CN114988906B - 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 - Google Patents
一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN114988906B CN114988906B CN202210561716.3A CN202210561716A CN114988906B CN 114988906 B CN114988906 B CN 114988906B CN 202210561716 A CN202210561716 A CN 202210561716A CN 114988906 B CN114988906 B CN 114988906B
- Authority
- CN
- China
- Prior art keywords
- porous
- alumina
- matrix
- fiber
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0045—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/185—Mullite 3Al2O3-2SiO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5224—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/614—Gas infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明涉及陶瓷基复合材料技术领域,尤其涉及一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法,包括连续纤维增强体、多孔复合界面和多孔基体;连续纤维增强体为碳化硅纤维或氧化铝纤维;多孔复合界面为SiC纳米线、热解碳和磷酸镧复合而成;多孔基体为多孔氧化铝‑氧化硅基体、多孔氧化铝‑莫来石基体、多孔莫来石基体、多孔氧化铝‑莫来石‑氧化锆基体或多孔氧化铝‑莫来石‑氧化锆‑氧化钇基体。本发明采用多孔复合界面使连续纤维和氧化铝基体间形成弱界面,提高了纤维拔出和脱粘的极限能量,提高了复合材料强度,从而获得了高强度、高韧性、耐高温、使用寿命长的纤维增强氧化铝陶瓷基复合材料。
Description
技术领域
本发明涉及陶瓷基复合材料技术领域,尤其涉及一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法。
背景技术
作为一种优质的耐高温陶瓷基复合材料,连续氧化铝纤维增强的氧化铝陶瓷基复合材料已经广泛应用航空航天等领域。根据陶瓷基体的不同,其适用温度范围也各有不同。根据增强纤维分类,包括石英纤维增强氧化铝陶瓷基复合材料、石英纤维增强莫来石陶瓷基复合材料、碳化硅纤维增强氧化铝陶瓷基复合材料等。石英纤维、碳化硅纤维、氧化铝纤维等通常都被用于增强氧化铝陶瓷基复合材料,具有耐高温、强度大、抗蠕变性好等有优点。
公开号为CN106966743B的中国专利提供了一种连续纤维增强热结构材料复合界面层的制备方法,该复合界面层在连续纤维与氧化物基体之间提供一个具备足够损伤容限的弱结合界面——裂解碳层和氧化锆层,当基体裂纹沿界面扩展时,纤维与基体界面材料得以脱粘拔出,以此来达到增韧目的,解决了基体和纤维反应形成过强结合面导致复合材料脆性断裂的问题。该技术方案同时提高了具有该复合界面层的热结构材料的力学性能和高温稳定性,将其应用在航空发动机热端部件中,其高温服役寿命较长。
公开号为CN106747555A的中国专利提供了一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法,包括:基体,基体为多孔莫来石骨架和氧化铝基体;增强体,增强体为三维连续氧化铝纤维织物;其中,多孔莫来石骨架由莫来石溶胶转化成的莫来石粉制备而成,氧化铝基体以Al2Cl(OH)5为前驱体通过浸渍裂解法得到。该技术方案力学性能优异、弯曲强度高、高温稳定性好,对于本技术领域的发展,将具有重要的意义。
公开号为CN112479691B的中国专利公开一种耐高温增强增韧Ox/Ox复合材料的制备方法,首先采用重铬酸铵和无水草酸的混合溶液对氧化铝纤维织物进行浸渍-热处理的预处理,获得表面覆膜的氧化铝纤维,再放入CVI制备热解炭涂层或BN涂层,在涂层上采用电泳沉积方法获得纳米线涂层,然后将氧化铝陶瓷料浆涂覆在带有纳米线涂层的氧化铝纤维织物表面进行热压,烧结,获得高性能的Ox/Ox复合材料。该技术方案获得了高致密度基体和多微孔纳米氧化物涂层,使氧化铝纤维和氧化铝基体间形成弱界面,从而获得了高强度、高韧性、耐高温的氧化铝纤维增强氧化铝基体复合材料。
上述技术方案中的增强氧化铝陶瓷基复合材料仍存在高温强度保留率低、密度高、使用寿命短等缺陷。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法,采用多孔复合界面使连续纤维和氧化铝基体间形成弱界面,提高了纤维拔出和脱粘的极限能量,提高了复合材料强度。
为了实现上述目的,本发明采用了如下技术方案:
一种连续纤维增强氧化铝陶瓷基复合材料,包括连续纤维增强体、多孔复合界面和多孔基体。
优选地,所述连续纤维增强体为碳化硅纤维或氧化铝纤维,所述碳化硅纤维或氧化铝纤维的纤维直径为5~30μm。
优选地,所述多孔复合界面为SiC纳米线、热解碳和磷酸镧复合而成;所述SiC纳米线的直径为30~200nm,所述SiC纳米线的纤维长度为100~2000nm;所述热解碳的厚度为5~1000nm,所述磷酸镧的厚度为10~1000nm,所述多孔复合界面的总厚度为100~3000nm。
优选地,所述多孔基体为多孔氧化铝-氧化硅基体、多孔氧化铝-莫来石基体、多孔莫来石基体、多孔氧化铝-莫来石-氧化锆基体或多孔氧化铝-莫来石-氧化锆-氧化钇基体,所述多孔基体上第一孔隙的孔隙率为1~8%。
优选地,所述连续纤维增强氧化铝陶瓷基复合材料的密度为2.5±0.4g/m3,所述连续纤维增强氧化铝陶瓷基复合材料上第二孔隙的孔隙率为1~10%,纤维体积分数为20~50%。
本发明还提供了一种连续纤维增强氧化铝陶瓷基复合材料的制备方法,包括以下步骤:
(1)连续纤维增强体制备:
(1.1)按照结构设计进行纤维预制体编织;
(1.2)将上述纤维预制体进行除胶处理,处理温度为400~700℃,处理时间为0.5~5h;
(2)多孔复合界面制备:
(2.1)将硝酸镍溶解在无水乙醇中,制备成浓度为0.001~0.5mol/L的硝酸镍乙醇溶液;
(2.2)将步骤(1)中的已除胶纤维预制体浸渍在步骤(2.1)的硝酸镍乙醇溶液0.5~2h负载镍离子;
(2.3)将步骤(2.2)中预制体沥干溶液在鼓风干燥箱40~60℃干燥5~10h;
(2.4)将步骤(2.3)中预制体置于化学气相沉积炉中生长SiC纳米线;
(2.5)将步骤(2.4)中生长有SiC纳米线的预制体浸渍在浓度0.01~3mol/L磷酸镧水溶液中;
(2.6)将步骤(2.5)中浸渍了磷酸镧水溶液预制体烘干,并在500~800℃下低温烧结1~5h;
(2.7)将步骤(2.6)中烧结后预制体置于化学气相沉积炉中沉积热解碳;
(2.8)重复步骤(2.4)~(2.7),获得具有不同结构的多孔复合界面;
(3)多孔基体制备
(3.1)将异丙醇铝水解成氧化铝溶胶;
(3.2)将二氯化锆水解成氧化锆溶胶;
(3.3)将步骤(3.1)~(3.2)中的氧化铝溶胶、氧化锆溶胶与硅溶胶、氧化钇溶胶进行复配得复合溶胶并反应陈化,陈化温度为40~70℃,陈化时间为0.5~3天;
(3.4)在步骤(3.3)中陈化复合溶胶中加入造孔剂并分散均匀;
(3.5)采用真空浸渍法将步骤(2)中带有多孔复合界面的纤维预制体在步骤(3.4)的复合溶胶中,浸渍时间为1~5h;
(3.6)将浸渍完溶胶的纤维预制体在80~150℃下干燥2~10h;
(3.7)重复步骤(3.5)~(3.6),获得具有不同孔隙率的纤维增强陶瓷前驱体;
(3.8)将步骤(3.7)中的纤维增强陶瓷前驱体在800~1400℃下烧结2~8h,即可制得具有多孔复合界面的连续纤维增强氧化铝陶瓷基复合材料。
优选地,在步骤(2.4)中,SiC纳米线的生长温度为900~1200℃,反应气体为三氯甲基硅烷、氢气和氩气的混合气体,气流比例为:三氯甲基硅烷:氢气:氩气为1:5~10:5~10。
优选地,在步骤(2.6)中,热解碳的沉积温度为700~1100℃,源气体为丙烯或丁烯。
优选地,在步骤(3.3)中,复合溶胶按质量比为:氧化铝:氧化硅:氧化锆:氧化钇:水为8%~50%:0~9%:0~1%:0~5%:50~77%。
与现有技术相比,本发明具有以下有益效果:
本发明采用多孔复合界面使连续纤维和氧化铝基体间形成弱界面,提高了纤维拔出和脱粘的极限能量,提高了复合材料强度,从而获得了高强度、高韧性、耐高温、使用寿命长的纤维增强氧化铝陶瓷基复合材料。
附图说明
图1为本发明的整体结构示意图;
图2为本发明中连续纤维增强体和多孔复合界面的连接示意图;
图3为本发明中连续氧化铝纤维增强体及其表面的SiC纳米线SEM图。
图中:10-多孔基体、20-多孔复合界面、2010-SiC纳米线,2020-热解碳,2030-磷酸镧、30-第一孔隙、40-连续纤维增强体、50-第二孔隙。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1-3,实施例1:
一种连续纤维增强氧化铝陶瓷基复合材料,包括连续纤维增强体40、多孔复合界面20和多孔基体10。
所述连续纤维增强体40为氧化铝纤维,所述氧化铝纤维的纤维直径为10μm。
所述多孔复合界面20为SiC纳米线2010、热解碳2020和磷酸镧2030复合而成;所述SiC纳米线的直径为50nm,所述SiC纳米线的纤维长度为100nm;所述热解碳的厚度为50nm,所述磷酸镧的厚度为100nm,所述多孔复合界面20的总厚度为300nm。
所述多孔基体10为多孔氧化铝基体,所述多孔基体10上第一孔隙30的孔隙率为5%。
所述连续纤维增强氧化铝陶瓷基复合材料的密度为2.7g/m3,且连续纤维增强氧化铝陶瓷基复合材料上第二孔隙50的孔隙率为6%,纤维体积分数为25%。
一种连续纤维增强氧化铝陶瓷基复合材料的制备方法,包括以下步骤:
(1)连续纤维增强体制备:
(1.1)按照结构设计进行纤维预制体编织;
(1.2)将上述纤维预制体进行除胶处理,处理温度为700℃,处理时间为3h;
(2)多孔复合界面制备:
(2.1)将硝酸镍溶解在无水乙醇中,制备成浓度为0.05mol/L的硝酸镍乙醇溶液;
(2.2)将步骤(1)中的已除胶纤维预制体浸渍在步骤(2.1)的硝酸镍乙醇溶液2h负载镍离子;
(2.3)将步骤(2.2)中预制体沥干溶液在鼓风干燥箱40℃干燥5h;
(2.4)将步骤(2.3)中预制体置于化学气相沉积炉中生长SiC纳米线;
(2.5)将步骤(2.4)中生长有SiC纳米线的预制体浸渍在浓度0.08mol/L磷酸镧水溶液中;
(2.6)将步骤(2.5)中浸渍了磷酸镧水溶液预制体烘干,并在700℃下低温烧结2h;
(2.7)将步骤(2.6)中烧结后预制体置于化学气相沉积炉中沉积热解碳;
(2.8)重复步骤(2.4)~(2.7),获得具有不同结构的多孔复合界面;
(3)多孔基体制备
(3.1)将异丙醇铝水解成氧化铝溶胶;
(3.2)将二氯化锆水解成氧化锆溶胶;
(3.3)将步骤(3.1)~(3.2)中的氧化铝溶胶、氧化锆溶胶与硅溶胶、氧化钇溶胶进行复配得复合溶胶并反应陈化,陈化温度为60℃,陈化时间为2天;
(3.4)在步骤(3.3)中陈化复合溶胶中加入造孔剂并分散均匀;
(3.5)采用真空浸渍法将步骤(2)中带有多孔复合界面的纤维预制体在步骤(3.4)的复合溶胶中,浸渍时间为2h;
(3.6)将浸渍完溶胶的纤维预制体在110℃下干燥6h;
(3.7)重复步骤(3.5)~(3.6),获得具有不同孔隙率的纤维增强陶瓷前驱体;
(3.8)将步骤(3.7)中的纤维增强陶瓷前驱体在900℃下烧结4h,即可制得具有多孔复合界面的连续纤维增强氧化铝陶瓷基复合材料。
在步骤(2.4)中,SiC纳米线的生长温度为1000℃,反应气体为三氯甲基硅烷、氢气和氩气的混合气体,气流比例为:三氯甲基硅烷:氢气:氩气为1:5:7。
在步骤(2.6)中,热解碳的沉积温度为700℃,源气体为丙烯。
在步骤(3.3)中,复合溶胶按质量比为:氧化铝:氧化硅:氧化锆:氧化钇:水为50%:0%:0%:0%:50%。
参照图1-3,实施例2:
一种连续纤维增强氧化铝陶瓷基复合材料,包括连续纤维增强体40、多孔复合界面20和多孔基体10。
所述连续纤维增强体40为氧化铝纤维,所述氧化铝纤维的纤维直径为20μm。
所述多孔复合界面20为SiC纳米线2010、热解碳2020和磷酸镧2030复合而成;所述SiC纳米线的直径为100nm,所述SiC纳米线的纤维长度为30nm;所述热解碳的厚度为100nm,所述磷酸镧的厚度为30nm,所述多孔复合界面的总厚度为220nm。
所述多孔基体10为多孔氧化铝-氧化硅基体,所述多孔基体10上第一孔隙30的孔隙率为6%。
所述连续纤维增强氧化铝陶瓷基复合材料的密度为2.8g/m3,所述连续纤维增强氧化铝陶瓷基复合材料上第二孔隙50的孔隙率为7%,纤维体积分数为40%。
一种连续纤维增强氧化铝陶瓷基复合材料的制备方法,包括以下步骤:
(1)连续纤维增强体制备:
(1.1)按照结构设计进行纤维预制体编织;
(1.2)将上述纤维预制体进行除胶处理,处理温度为600℃,处理时间为3h;
(2)多孔复合界面制备:
(2.1)将硝酸镍溶解在无水乙醇中,制备成浓度为0.01mol/L的硝酸镍乙醇溶液;
(2.2)将步骤(1)中的已除胶纤维预制体浸渍在步骤(2.1)的硝酸镍乙醇溶液1h负载镍离子;
(2.3)将步骤(2.2)中预制体沥干溶液在鼓风干燥箱60℃干燥6h;
(2.4)将步骤(2.3)中预制体置于化学气相沉积炉中生长SiC纳米线;
(2.5)将步骤(2.4)中生长有SiC纳米线的预制体浸渍在浓度0.05mol/L磷酸镧水溶液中;
(2.6)将步骤(2.5)中浸渍了磷酸镧水溶液预制体烘干,并在700℃下低温烧结2h;
(2.7)将步骤(2.6)中烧结后预制体置于化学气相沉积炉中沉积热解碳;
(2.8)重复步骤(2.4)~(2.7),获得具有不同结构的多孔复合界面;
(3)多孔基体制备
(3.1)将异丙醇铝水解成氧化铝溶胶;
(3.2)将二氯化锆水解成氧化锆溶胶;
(3.3)将步骤(3.1)~(3.2)中的氧化铝溶胶、氧化锆溶胶与硅溶胶、氧化钇溶胶进行复配得复合溶胶并反应陈化,陈化温度为60℃,陈化时间为1天;
(3.4)在步骤(3.3)中陈化复合溶胶中加入造孔剂并分散均匀;
(3.5)采用真空浸渍法将步骤(2)中带有多孔复合界面的纤维预制体在步骤(3.4)的复合溶胶中,浸渍时间为4h;
(3.6)将浸渍完溶胶的纤维预制体在140℃下干燥3h;
(3.7)重复步骤(3.5)~(3.6),获得具有不同孔隙率的纤维增强陶瓷前驱体;
(3.8)将步骤(3.7)中的纤维增强陶瓷前驱体在1200℃下烧结3h,即可制得具有多孔复合界面的连续纤维增强氧化铝陶瓷基复合材料。
优选地,在步骤(2.4)中,SiC纳米线的生长温度为1100℃,反应气体为三氯甲基硅烷、氢气和氩气的混合气体,气流比例为:三氯甲基硅烷:氢气:氩气为1:8:10。
优选地,在步骤(2.6)中,热解碳的沉积温度为900℃,源气体为丙烯。
优选地,在步骤(3.3)中,复合溶胶按质量比为:氧化铝:氧化硅:氧化锆:氧化钇:水为29%:5%:0%:0%:66%。
综上所述,本发明采用多孔复合界面使连续纤维和氧化铝基体间形成弱界面,提高了纤维拔出和脱粘的极限能量,提高了复合材料强度,从而获得了高强度、高韧性、耐高温、使用寿命长的纤维增强氧化铝陶瓷基复合材料。
本发明中披露的说明和实践,对于本技术领域的普通技术人员来说,都是易于思考和理解的,且在不脱离本发明原理的前提下,还可以做出若干改进和润饰。因此,在不偏离本发明精神的基础上所做的修改或改进,也应视为本发明的保护范围。
Claims (2)
1.一种连续纤维增强氧化铝陶瓷基复合材料,其特征在于,包括连续纤维增强体、多孔复合界面和多孔基体;
所述连续纤维增强体为碳化硅纤维或氧化铝纤维,所述碳化硅纤维或氧化铝纤维的纤维直径为5~30μm;
所述多孔复合界面为SiC纳米线、热解碳和磷酸镧复合而成;所述SiC纳米线的直径为30~200nm,所述SiC纳米线的纤维长度为100~2000nm;所述热解碳的厚度为5~1000nm,所述磷酸镧的厚度为10~1000nm,所述多孔复合界面的总厚度为100~3000nm;
所述多孔基体为多孔氧化铝-氧化硅基体、多孔氧化铝-莫来石基体、多孔莫来石基体、多孔氧化铝-莫来石-氧化锆基体或多孔氧化铝-莫来石-氧化锆-氧化钇基体,所述多孔基体上第一孔隙的孔隙率为1~8%;
所述连续纤维增强氧化铝陶瓷基复合材料的密度为2.5±0.4g/m3,所述连续纤维增强氧化铝陶瓷基复合材料上第二孔隙的孔隙率为1~10%,纤维体积分数为20~50%。
2.如权利要求1所述的一种连续纤维增强氧化铝陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
(1)连续纤维增强体制备:
(1.1)按照结构设计进行纤维预制体编织;
(1.2)将上述纤维预制体进行除胶处理,处理温度为400~700℃,处理时间为0.5~5h;
(2)多孔复合界面制备:
(2.1)将硝酸镍溶解在无水乙醇中,制备成浓度为0.001~0.5mol/L的硝酸镍乙醇溶液;
(2.2)将步骤(1)中的已除胶纤维预制体浸渍在步骤(2.1)的硝酸镍乙醇溶液0.5~2h负载镍离子;
(2.3)将步骤(2.2)中预制体沥干溶液在鼓风干燥箱40~60℃干燥5~10h;
(2.4)将步骤(2.3)中预制体置于化学气相沉积炉中生长SiC纳米线;
(2.5)将步骤(2.4)中生长有SiC纳米线的预制体浸渍在浓度0.01~3mol/L磷酸镧水溶液中;
(2.6)将步骤(2.5)中浸渍了磷酸镧水溶液预制体烘干,并在500~800℃下低温烧结1~5h;
(2.7)将步骤(2.6)中烧结后预制体置于化学气相沉积炉中沉积热解碳;
(2.8)重复步骤(2.4)~(2.7),获得具有不同结构的多孔复合界面;
(3)多孔基体制备
(3.1)将异丙醇铝水解成氧化铝溶胶;
(3.2)将二氯化锆水解成氧化锆溶胶;
(3.3)将步骤(3.1)~(3.2)中的氧化铝溶胶、氧化锆溶胶与硅溶胶、氧化钇溶胶进行复配得复合溶胶并反应陈化,陈化温度为40~70℃,陈化时间为0.5~3天;
(3.4)在步骤(3.3)中陈化复合溶胶中加入造孔剂并分散均匀;
(3.5)采用真空浸渍法将步骤(2)中带有多孔复合界面的纤维预制体在步骤(3.4)的复合溶胶中,浸渍时间为1~5h;
(3.6)将浸渍完溶胶的纤维预制体在80~150℃下干燥2~10h;
(3.7)重复步骤(3.5)~(3.6),获得具有不同孔隙率的纤维增强陶瓷前驱体;
(3.8)将步骤(3.7)中的纤维增强陶瓷前驱体在800~1400℃下烧结2~8h,即可制得具有多孔复合界面的连续纤维增强氧化铝陶瓷基复合材料;
在步骤(2.4)中,SiC纳米线的生长温度为900~1200℃,反应气体为三氯甲基硅烷、氢气和氩气的混合气体,气流比例为:三氯甲基硅烷:氢气:氩气为1:5~10:5~10;
在步骤(2.6)中,热解碳的沉积温度为700~1100℃,源气体为丙烯或丁烯;
在步骤(3.3)中,复合溶胶按质量比为:氧化铝:氧化硅:氧化锆:氧化钇:水为8%~50%:0~9%:0~1%:0~5%:50~77%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210561716.3A CN114988906B (zh) | 2022-05-23 | 2022-05-23 | 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210561716.3A CN114988906B (zh) | 2022-05-23 | 2022-05-23 | 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114988906A CN114988906A (zh) | 2022-09-02 |
CN114988906B true CN114988906B (zh) | 2023-03-24 |
Family
ID=83026947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210561716.3A Active CN114988906B (zh) | 2022-05-23 | 2022-05-23 | 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114988906B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115974536B (zh) * | 2023-01-17 | 2024-02-13 | 航天特种材料及工艺技术研究所 | 一种含有磷酸镧界面层的氧化铝纤维增强陶瓷基复合材料及其制备方法 |
CN116102342B (zh) * | 2023-02-24 | 2023-12-01 | 中国科学院兰州化学物理研究所 | 一种高损伤容限氧化铝复合陶瓷及其制备方法 |
CN116178024B (zh) * | 2023-02-28 | 2024-07-05 | 山东创新精密科技有限公司 | 一种复合多孔陶瓷增强铝合金材料 |
CN116514563A (zh) * | 2023-05-17 | 2023-08-01 | 山东康本新材料研究院 | 一种碳纤维增强铝陶瓷氧枪及其制备方法 |
CN117226036A (zh) * | 2023-08-02 | 2023-12-15 | 江苏君航高新材料科技有限公司 | 一种氧化硅基陶瓷型芯及其制备方法 |
CN117815805B (zh) * | 2023-09-18 | 2024-07-26 | 江苏三责新材料科技有限公司 | 一种耐高温碳化硅陶瓷烟气过滤管及其制备方法 |
CN117820000B (zh) * | 2023-11-14 | 2024-08-23 | 南通三责精密陶瓷有限公司 | 一种纤维增韧烧结碳化硅/氮化硅陶瓷基复合材料及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105237021A (zh) * | 2015-09-11 | 2016-01-13 | 西北工业大学 | SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法 |
CN107540400A (zh) * | 2017-09-26 | 2018-01-05 | 苏州宏久航空防热材料科技有限公司 | 一种具有复合界面的SiCf/SiC陶瓷基复合材料 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6284357B1 (en) * | 1995-09-08 | 2001-09-04 | Georgia Tech Research Corp. | Laminated matrix composites |
CN109553430A (zh) * | 2019-01-16 | 2019-04-02 | 苏州宏久航空防热材料科技有限公司 | 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法 |
CN113943169A (zh) * | 2020-07-16 | 2022-01-18 | 南京航空航天大学 | 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法 |
US11769600B2 (en) * | 2020-09-03 | 2023-09-26 | Uchicago Argonne, Llc | Heat transfer module |
CN112897958B (zh) * | 2021-03-25 | 2022-09-23 | 南通大学 | 一种网格织物增强水泥基复合材料及其制备方法 |
CN113735604B (zh) * | 2021-09-29 | 2022-09-16 | 湖北瑞宇空天高新技术有限公司 | 航空发动机热结构件用多层陶瓷基复合材料及其制备方法 |
-
2022
- 2022-05-23 CN CN202210561716.3A patent/CN114988906B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105237021A (zh) * | 2015-09-11 | 2016-01-13 | 西北工业大学 | SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法 |
CN107540400A (zh) * | 2017-09-26 | 2018-01-05 | 苏州宏久航空防热材料科技有限公司 | 一种具有复合界面的SiCf/SiC陶瓷基复合材料 |
Non-Patent Citations (3)
Title |
---|
LaPO4涂层对C纤维增强SiBCN陶瓷基复合材料性能的影响;谭僖等;《材料工程》;20180530(第06期);110-116 * |
多功能隔绝式化学防护复合面料的制备及性能;顾玉培;《棉纺织技术》;20221008;第50卷(第12期);13-18 * |
连续纤维增强陶瓷基复合材料界面研究进展;袁起立等;《高科技纤维与应用》;20070228;第32卷(第01期);23-27,37 * |
Also Published As
Publication number | Publication date |
---|---|
CN114988906A (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114988906B (zh) | 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法 | |
CN109553430A (zh) | 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法 | |
Naslain et al. | Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents | |
CN107540400A (zh) | 一种具有复合界面的SiCf/SiC陶瓷基复合材料 | |
CN110256082B (zh) | 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法 | |
CN108585906B (zh) | 一种Cf/ZrC-SiC超高温陶瓷基复合材料及其制备方法 | |
CN105016759A (zh) | 一种C/SiC复合材料的快速制备方法 | |
CN112479691B (zh) | 一种耐高温增强增韧氧化铝纤维增强氧化铝基体复合材料的制备方法 | |
CN103614808B (zh) | 带有绒毛状晶须的莫来石纤维及制备方法 | |
Yang et al. | Process and mechanical properties of in situ silicon carbide‐nanowire‐reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite | |
WO2019050619A1 (en) | SINGLE PHASE FIBER REINFORCED CERAMIC MATRIX COMPOSITES | |
CN109811327B (zh) | 一种纳米界面层/碳纳米管-c/c复合材料及其制备方法 | |
Zhang et al. | Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance | |
KR101101244B1 (ko) | 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법 | |
CN113979752A (zh) | 一种莫来石纤维增强陶瓷基复合材料及其制备方法 | |
CN114988901A (zh) | 一种高致密SiC/SiC复合材料的快速制备方法 | |
CN106966743B (zh) | 一种连续纤维增强热结构材料复合界面层的制备方法 | |
CN113135740B (zh) | 一种陶瓷基复合材料及其制备方法和应用 | |
CN115124361B (zh) | 一种具有混杂结构的陶瓷基复合材料及其制备方法 | |
CN110407597A (zh) | 一种稀土氧化物改性碳化硅陶瓷基复合材料及其制备方法 | |
CN111039695A (zh) | 碳化硅拓补骨架结构增强氧化铝多孔陶瓷的制备方法 | |
CN116375504A (zh) | 一种碳基或陶瓷基复合材料表面的致密高温抗氧化涂层及其制备方法 | |
CN113800934B (zh) | 一种莫来石纤维增强陶瓷基复合材料及其制备方法 | |
CN114853490A (zh) | 兼具优异成型性和良好力学性能的SiC/SiC陶瓷复合材料及制备方法 | |
CN111908934B (zh) | 一种纤维束内原位反应SiC复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |