CN115007200A - 一种亚纳米团簇Co基催化剂的制备方法及其应用 - Google Patents

一种亚纳米团簇Co基催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN115007200A
CN115007200A CN202210685316.3A CN202210685316A CN115007200A CN 115007200 A CN115007200 A CN 115007200A CN 202210685316 A CN202210685316 A CN 202210685316A CN 115007200 A CN115007200 A CN 115007200A
Authority
CN
China
Prior art keywords
catalyst
sub
nanocluster
molecular sieve
sibeta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210685316.3A
Other languages
English (en)
Inventor
罗永明
邓维华
何德东
黄子君
文绍鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210685316.3A priority Critical patent/CN115007200A/zh
Publication of CN115007200A publication Critical patent/CN115007200A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种亚纳米团簇Co催化剂的制备方法,该方法是在pH 9‑11条件下,将钴盐与含有结构缺陷位点的HBeta分子筛混合,搅拌24‑30h,Co2+负载到含有结构缺陷位点的HBeta分子筛上,固液分离后,固体洗涤,干燥,煅烧,即得亚纳米团簇Co催化剂,其中Co含量0.5‑2%;本发明通过利用结构缺陷空位点有效锚定和限阈了Co并且形成具备优异几何结构的Co亚纳米团簇,避免了传统Co基催化剂在烷烃脱氢反应中活性不高和易烧结的问题;该制备工艺简单,易于操作,成本低,即使是在极为严苛的反应条件下该催化剂也具有高的转化率和产率;本方法为获得高活性低成本的非贵金属催化剂提供了一条新思路。

Description

一种亚纳米团簇Co基催化剂的制备方法及其应用
技术领域
本发明涉及催化剂技术领域,具体涉及一种高活性亚纳米团簇Co催化剂的制备方法及其在烷烃脱氢制丙烯中的应用。
背景技术
近几十年来全球丙烯市场都在稳步增长,预计未来几年还会继续增长。由于丙烯下游产品的大量消耗(如聚丙烯、丙烯腈、丙烯酸、氧化醇、丙烯氧化物和异丙苯)。供给和需求的差距也越来越大,这就需要更加先进的丙烯生产工艺。到目前为止,烯烃裂解、甲醇制烯烃和丙烷脱氢都是可以生产丙烯的技术。其中,丙烷脱氢技术是在当前工业背景下最引人瞩目的技术。因为人们可以从丰富的页岩气中广泛的获得廉价的丙烷;同时在脱氢的过程中还有高价值的附加产物H2产生。
过渡金属Co近些年来因为其对C-H键优越的活化性能,加上其相对于Cr基和Pt催化剂表现出来的环境友好,价格低廉的优点,使其越来越受到研究者们的重视。但是相对于Cr基和Pt基催化剂,即使是单原子的Co基催化剂也无法达到与之媲美的活性。亚纳米原子簇往往比单原子具有更加优异的催化性能,但是其对制备方法以及金属前驱体都有着极高的要求,而且大部分都是针对于贵金属的应用。这无疑在一定程度上阻碍了Co基催化剂的发展。
发明内容
针对于现在Co基催化剂活性低,结构不稳定和亚纳米原子簇难以获得的问题,本发明提供了一种简单有效的亚纳米原子簇Co催化剂的的制备方法,通过空位-电荷吸附的方法获得Co的亚纳米原子簇,用于烷烃脱氢制烯烃。在相同的反应条件下该催化剂获得了相较于其他传统催化剂更高的烷烃转化率和烯烃产率,通过一系列的相关表征也证明了通过该方法获得了亚纳米原子簇的Co基催化剂。
本发明方法是在碱性条件下,将钴盐与含有结构缺陷位点的HBeta分子筛混合,搅拌24-30h,Co2+负载到含有结构缺陷位点的HBeta分子筛上,固液分离后,固体洗涤,干燥,煅烧,即得亚纳米团簇Co催化剂,其中Co含量0.5-2%。
所述钴盐为硝酸钴或乙酸钴。
所述载体含有结构缺陷的HBeta分子筛是将HBeta分子筛置于13mol/L酸溶液中,在75-85℃下处理12-15h后,洗涤至中性制得。
所述干燥是在80℃下处理12-15h。
本发明另一目的是将上述的制备方法所得到的催化剂应用在烷烃脱氢制备烯烃的反应中,具体是将亚纳米团簇Co基催化剂装填在固定式反应床内,惰性气体吹扫,将烷烃浓度为110000-140000ppm的原料气体通入反应床中进行烷烃脱氢制烯烃反应;反应温度为550-600℃,原料气体的进气流速为60-70mL/min。
与现有技术相比,本发明具有以下有益效果:
本发明方法与传统的浸渍法相比,制备工艺简单,节约成本,且在相同的反应条件下相较于普通浸渍煅烧法制备的催化剂获得更高的转换率和烯烃产率,亚纳米原子簇往往比单原子有着更高的活化能力,本方法用更为简便的方法获得了高活性高稳定性的Co基催化剂,使得Co基催化剂有着更广阔的应用前景。
附图说明
图1是实施例1制备的0.5Co-E-SiBeta催化剂和普通浸渍法制备的0.5Co-I-SiBeta的H2-TPR;
图2是HBeta分子筛、含有结构缺陷位点的HBeta分子筛、催化剂0.5%Co-I-SiBeta和0.5%Co-E-SiBeta催化剂的XRD衍射图;
图3是依据图2中XRD的主峰位移通过布拉格方程式计算得到d302晶面的晶格间距;
图4是实施例1制备的0.5%Co-E-SiBeta催化剂在TEM下亚纳米原子簇;
图5 是在TEM下,统计实施例1制得的催化剂上40个亚纳米原子簇的尺寸的结果;
图6是实施例1制备的0.5%Co-E-SiBeta和普通浸渍法制备的0.5%Co-I-SiBeta催化分解丙烷制丙烯的丙烷转化率;
图7是实施例1制备的0.5%Co-E-SiBeta和普通浸渍法制备的0.5%Co-I-SiBeta催化分解丙烷制丙烯的丙烷选择性;
图8是实施例2制备的0.5%Co-E-SiBeta和1%Co-E-SiBeta催化分解丙烷制丙烯的丙烷的转化率;
图9是实施例2制备的0.5%Co-E-SiBeta和1%Co-E-SiBeta催化分解丙烷制丙烯的丙烷选择性;
图10是实施例3制备的1%Co-E-SiBeta和2%Co-E-SiBeta催化分解丙烷制丙烯的丙烷的转化率;
图11是实施例3制备的1%Co-E-SiBeta和2%Co-E-SiBeta催化分解丙烷制丙烯的丙烷的选择性;
图12是0.5%Co-E-SiBeta催化剂在580℃,丙烷浓度为99.9%条件下催化分解丙烷制丙烯的丙烷的转化率和选择性结果;
图13是本发明制得的催化剂无水空气再生后循环使用的结果,其中左图为首次制得的催化剂,中图为再生1次的催化剂,右图为再生2次的催化剂。
具体实施方式
下面通过实施例对本发明作进一步详述,但本发明保护范围不局限于所述内容。
实施例1:0.5%Co-E-SiBeta催化剂的制备
1、称取乙酸钴0.0213g溶于浓氨水10mL中,再将氨水溶液与无水乙醇30mL混合,混合液pH 值为10;
2、将4g市购HBeta分子筛置于80mL的13mol/L的硝酸中,80℃加热搅拌13h后,固液分离,固体洗涤至中性,80℃干燥后得到含有结构缺陷位点的HBeta分子筛(SiBeta);
3、将1g含有结构缺陷位点的HBeta分子筛置于30mL无水乙醇中,混匀后,加入到步骤1混合溶液中,搅拌24h,离心洗涤,80℃干燥12h;马弗炉600℃煅烧300min,压片,粉碎过筛制的80-100目的亚纳米团簇Co催化剂(0.5%Co-E-SiBeta);
同时采用普通浸渍空气煅烧法制备催化剂(0.5%Co-I-SiBeta)作为对照,具体是称取硝酸钴0.02g于100mL烧杯中,加入20mL去离子水,搅拌至完全溶解后,加入1g的上述步骤2制得的含有结构缺陷位点的HBeta分子筛,搅拌12h,80℃干燥12h;马弗炉600℃煅烧300min;
催化剂的H2-TPR见图1,从图中可以看出催化剂0.5Co-E-SiBeta高温还原温度高达863℃,远高于0.5Co-I-SiBeta的还原温度784℃和脱氢反应温度600℃,说明空位-电荷吸附法获得的催化剂有着强金属-载体相互作用力,在低温下,空位-电荷吸附法获得的催化剂峰面积相比于浸渍法获得的催化剂要小的多,说明其含有的容易导致副反应的钴氧化物要少得多,该方法有利于获得很多稳定的活性位点,本发明方法制得的催化剂中的Co亚纳米团簇稳定性好,这可能是由于载体SiBeta的分子笼效应;
图2为HBeta、SiBeta、0.5%Co-I-SiBeta和0.5%Co-E-SiBeta 的XRD衍射图,其中22°左右的峰为Beta沸石特征峰,通过布拉格方程式的计算可以得到d302晶面的晶格间距如图3,从而反映出空位点内化学环境的变化。从HBeta到SiBeta晶格间距缩小说明了脱Al过程的发生,对比0.5%Co-I-SiBeta和0.5%Co-E-SiBeta的晶格间距,0.5%Co-E-SiBeta的晶格间距变化的远大于0.5%Co-I-SiBeta,说明通过本发明方法可以使得更多Co原子精准的进入空位点处,而不是像传统浸渍法0.5%Co-I-SiBeta多数Co原子只是被载体表面捕获,这点为在空位点内部形成亚纳米团簇提供了可能;图4显示了TEM下亚纳米原子簇,并在TEM下统计了40个亚纳米原子簇的尺寸,从图中可以看出大部分亚纳米原子簇的尺寸在0.55±0.14nm,达到了亚纳米尺寸;
上述结果表明Co亚纳米原子簇在载体SiBeta的空位中被成功合成,并存在于分子筛骨架内部,表明高稳定的亚纳米原子簇Co基催化剂被成功合成;
4、使用亚纳米原子簇Co基催化剂催化丙烷脱氢
将制得的催化剂用氮气吹扫,催化剂装填质量为0.2g,通入用氮气做稀释气的浓度为120000 ppm的丙烷气体,进料总质量空速WHSV=15.6h-1,原料气体的流速为60mL/min,在常压、反应温度600℃下的条件下进行丙烷脱氢制丙烯反应;
根据图6和图7可知通过本发明空位-电荷吸附法获得的催化剂丙烷的最大转化率为55%左右,气相选择性在98%以上,与用普通浸渍空气煅烧法获得的催化剂相比催化活性有了明显的提高;反应6h后丙烷转化率降低至40%,在6h的反应时间中气相选择性几乎不变。
本实施例催化剂反应后用空气再生,具体是在550℃、15mL/min流动的无水空气下,对上述反应6h后的0.2g的催化剂再生1h,再生后,继续上述的丙烷脱氢反应,结果见图13,从再生1次和再生2次后的活性情况可知,催化剂活性没有发生太大变化,说明在亚纳米原子团簇Co基催化剂在丙烷脱氢制丙烯反应中活性位点没有发生烧结团聚,即使是在严苛的反应条件下依旧可以保持Co亚纳米团簇依旧保持稳定,抗烧结,综合以上说明亚纳米团簇Co基催化剂被成功合成并且对丙烷脱氢制丙烯反应有着高活性高稳定以及抗烧结的特点。
将上述方法制得的0.5%Co-E-SiBeta催化剂在580℃,丙烷浓度为99.9%,催化剂装填质量为0.05g,进料总质量空速WHSV=11.1h-1的条件下进行丙烷脱氢制丙烯反应,结果见图12,从图中可以看出催化剂转化率依旧可以达到42%,稳定性也得到了提高;进一步说明该催化剂在烷烃脱氢制烯烃反应的优势地位。
实施例2:制备1% Co-E-SiBeta催化剂
1、称取乙酸钴0.0426g完全溶于浓氨水10mL中,再将氨水溶液与无水乙醇30mL混合,混合液pH 值为11;
2、将4g市购HBeta分子筛置于80mL的13mol/L的硝酸中,80℃加热搅拌13h后,固液分离,固体洗涤至中性,80℃干燥后得到含有结构缺陷位点的HBeta分子筛(SiBeta);
3、将1g含有结构缺陷位点的HBeta分子筛置于30mL无水乙醇中,混匀后,加入到步骤1混合溶液中,搅拌30h,离心洗涤,80℃干燥12h;马弗炉600℃煅烧300min,压片,粉碎过筛制的80-100目的亚纳米团簇Co催化剂;
4、使用亚纳米原子簇Co基催化剂催化丙烷脱氢
将制得的催化剂用氮气吹扫,催化剂装填质量为0.2g,通入用氮气做稀释气的浓度为120000ppm丙烷的气体,进料总质量空速为15.6h-1,原料气体的流速为65mL/min,在常压、反应温度600℃下的条件下进行丙烷脱氢制丙烯反应;
由图8和图9可以看出来1%Co-E-SiBeta催化剂对丙烷的最大转化率为60%左右,气相选择性达到了98%以上,相较于0.5%Co-E-SiBeta催化剂活性再次得到了提升。
实施例3:制备2% Co-E-SiBeta催化剂
1、称取乙酸钴0.0852g溶于浓氨水10mL中,再将氨水溶液与无水乙醇30mL混合,混合液pH 值为9;
2、将4g市购HBeta分子筛置于80mL的13mol/L的硝酸中,80℃加热搅拌15h后,固液分离,固体洗涤至中性,80℃干燥后得到含有结构缺陷位点的HBeta分子筛(SiBeta);
3、将1g含有结构缺陷位点的HBeta分子筛置于30mL无水乙醇中,混匀后,加入到步骤1混合溶液中,搅拌30h,离心洗涤,80℃干燥12h;马弗炉600℃煅烧300min,压片,粉碎过筛制的80-100目的亚纳米团簇Co催化剂;
4、使用亚纳米原子簇Co基催化剂催化丙烷脱氢
将制得的催化剂用氮气吹扫,催化剂装填质量为0.2g,通入用氮气做稀释气的浓度为120000ppm丙烷的气体,进料总质量空速为15.6h-1,原料气体的流速为70mL/min,在常压、反应温度600℃下的条件下进行丙烷脱氢制丙烯反应;
由图10和图11可以看出来2%Co-E-SiBeta催化剂对丙烷的最大转化率为65%左右,该转换率已经接近该温度下的最大热平衡转化率,气相选择性达到了98%以上,相较于1%Co-E-SiBeta催化剂活性再次得到了提升。

Claims (6)

1.一种亚纳米团簇Co催化剂的制备方法,其特征在于:在pH 9-11条件下,将钴盐与含有结构缺陷位点的HBeta分子筛混合,搅拌24-30h,Co2+负载到含有结构缺陷位点的HBeta分子筛上,固液分离后,固体洗涤,干燥,煅烧,即得亚纳米团簇Co催化剂,其中Co含量0.5-2%。
2.根据权利要求1所述的亚纳米团簇Co催化剂制备方法,其特征在于:含有结构缺陷的HBeta分子筛是将HBeta分子筛置于13mol/L酸溶液中,在75-85℃下处理12-15h后,洗涤至中性制得。
3.根据权利要求1所述的亚纳米团簇Co催化剂制备方法,其特征在于:钴盐为乙酸钴或六氨基氯化钴。
4.根据权利要求1所述的亚纳米团簇Co催化剂制备方法,其特征在于:通过空位-电荷吸附法将Co2+负载到载体上。
5.权利要求1-4中任一项所述的亚纳米团簇Co催化剂的制备方法制得的亚纳米团簇Co催化剂在烷烃脱氢制备烯烃中的应用。
6.根据权利要求5所述的应用,其特征在于:将亚纳米团簇Co催化剂装填在固定式反应床内,惰性气体吹扫,将烷烃浓度为110000-140000ppm的原料气体通入反应器进行烷烃脱氢反应制备烯烃;反应温度为550-600℃。
CN202210685316.3A 2022-06-17 2022-06-17 一种亚纳米团簇Co基催化剂的制备方法及其应用 Pending CN115007200A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210685316.3A CN115007200A (zh) 2022-06-17 2022-06-17 一种亚纳米团簇Co基催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210685316.3A CN115007200A (zh) 2022-06-17 2022-06-17 一种亚纳米团簇Co基催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN115007200A true CN115007200A (zh) 2022-09-06

Family

ID=83075636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210685316.3A Pending CN115007200A (zh) 2022-06-17 2022-06-17 一种亚纳米团簇Co基催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115007200A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328824A (zh) * 2023-03-28 2023-06-27 上海翊嘉生物科技有限公司 一种缺陷分子筛锚定的氧化铈团簇纳米酶、及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020099248A1 (en) * 2000-10-03 2002-07-25 Zoe Ziaka-Vasileiadou Integrated processes for olefin and polyolefin production
US20180023088A1 (en) * 2016-07-25 2018-01-25 INVISTA North America S.à.r.l Materials and methods for the biosynthesis of seven carbon chemicals in the presence of methanol oxidation
CN110860309A (zh) * 2019-12-04 2020-03-06 中国科学院过程工程研究所 一种亚纳米级金属钴颗粒@分子筛的双能催化剂及其制备方法
CN112808295A (zh) * 2021-01-15 2021-05-18 昆明理工大学 一种单位点Co(Ⅱ)催化剂的制备方法及其应用
CN114349797A (zh) * 2021-12-21 2022-04-15 大连理工大学 [NHR3]3[Pt(SnCl3)5]金属簇单晶、合成方法及低碳烷烃催化脱氢应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020099248A1 (en) * 2000-10-03 2002-07-25 Zoe Ziaka-Vasileiadou Integrated processes for olefin and polyolefin production
US20180023088A1 (en) * 2016-07-25 2018-01-25 INVISTA North America S.à.r.l Materials and methods for the biosynthesis of seven carbon chemicals in the presence of methanol oxidation
CN110860309A (zh) * 2019-12-04 2020-03-06 中国科学院过程工程研究所 一种亚纳米级金属钴颗粒@分子筛的双能催化剂及其制备方法
CN112808295A (zh) * 2021-01-15 2021-05-18 昆明理工大学 一种单位点Co(Ⅱ)催化剂的制备方法及其应用
CN114349797A (zh) * 2021-12-21 2022-04-15 大连理工大学 [NHR3]3[Pt(SnCl3)5]金属簇单晶、合成方法及低碳烷烃催化脱氢应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHONG CHEN ET AL.: "Ultrasmall Co confined in the silanols of dealuminated beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene", 《JOURNAL OF CATALYSIS》, vol. 383, pages 77 - 87, XP086067336, DOI: 10.1016/j.jcat.2019.12.037 *
L. JIAO ET AL.: "The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: II. Mesoporous silica SBA-15", 《JOURNAL OF CATALYSIS》, vol. 260, no. 2, pages 342 - 350, XP025674532, DOI: 10.1016/j.jcat.2008.09.023 *
林龙: "缺陷型ZSM-5沸石的表征、改性及催化性能的研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》, no. 3, pages 014 - 86 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328824A (zh) * 2023-03-28 2023-06-27 上海翊嘉生物科技有限公司 一种缺陷分子筛锚定的氧化铈团簇纳米酶、及其制备方法和应用
CN116328824B (zh) * 2023-03-28 2023-10-13 上海翊嘉生物科技有限公司 一种缺陷分子筛锚定的氧化铈团簇纳米酶、及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN104525196B (zh) 负载于双氧化物复合载体的铂镓催化剂及其制备方法和应用
JP3882044B2 (ja) Fischer−Tropsch合成用触媒の調製方法
US20180273454A1 (en) Multicomponent heterogeneous catalysts for direct co2 hydrogenation to methanol
CN115254100A (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
CN111375432A (zh) 一种羟基磷灰石负载的镍单原子催化剂及其制备和应用
CN113318774B (zh) 一种改性Co基催化剂及其制备方法、应用,以及丙烷无氧脱氢制丙烯的方法
CN111644197A (zh) 低温甲烷转化制芳烃的催化体系、制备方法及应用
Fujitsuka et al. Hydrogen Production from formic acid using Pd/C, Pt/C, and Ni/C catalysts prepared from Ion-exchange resins
CN115007200A (zh) 一种亚纳米团簇Co基催化剂的制备方法及其应用
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
CN113058613B (zh) 一种用于甲烷干气重整反应锆-锰-锌复合氧化物担载镍基催化剂及其制备和应用
CN112808295B (zh) 一种单位点Co(Ⅱ)催化剂的制备方法及其应用
JP4222839B2 (ja) 炭化水素の改質方法
CN115155591B (zh) 用于丙烷脱氢的Co基催化剂及其制备方法
CN113578328B (zh) 一种多孔镍基芳构化催化剂及其制备方法与应用
CN110871075A (zh) 负载铁钴钾的二氧化锆催化剂、制备方法及其应用
CN114602449B (zh) 一种ZnZrO2表面固溶体催化剂及其制备方法和应用
CN110327923B (zh) 一种生物质糖醇氢解催化剂及其制备方法和应用
CN109718764B (zh) 一种用于丙烷脱氢制丙烯的贵金属催化剂及其制备和应用
CN112657492A (zh) Ir-GaOx基丙烷脱氢催化剂及其制备方法和用途
CN114308061A (zh) NiAu双金属合金纳米催化剂及其合成与应用
JP4421913B2 (ja) 炭化水素類製造用触媒の製造方法およびその触媒を用いた炭化水素類の製造方法
CN116371421B (zh) 一种负载型催化剂及其制备方法和应用
CN113385172B (zh) 一种乙烷临氢脱氢制乙烯的催化剂及其制备和应用
CN110479259B (zh) 一种以氧化钼-氧化锌-氧化锆复合氧化物为载体的负载型Ru基催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination