(NBRC 103131)的醇脱氢酶,进行分子改造,从而获得酶学性能提升的醇脱氢酶突变体用于(S)-2-氯-1-(3,4-二氟苯基)乙醇的生物还原。
本发明所针对的醇脱氢酶的氨基酸序列来源于Leifsonia naganoensis(NBRC103131)的醇脱氢酶LnADH,该酶的基因大小为756bp,编码251个氨基酸,NCBI登录号为BAP47553;其氨基酸序列如SEQ ID NO.1所示。
本发明提供了一种醇脱氢酶突变体,所述的醇脱氢酶突变体是将如SEQ ID NO.1所示氨基酸序列的第100位和第207位的氨基酸进行突变,以及不包括或者还包括如下1个可选位点的突变:第7位、第105位、第107位或第148位。。
作为本发明的优选方案,所述第100位的突变为苏氨酸突变为赖氨酸(T100K);
所述第207位的突变为亮氨酸突变为异亮氨酸(L207I)。
作为本发明的优选方案,所述第7位的突变为丙氨酸突变为丝氨酸(A7S);
所述第105位的突变为丝氨酸突变为脯氨酸(S105P);
所述第107位的突变为天冬氨酸突变为精氨酸(D107R)
所述第148位的突变为丝氨酸突变为亮氨酸(S148L)。
作为本发明的优选方案,所述醇脱氢酶突变体具有如SEQ ID NO.2-SEQ ID NO.6任一所示的氨基酸序列。SEQ ID NO.2-SEQ ID NO.6所示的氨基酸序列分别对应突变体T100K/L207I、T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L。
本发明还提供了一种编码所述醇脱氢酶突变体的基因。
本发明还提供了一种所述醇脱氢酶突变体的编码基因构建的重组载体pET28a-LnADH。
本发明还提供了一种包含所述重组表达载体的重组表达菌株E.coli BL21(DE3)。
本发明还提供了一种所述重组表达菌株的制备方法,包括以下步骤:
(1)将所述重组表达质粒转化到宿主细胞E.coli BL21(DE3)中,涂布在含有50μg/ml卡那霉素的LB平板上,37℃过夜培养后,从中挑选阳性菌落接种到50ml含有50μg/ml卡那霉素的液体LB培养基中培养10h,然后吸取1ml种子液转接到50ml含有50μg/ml卡那霉素的新鲜液体LB培养基中;
(2)培养2h后,加入终浓度为0.1mmol/L的异丙基-β-D-硫代吡喃半乳糖苷(IPTG)进行诱导,诱导温度为28℃,诱导培养14-16h后通过离心浓缩得到更高浓度的湿菌体,通常经过超声波破碎或高压均质机破碎后离心收集上清液,即为重组表达菌株的粗酶裂解液。
本发明还提供了所述醇脱氢酶在催化2-氯-1-(3,4-二氟苯基)乙酮不对称还原合成(S)-2-氯-1-(3,4-二氟苯基)乙醇中的应用,其中,包括以下步骤:
(1)在三角瓶中加入适量异丙醇用于溶解底物2-氯-1-(3,4-二氟苯基)乙酮,所述异丙醇浓度较佳地为1-3当量,所述底物浓度较佳地为100-500g/L;
(2)再加入用一定量的磷酸盐缓冲液重悬后的所述醇脱氢酶的湿菌体,所述湿菌体浓度较佳地为10-70g/L,更佳地为30-50g/L;所述磷酸盐缓冲液为本领域常规使用缓冲液,如磷酸氢二钠-磷酸二氢钠缓冲液、磷酸氢二钾-磷酸二氢钾缓冲液、磷酸氢二钠-柠檬酸缓冲液。所述缓冲液浓度较佳地为0.05-0.2M;所述缓冲液pH值较佳为5.0-8.0,更佳地为6.0-7.0;
(3)再加入一定量的辅酶NAD+,所述辅酶浓度较佳地为0-1.0g/L,更佳地为0g/L;
(4)混匀,在35-55℃下反应,反应时长为0.5-24h,反应过程中用HPLC监测反应转化率;
(5)离心去除蛋白,用2-3倍体积的乙酸乙酯萃取2-3次后合并有机相,用饱和食盐水洗涤后减压旋蒸得到黄色油状物粗品,所述黄色油状物即为产物(S)-2-氯-1-(3,4-二氟苯基)乙醇;用HPLC检测所得产物的ee值。
本发明有益效果在于:
上述所有酶活力提高的突变体与野生型相比,酶反应速率更快,能够缩短反应周期;野生型LnADH其在24h内最多可转化浓度为100g/L的底物2-氯-1-(3,4-二氟苯基)乙酮,而所述优选组合突变体均可在12h内完全转化500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮;其中突变体T100K/L207I/S148L可在8h内完全转化500g/L的该底物,且ee值不变(>99%);所述突变体与野生型相比转化能力得到大幅度提高,进一步降低了生产成本。
除此之外,使用上述组合突变体催化底物2-氯-1-(3,4-二氟苯基)乙酮不对称还原合成(S)-2-氯-1-(3,4-二氟苯基)乙醇的反应体系中不需要额外添加NAD+,可进一步降低工业生产成本。
附图说明
图1为野生型LnADH与所筛选出的单点突变体的酶活力比较;
图2位野生型LnADH与所筛选出的优选突变体的酶活力比较;
图3为野生型LnADH与所筛选出的优选突变体的比活力比较;
图4为野生型LnADH在24h时催化不同浓度底物还原的转化率比较;
图5为优选组合突变体在35℃下催化500g/L底物还原的转化率比较;
图6为不同温度下突变体T100K/L207I/S148L催化500g/L底物还原的转化率比较;
图7为不同浓度的突变体T100K/L207I/S148L湿细胞催化500g/L底物反应8h的转化率比较;
图8为不同浓度的NAD+添加量对于优选突变体用于500g/L底物还原的转化率比较。
下面将结合具体实施例和附图对本发明进一步说明。
具体实施方式
实施例1易错PCR方法构建随机突变文库
利用Premix TaqTM(Ex TaqTM Version 2.0)对醇脱氢酶LnADH基因进行随机突变。
所用引物为:5'-TAAGAAGGAGATATACCATGGCGCAGTATGATGTTG-3'(前置引物,SEQ IDNO.7)和5'-TGGTGGTGGTGGTGCTCGAGTTACTGCGCGGTATAGCC-3'(后置引物,SEQ ID NO.8)。
反应条件为:98℃预变性3min,98℃变性10s,55℃退火30s和72℃延伸1min,共30个循环,后72℃继续延伸5min,电泳后用PCR产物纯化试剂盒进行纯化得到基因片段。
用Nco I和Xho I对pET 28a(+)载体进行双酶切,电泳后以胶回收试剂盒回收线性化载体,将回收的线性化载体与基因片段进行重组,得到重组质粒。
实施例2LnADH突变体文库的筛选
将实施例1中得到的重组质粒转入大肠杆菌表达菌株BL21(DE3),涂布含有卡那霉素的LB平板,过夜培养。用无菌牙签挑出每个菌落,接种到96孔板(母板)中含有50μg/ml卡那霉素的500μl LB培养基中。将母板置于37℃、220rpm的摇床中培养12h,以提供种子液。然后,从母板的每个孔中吸取50μl种子液到深96孔板的相应孔中,每个孔中含有500μl含有50μg/ml卡那霉素的LB培养基(子板)。在37℃,220rpm下孵育2h后,向每孔加入终浓度为0.1mM的IPTG。将子板转移到28℃,220rpm的振荡培养箱中培养16h。通过加入1000U溶菌酶裂解细胞,并在室温下振荡至少1h,在4℃下3000Xg离心5分钟,并将100μl上清液转移到另一个96孔板。加入100μl用100mM磷酸二氢钾缓冲液(pH6.0)配制的、由1mM底物2-氯-1-(3,4-二氟苯基)乙酮和0.4mM NADH组成的酶测定液,在Thermo Scientific Varioskan Flash酶标仪上监测NADH在340nm处的吸光度下降,从而测定其活性。在96孔板高通量筛选中,获得活力比野生型LnADH高出39.88%、36.50%、13.49%和76.74%的菌株A7S、T100P、S105H和L207I。
实施例3构建LnADH饱和突变文库
利用NNN兼并性引物(N代表A,T,G,C)分别对醇脱氢酶LnADH的A7、T100-D103、S105-R110、I113-E114、F121、Q125、G147-G150、T159、H162、A163和L207这23个位点进行饱和突变。
所用兼并性前置引物设计如表1所示:
Figure BDA0003695380420000051
Figure BDA0003695380420000061
PCR条件为:25μl PrimeSTAR Max Premix,1μl模板DNA (100ng/ul),2μl前置引物(10μM),2μl后置引物(10μM)和20μl的超纯水,条件:98℃预变性3min,98℃变性10s,55℃退火15s和72℃延伸5s,共30个循环,后72℃继续延伸5min。PCR产物用Dpn I在37℃下处理30min。然后将PCR产物10ul转化至E.coli BL21(DE3)感受态细胞中,进行高通量筛选,筛选得到活力提升的突变体,提取质粒后送于北京擎科生物科技有限公司测序。测序正确后,将质粒重新转化表达菌株E.coli BL21(DE3)。
本轮突变获得的15个突变子A7S、A7T、T100K、T100R、T100P、T100S、T100L、S105H、S105P、D107R、D107C、D107N、S148L、S148K、L207I与野生型的粗酶活力相比的相对活力见说明书附图1。
突变子A7S、A7T、T100K、T100R、T100P、T100S、T100L、S105H、S105P、D107R、D107C、D107N、S148L、S148K、L207I的活力与野生型相比分别提高了39.88%、4.00%、56.82%、45.60%、36.50%、36.83%、34.72%、13.49%、86.75%、50.09%、33.78%、12.33%、83.52%、26.68%、76.74%。其中A7S、T100K、S105P、D107R、S148L、L207I六个突变子的活力提升最为明显。
实施例4组合突变进一步提高活力
由于有益突变的组合常常具有加成效应,故常用其来进一步改善酶的性能。考虑到通过6个残基的组合突变得到的突变体数量较大,本发明选用了T100K作为模板,对剩余的5个残基进行定点诱变。
本轮组合突变获得的14个组合突变体T100K/A7S、T100K/S105P、T100K/D107R、T100K/S148L、T100K/L207I、T100K/A7S/S105P、T100K/A7S/S148L、T100K/S105P/D107R、T100K/S105P/S148L、T100K/D107R/S148L、T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L与野生型的粗酶活力相比的相对活力见说明书附图2。
突变体T100K/A7S、T100K/S105P、T100K/D107R、T100K/S148L、T100K/L207I、T100K/A7S/S105P、T100K/A7S/S148L、T100K/S105P/D107R、T100K/S105P/S148L、T100K/D107R/S148L、T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L的粗酶活力是野生型活力的213.16%、186.75%、200.64%、246.21%、420.63%、166.18%、305.69%、157.61%、271.37%、309.46%、666.19%、690.45%、623.03%和840.87%。其中优选组合突变体为T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L,活力提升幅度最大。
实施例5野生型及优选组合突变体比活力的测定
纯酶液的制备,采用异丙醇沉淀法,制备步骤如下:
(1)大肠杆菌表达菌株BL21(DE3)诱导表达的野生型LnADH和突变体的细胞通过离心收集,用磷酸二氢钾缓冲液(100mM,pH6.0)洗涤两次,然后重悬于100mM磷酸二氢钾缓冲液中。在冰上用超声波细胞破碎仪进行破胞后,通过离心除去细胞碎片,得到的上清液直接作为粗制的酶提取物。
(2)将粗酶液与一定比例的IPA混合,在4℃下静置1h后进行离心,所得上清液在40℃下减压旋蒸以除去IPA;将旋转蒸发后得到的液体进行离心,得到的上清液就是纯酶,可用于后续实验;含有纯酶的上清液通过SDS-PAGE进行验证;使用Pierce BCA蛋白质检测试剂盒测量蛋白质浓度。
蛋白比活力的测定,步骤如下:
野生型LnADH和所有突变体的活力是用紫外可见分光光度计测定的,以酮2为底物,在1ml反应混合物中,由98%(v/v)的磷酸二氢钾缓冲液(100mM,pH6.0)溶解有0.4mMNADH和2mg/L酶,以及2%(v/v)的有机相,包括溶于DMSO的1mM底物组成;混合物在35℃下孵育2min,在340nm处测量NADH的吸光度值的下降。一个单位的比活性被定义为每分钟催化消耗1μmol NADH的酶量。使用Pierce BCA蛋白质检测试剂盒测量蛋白质浓度。比活力单位定义为U/mg。
野生型LnADH和优选组合突变体T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L的比活力见说明书附图3。
野生型LnADH的比活力为5.07U/mg,优选突变体T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L比活力分别为37.35、38.37、40.60和48.78U/mg。其中,突变体T100K/L207I/S148L比活力最高,是野生型LnADH的9.62倍。
实施例6野生型的最高底物浓度
为了确定野生型在24小时内可以完全还原的最高底物浓度,本发明使用50g/L湿细胞对100-500g/L的底物进行了24h的反应。反应条件如下:
100、150、200、250、300、400和500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮分别溶于2当量异丙醇中,再加入50g/L湿细胞和0.1g/L NAD+,用磷酸二氢钾缓冲液(100mM,pH6.0)补足至30ml,在35℃和160rpm下反应0.5-24小时,HPLC监控反应转化率。
离心去除蛋白,用2-3倍体积的乙酸乙酯萃取2-3次后合并有机相,用饱和食盐水洗涤后减压旋蒸得到黄色油状物粗品,所述黄色油状物即为(S)-2-氯-1-(3,4-二氟苯基)乙醇。HPLC检测产物对映选择性,ee>99%。
野生型LnADH催化100、150、200、250、300、400和500g/L的底物反应24h的转化率见说明书附图4。
野生型24h内可完全转化的底物浓度为100g/L,可耐受的最高底物浓度为250g/L。
实施例7优选组合突变体转化500g/L 2-氯-1-(3,4-二氟苯基)乙酮
优选组合突变体T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L用于转化500g/L 2-氯-1-(3,4-二氟苯基)乙酮,反应条件如下:
500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮分别溶于2当量异丙醇中,再加入50g/L湿细胞和0.1g/L NAD+,用磷酸二氢钾缓冲液(100mM,pH6.0)补足至30ml,在35℃和160rpm下反应0.5-24小时,HPLC监控反应转化率。
离心去除蛋白,用2-3倍体积的乙酸乙酯萃取2-3次后合并有机相,用饱和食盐水洗涤后减压旋蒸得到黄色油状物粗品,所述黄色油状物即为(S)-2-氯-1-(3,4-二氟苯基)乙醇。HPLC检测产物对映选择性,ee>99%。
优选组合突变体T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L转化500g/L底物的转化率见说明书附图5。
实施例8不同温度下优选突变体催化500g/L 2-氯-1-(3,4-二氟苯基)乙酮还原的转化率
优选突变体T100K/L207I/S148L在不同温度(35-55℃)下转化500g/L底物2-氯-1-(3,4-二氟苯基)乙酮,反应条件如下:
500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮分别溶于2当量异丙醇中,再加入50g/L湿细胞和0.1g/L NAD+,用磷酸二氢钾缓冲液(100mM,pH6.0)补足至30ml,在35-55℃下反应0.5-24小时(160rpm),HPLC监控反应转化率。
优选突变体T100K/L207I/S148L在不同温度下的转化率见说明书附图6。
优选突变体T100K/L207I/S148L在35-55℃下反应6-24h,转化率>99%,ee>99%。
实施例9使用不同用量的湿细胞催化500g/L 2-氯-1-(3,4-二氟苯基)乙酮还原
使用10-70g/L优选组合突变体T100K/L207I/S148L的湿细胞催化500g/L 2-氯-1-(3,4-二氟苯基)乙酮还原,反应条件如下:
500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮分别溶于2当量异丙醇中,再加入10-70g/L湿细胞和0.1g/L NAD+,用磷酸二氢钾缓冲液(100mM,pH6.0)补足至30ml,在50℃下反应0.5-8h(160rpm),HPLC监控反应转化率。
不同浓度优选组合突变体T100K/L207I/S148L的湿细胞催化500g/L 2-氯-1-(3,4-二氟苯基)乙酮还原8h的转化率见说明书附图7。
使用40-70g/L优选组合突变体T100K/L207I/S148的湿细胞反应4-8h,转化率>99%,ee>99%。
实施例10添加不同NAD+负载量参与500g/L 2-氯-1-(3,4-二氟苯基)乙酮的还原反应
添加0-1g/L的NAD+参与500g/L 2-氯-1-(3,4-二氟苯基)乙酮的还原反应,反应条件如下:
500g/L的底物2-氯-1-(3,4-二氟苯基)乙酮分别溶于2当量异丙醇中,再加入50g/L包含优选组合突变体的湿细胞和0-1.0g/L NAD+,用磷酸二氢钾缓冲液(100mM,pH6.0)补足至30ml,在35℃下反应0.5-24h(160rpm),HPLC监控反应转化率。
添加不同浓度NAD+参与500g/L 2-氯-1-(3,4-二氟苯基)乙酮的还原反应的转化率见说明书附图8。
NAD+浓度从0.05g/L到1.0g/L的转化率没有显著差异,甚至与不添加NAD+的组转化率相似。
通过对比实施例6与实施例7可以看出,经过突变筛选出来的醇脱氢酶优选组合突变体T100K/L207I/A7S、T100K/L207I/S105P、T100K/L207I/D107R、T100K/L207I/S148L,与野生型LnADH相比催化能力大大提高,不仅使得可催化的底物浓度由250g/L提高到了500g/L,还大幅度提升了催化500g/L底物2-氯-1-(3,4-二氟苯基)乙酮还原的反应速率,并且突变体仍保持优异的对映选择性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。
序列表
<110> 浙江大学
<120> 一种醇脱氢酶突变体及其应用
<160> 31
<170> SIPOSequenceListing 1.0
<210> 1
<211> 251
<212> PRT
<213> 长野雷弗森菌(Leifsonia naganoensis)
<400> 1
Met Ala Gln Tyr Asp Val Ala Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Thr Val Gly Asp Tyr Ser Leu Asp Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Ser Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Leu Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 2
<211> 251
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Ala Gln Tyr Asp Val Ala Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Lys Val Gly Asp Tyr Ser Leu Asp Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Ser Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Ile Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 3
<211> 251
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Ala Gln Tyr Asp Val Ser Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Lys Val Gly Asp Tyr Ser Leu Asp Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Ser Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Ile Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 4
<211> 251
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Ala Gln Tyr Asp Val Ala Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Lys Val Gly Asp Tyr Pro Leu Asp Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Ser Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Ile Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 5
<211> 251
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 5
Met Ala Gln Tyr Asp Val Ala Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Lys Val Gly Asp Tyr Ser Leu Arg Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Ser Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Ile Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 6
<211> 251
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 6
Met Ala Gln Tyr Asp Val Ala Asp Arg Ser Ala Ile Val Thr Gly Gly
1 5 10 15
Gly Ser Gly Ile Gly Arg Ala Val Ala Leu Thr Leu Ala Ala Ser Gly
20 25 30
Ala Ala Val Leu Val Thr Asp Leu Asn Glu Glu His Ala Gln Ala Val
35 40 45
Val Ala Glu Ile Glu Ala Ala Gly Gly Lys Ala Ala Ala Leu Ala Gly
50 55 60
Asp Val Thr Asp Pro Ala Phe Gly Glu Ala Ser Val Ala Ala Ala Asn
65 70 75 80
Ala Leu Ala Pro Leu Lys Ile Ala Val Asn Asn Ala Gly Ile Gly Gly
85 90 95
Glu Ala Ala Lys Val Gly Asp Tyr Ser Leu Asp Ser Trp Arg Lys Val
100 105 110
Ile Glu Val Asn Leu Asn Ala Val Phe Tyr Gly Met Gln Pro Gln Leu
115 120 125
Lys Ala Met Ala Ala Asn Gly Gly Gly Ala Ile Val Asn Met Ala Ser
130 135 140
Ile Leu Gly Leu Val Gly Phe Ala Asn Ser Ser Ala Tyr Val Thr Ala
145 150 155 160
Lys His Ala Leu Leu Gly Leu Thr Gln Asn Ala Ala Leu Glu Tyr Ala
165 170 175
Ala Asp Lys Val Arg Val Val Ala Val Gly Pro Gly Phe Ile Arg Thr
180 185 190
Pro Leu Val Glu Ala Asn Leu Ser Ala Glu Ala Leu Ala Phe Ile Glu
195 200 205
Gly Lys His Ala Leu Gly Arg Leu Gly Glu Pro Glu Glu Val Ala Ser
210 215 220
Leu Val Ala Phe Leu Ala Ser Asp Ala Ala Ser Phe Ile Thr Gly Ser
225 230 235 240
Tyr His Leu Val Asp Gly Gly Tyr Thr Ala Gln
245 250
<210> 7
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
taagaaggag atataccatg gcgcagtatg atgttg 36
<210> 8
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
tggtggtggt ggtgctcgag ttactgcgcg gtatagcc 38
<210> 9
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gtatgatgtt nnngatcgta gcgcgatcgt tac 33
<210> 10
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ggtggcgaag cggcgnnngt tggtgactac ag 32
<210> 11
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gaagcggcga ccnnnggtga ctactccctg g 31
<210> 12
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ggcgaccgtt nnngactact ccctggatag c 31
<210> 13
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
gaccgttggt nnntactccc tggatagctg gc 32
<210> 14
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
accgttggtg actacnnnct ggatagctgg cg 32
<210> 15
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gtgactactc cnnngatagc tggcgtaaag 30
<210> 16
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
ctactccctg nnnagctggc gtaaagttat cg 32
<210> 17
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
ctccctggat nnntggcgta aagttatcga ag 32
<210> 18
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
cctggatagc nnncgtaaag ttatcgaagt taac 34
<210> 19
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ggatagctgg nnnaaagtta tcgaagttaa cc 32
<210> 20
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
gcgtaaagtt nnngaagtta acctgaacgc gg 32
<210> 21
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
gtaaagttat cnnngttaac ctgaacgcgg tg 32
<210> 22
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
gaacgcggtg nnntacggta tgcagccgca gc 32
<210> 23
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
gttctacggt atgnnnccgc agctgaaagc g 31
<210> 24
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
gagcatcctg nnntccgttg gttttgcgaa c 31
<210> 25
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
gcgagcatcc tgggcnnngt tggttttgcg 30
<210> 26
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
catcctgggc tccnnnggtt ttgcgaacag ctc 33
<210> 27
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
gggctccgtt nnntttgcga acagctccgc 30
<210> 28
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
cgcgtacgtt nnngcgaaac acgcactgct gg 32
<210> 29
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
taccgcgaaa nnngcactgc tgggtctgac ccaga 35
<210> 30
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
cgcgaaacac nnnctgctgg gtctgaccca gaac 34
<210> 31
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
gaagcgctgg cgttcnnnga aggcaaacac gc 32

Claims (10)

1.一种醇脱氢酶突变体,其特征在于,所述的醇脱氢酶突变体是将如SEQ ID NO.1所示氨基酸序列的第100位和第207位氨基酸进行突变,以及不包括或者还包括如下1个可选位点的突变:第7位、第105位、第107位或第148位。
2.根据权利要求1所述的醇脱氢酶突变体,其特征在于,所述第100位的突变为苏氨酸突变为赖氨酸(T100K);
所述第207位的突变为亮氨酸突变为异亮氨酸(L207I)。
3.根据权利要求1所述的醇脱氢酶突变体,其特征在于,
所述第7位的突变为丙氨酸突变为丝氨酸(A7S);
所述第105位的突变为丝氨酸突变为脯氨酸(S105P);
所述第107位的突变为天冬氨酸突变为精氨酸(D107R)
所述第148位的突变为丝氨酸突变为亮氨酸(S148L)。
4.根据权利要求1所述的醇脱氢酶突变体,其特征在于,所述醇脱氢酶突变体具有如SEQ ID NO.2-SEQ ID NO.6任一所示的氨基酸序列。
5.一种编码如权利要求1-4任一项所述醇脱氢酶突变体的基因。
6.一种如权利要求5所述醇脱氢酶突变体的编码基因构建的重组载体。
7.一种如权利要求6所述重组载体转化制备的重组菌。
8.一种采用1-4任一项权利要求所述的醇脱氢酶突变体催化2-氯-1-(3,4-二氟苯基)乙酮不对称还原制备(S)-2-氯-1-(3,4-二氟苯基)乙醇的应用。
9.根据权利要求8所述的应用,其特征在于将2-氯-1-(3,4-二氟苯基)乙酮、含有醇脱氢酶突变体的细胞、缓冲液、异丙醇一起配置成混合溶液,添加或不添加辅酶,反应得到产物(S)-2-氯-1-(3,4-二氟苯基)乙醇。
10.根据权利要求9所述的应用,其特征在于所述的反应在35-55℃下进行,反应时间为4-24h。
CN202210677668.4A 2022-06-15 2022-06-15 一种醇脱氢酶突变体及其应用 Active CN115011573B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210677668.4A CN115011573B (zh) 2022-06-15 2022-06-15 一种醇脱氢酶突变体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210677668.4A CN115011573B (zh) 2022-06-15 2022-06-15 一种醇脱氢酶突变体及其应用

Publications (2)

Publication Number Publication Date
CN115011573A true CN115011573A (zh) 2022-09-06
CN115011573B CN115011573B (zh) 2023-12-12

Family

ID=83074757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210677668.4A Active CN115011573B (zh) 2022-06-15 2022-06-15 一种醇脱氢酶突变体及其应用

Country Status (1)

Country Link
CN (1) CN115011573B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206187A1 (zh) * 2013-06-24 2014-12-31 苏州明锐医药科技有限公司 替卡格雷及其中间体的制备方法
CN106520849A (zh) * 2015-09-11 2017-03-22 杭州酶易生物技术有限公司 一种制备手性2-氯-3,4-二氟苯乙醇的方法
CN108949707A (zh) * 2017-05-24 2018-12-07 武汉大学 一种热稳定性提高的醇脱氢酶突变体
CN112522224A (zh) * 2020-12-28 2021-03-19 华东理工大学 一种活性和立体选择性提高的醇脱氢酶突变体及其重组载体、基因工程菌以及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014206187A1 (zh) * 2013-06-24 2014-12-31 苏州明锐医药科技有限公司 替卡格雷及其中间体的制备方法
CN106520849A (zh) * 2015-09-11 2017-03-22 杭州酶易生物技术有限公司 一种制备手性2-氯-3,4-二氟苯乙醇的方法
CN108949707A (zh) * 2017-05-24 2018-12-07 武汉大学 一种热稳定性提高的醇脱氢酶突变体
CN112522224A (zh) * 2020-12-28 2021-03-19 华东理工大学 一种活性和立体选择性提高的醇脱氢酶突变体及其重组载体、基因工程菌以及应用

Also Published As

Publication number Publication date
CN115011573B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Kataoka et al. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound
CN109182284B (zh) 一种7β-羟基类固醇脱氢酶突变体、编码序列、重组表达载体、基因工程菌及应用
CN111269900B (zh) 一种l-氨基酸脱氨酶突变体的制备及其应用
WO2021184557A1 (zh) 一种生物多酶偶联法氧化还原不对称制备l-草铵膦的方法
CN106754846A (zh) 一种具核梭杆菌酪氨酸酚裂解酶突变体、基因、载体、工程菌及其应用
CN112662638B (zh) 一种r-选择性苯乙烯单加氧酶的功能
CN108048438B (zh) 一种卤代醇脱卤酶突变体及其应用
CN107058248A (zh) 一种重组醛酮还原酶突变体、基因、载体、工程菌及其应用
CN102277338A (zh) 双羰基还原酶突变体及其应用
CN106591271A (zh) 一株酶活和温度稳定性提高的精氨酸脱亚胺酶突变体及其应用
Qi et al. Improved xylitol production by expressing a novel D-arabitol dehydrogenase from isolated Gluconobacter sp. JX-05 and co-biotransformation of whole cells
CN112359036B (zh) 一种催化活力和反应专一性提高的腈水解酶突变体及应用
CN111518783B (zh) 重组(R)-ω-转氨酶、突变体及其在制备西他列汀中的应用
CN101857887B (zh) 一种利用重组菌无细胞提取物催化不对称转化制备光学纯芳基醇的方法
CN104152506A (zh) 醛酮还原酶的重组菌粗酶体系催化合成(s)-n,n-二甲基-3-羟基-3-(2-噻吩)-1-丙胺的方法
CN117467627B (zh) 一种烯醛还原酶突变体及其编码基因和应用
JP5042831B2 (ja) ヒドロキシ化合物の立体選択的製造用アルコール脱水素酵素
CN113462678B (zh) 一种谷氨酸脱羧酶突变体
CN113969268A (zh) Glu/Leu/Phe/Val脱氢酶突变体及其在制备L-草铵膦中的应用
Li et al. Characterization and Application of a Novel Glucose Dehydrogenase with Excellent Organic Solvent Tolerance for Cofactor Regeneration in Carbonyl Reduction
CN115011573B (zh) 一种醇脱氢酶突变体及其应用
CN113322291A (zh) 一种手性氨基醇类化合物的合成方法
CN114350630B (zh) L-泛解酸内酯脱氢酶、突变体及其应用
WO2023142153A1 (zh) 一种羰基还原酶及其应用
CN115232799A (zh) 一种苯乙烯单加氧酶突变体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant