CN113943169A - 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法 - Google Patents

一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
CN113943169A
CN113943169A CN202010709111.5A CN202010709111A CN113943169A CN 113943169 A CN113943169 A CN 113943169A CN 202010709111 A CN202010709111 A CN 202010709111A CN 113943169 A CN113943169 A CN 113943169A
Authority
CN
China
Prior art keywords
fiber preform
fiber
solution
sic
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010709111.5A
Other languages
English (en)
Inventor
杨丽霞
钟伯锋
张俊雄
陈照峰
廖家豪
寇宗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010709111.5A priority Critical patent/CN113943169A/zh
Publication of CN113943169A publication Critical patent/CN113943169A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明属于氧化物陶瓷基复合材料领域,具体提供一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法。本发明的一种SiC纳米线增强氧化物陶瓷基复合材,包括:SiC纳米线增强的Mullite‑Al2O3基体、氧化铝纤维预制体以及LaPO4界面相组成。制备方法包括以下步骤:将氧化铝纤维编织成三维预制体,经溶胶‑凝胶法制备LaPO4界面后,以化学气相渗透法在带有界面的纤维预制体中制备SiC纳米线,再同样采用化学气相渗透法制备Mullite‑Al2O3基体,最终制得复合材料。本发明提供一种可在纤维与基体间具有足够损伤容限的适当弱结合界面且以低温制备高致密度基体,在减少纤维损伤的同时还能提高复合材料的断裂功和断裂应变,能满足航空航天领域对高性能材料的需求。

Description

一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法
技术领域
本发明属于氧化物陶瓷基复合材料领域,具体提供一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法。
背景技术
航空发动机被誉为“工业制造皇冠上的明珠”,其重要性不言而喻。我国航空发动机技术起步较晚,外加西方航空发达国家的技术封锁,高推重比发动机成为新一代战机的主要短板。除先进制造、装配及设计验证体系外,最关键的还要有高性能材料。传统镍基高温合金因减重和提高使用温度空间有限,愈发难以满足高温、高压燃气环境。
“一代材料,一代装备”。随着陶瓷基复合材料的迅速发展,为高推重比航空发动机的高温部件提供了更多的选择。非氧化物纤维增韧的陶瓷基复合材料,在高温、含氧及水分等服役环境下,容易氧化失效而带来灾难性后果。而以氧化物纤维增韧的陶瓷基复合材料不仅具有优异的耐高温、耐磨损、高比强、高比模、轻质量等优势,还具有天然的抗氧化性,有可能在1000~1300℃的燃气环境中长期服役,不会因为氧化问题而形成灾难性破坏,是当前最具潜力应用于航空航天领域高温部件的材料。此外,该材料因其耐腐蚀性能优异,还可用作高温、强腐蚀气氛环境下的汽轮机、热交换器、热气过滤器等的候选材料。
目前,国内氧化物纤维增韧的陶瓷基复合材料仍处于基础研究阶段,除高性能氧化物纤维制备技术不成熟外,基体及纤维-基体间界面层的制备技术也是关键所在。以往研究中获得的氧化物纤维增韧的陶瓷基复合材料,由于高温下纤维与基体反应形成强结合界面达不到裂纹偏转的增韧目的,或者基体制造温度过高引起纤维晶粒长大降低纤维的性能,这些均导致了复合材料在高温服役环境下性能可靠性不足的问题。因此,复合材料界面强韧化技术、基体低温制造技术对于高性能氧化物纤维增氧的陶瓷基复合材料具有重要的意义。
发明内容
本发明的目的旨在克服现有技术的不足,提供一种可在纤维与基体间具有足够损伤容限的适当弱结合界面且以低温制备高致密度基体的SiC纳米线增强氧化物陶瓷基复合材料及其制备方法。
为实现本发明的目的所采用的方案是:一种SiC纳米线增强氧化物陶瓷基复合材料的制备方法,包括以下顺序步骤:
(1)采用三维编织工艺,将氧化铝纤维编织成纤维预制体,预制体规格为(10~200)×(10~200)×(2~10)mm3的平板状纤维预制体;所述的三维编织工艺为三维四向编织工艺,三维五向编织工艺,三维六向编织工艺或三维七向编织工艺;
(2)将步骤(1)的纤维预制体置于管式炉中,在600℃~900℃空气环境下煅烧30min~60min;
(3)将制备磷酸镧的前驱体溶液在<5℃的低温环境中保存15min~20min,按照原子比镧∶磷=0.8∶1~1.2∶1的比例,在<5℃环境下将制备磷酸镧的前驱体溶液混合配置成质量浓度为20g/L~100g/L的磷酸镧混合液;所述的制备磷酸镧的前驱体溶液为磷酸水溶液和柠檬酸镧水溶液组合或植酸水溶液和硝酸镧水溶液组合;
(4)室温下,将步骤(2)中煅烧后的纤维预制体浸入步骤(3)中制得的磷酸镧混合溶液15min~30min,取出纤维预制体浸入80℃~90℃恒温去离子水浴中保温5min~10min;
(5)将步骤(4)中浸渍后的纤维预制体取出,用去离子水清洗,置于100℃~120℃烘箱中干燥30min~60min,快速放入500℃~800℃管式炉中保温5min~10min后取出;
(6)重复步骤(4)~(5),重复5次~10次后,得到具有不同磷酸镧厚度的纤维预制体;
(7)将步骤(6)中的纤维预制体在700℃~1100℃高温热处理30min~60min后,制得具有LaPO4界面的氧化物纤维预制体;
(8)将步骤(7)中的具有LaPO4界面的氧化物纤维预制体放入浓度为0.05mol/L~0.1mol/L的催化剂溶液中浸渍10min~15min后,放入20℃~80℃烘箱中干燥5h~20h后取出制得带有催化剂的纤维预制体;所述催化剂溶液为硝酸镍乙醇溶液、硫酸镍乙醇溶液、氯化铁乙醇溶液、氯化亚铁乙醇溶液、硫酸铁乙醇溶液、二茂铁乙醇溶液或氯化钴乙醇溶液中的一种;
(9)将步骤(8)中的带有催化剂的纤维预制体放入管式炉中,抽真空至2kPa后,以300mL/min~500mL/min通入高纯氩气,以5℃/min~10℃/min升温速率升温至1000℃~1150℃后,通入三氯甲基硅烷和H2混合气体,气体流量分别为20mL/min~150mL/min和350mL/min~700mL/min,沉积2h~4h后制得纤维表面带有SiC纳米线的纤维预制体;
(10)将步骤(9)中的纤维表面带有SiC纳米线的纤维预制体放入化学气相沉积炉内,抽真空至2kPa后,以5℃/min~10℃/min升温速率升温至400℃~600℃,通入流量为100mL/min~200mL/min和0mL/min~200mL/min的H2将AlCl3和SiCl4分别带入反应室,同时通入流量为0mL/min~600mL/min的H2和100mL/min~200mL/min的CO2气体,沉积40h~60h;再以相同升温速率升温至1000℃~1100℃,沉积20h~40h,得到SiC纳米线增强的mullite-Al2O3复合材料;
(11)将步骤(10)中的SiC纳米线增强的mullite-Al2O3复合材料置于箱式炉中,以5℃/min~10℃/min升温速率至1200℃~1250℃,保温1h~2h将基体中的非α-Al2O3相转变为α-Al2O3相,制得含LaPO4界面的SiC纳米线增强的mullite-Al2O3复合材料。
本发明的有益效果是:(1)采用三维编织技术不仅具有极强的结构可设计性,还具有近净尺寸成型、改善复合材料力学性能等优势;(2)通过溶胶-凝胶技术在纤维预制体表面制备了一个具有足够损伤容限的LaPO4界面,一方面可以利用LaPO4熔点高(约2000℃)、化学稳定性好、与莫来石、氧化铝等氧化物陶瓷高温兼容性好(1600℃以下)等优势,另一方面有效避免了纤维与基体在高温环境下形成强结合界面,为基体裂纹偏转、纤维与基体脱粘拔出等耗能方式提供了可能,提高了复合材料的韧性;(3)通过改变催化剂浓度,利用化学气相渗透法,可以在LaPO4界面上沉积出不同长度的SiC纳米线,在利用SiC优异的耐高温(2830℃)、抗氧化(1500℃)、耐侵蚀性能的同时,因SiC与氧化物纤维和基体具有良好的物理化学相容性,还可以进一步提高复合材料的断裂功和断裂应变;(4)通过化学气相渗透法实现基体的低温制造,不仅具有对纤维损伤小、基体更均匀的优势,还能控制基体的密度和纯度,有利于提高复合材料的力学性能。
附图说明
图1是本发明实施例制备方法的示意图
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
(1)采用三维四向编织工艺,将氧化铝纤维编织成纤维预制体,预制体规格为60×60×10mm3的平板状纤维预制体;
(2)将步骤(1)的纤维预制体置于管式炉中,在600℃空气环境下煅烧60min;
(3)将制备磷酸镧的前驱体溶液在1℃的低温环境中保存20min,按照原子比镧∶磷=1∶1的比例,在1℃环境下将制备磷酸镧的前驱体溶液混合配置成质量浓度为100g/L的磷酸镧混合液;所述的制备磷酸镧的前驱体溶液为磷酸水溶液和柠檬酸镧水溶液组合;
(4)室温下,将步骤(2)中煅烧后的纤维预制体浸入步骤(3)中制得的磷酸镧混合溶液20min,取出纤维预制体浸入90℃恒温去离子水浴中保温5min;
(5)将步骤(4)中浸渍后的纤维预制体取出,用去离子水清洗,置于100℃烘箱中干燥60min,快速放入700℃管式炉中保温10min后取出;
(6)重复步骤(4)~(5),重复8次后,得到具有磷酸镧的纤维预制体;
(7)将步骤(6)中的纤维预制体在900℃高温热处理60min后,制得具有LaPO4界面的氧化物纤维预制体;
(8)将步骤(7)中的具有LaPO4界面的氧化物纤维预制体放入浓度为0.05mol/L的催化剂溶液中浸渍15min后,放入60℃烘箱中干燥5h后取出制得带有催化剂的纤维预制体;所述催化剂溶液为二茂铁乙醇溶液;
(9)将步骤(8)中的带有催化剂的纤维预制体放入管式炉中,抽真空至2kPa后,以400mL/min通入高纯氩气,以5℃/min升温速率升温至1100℃后,通入三氯甲基硅烷和H2混合气体,气体流量分别为40mL/min和400mL/min,沉积2h后制得纤维表面带有SiC纳米线的纤维预制体;
(10)将步骤(9)中的纤维表面带有SiC纳米线的纤维预制体放入化学气相沉积炉内,抽真空至2kPa后,以5℃/min升温速率升温至600℃,通入流量为150mL/min和50mL/min的H2将AlCl3和SiCl4分别带入反应室,同时通入流量为100mL/min的H2和100mL/min的CO2气体,沉积40h;再以相同升温速率升温至1100℃,沉积30h,得到SiC纳米线增强的mullite-Al2O3复合材料;
(11)将步骤(10)中的SiC纳米线增强的mullite-Al2O3复合材料置于箱式炉中,以10℃/min升温速率至1250℃,保温1h将基体中的非α-Al2O3相转变为α-Al2O3相,制得含LaPO4界面的SiC纳米线增强的mullite-Al2O3复合材料。
实施例2
(1)采用三维五向编织工艺,将氧化铝纤维编织成纤维预制体,预制体规格为120×120×12mm3的平板状纤维预制体;
(2)将步骤(1)的纤维预制体置于管式炉中,在900℃空气环境下煅烧30min;
(3)将制备磷酸镧的前驱体溶液在3℃的低温环境中保存15min,按照原子比镧∶磷=1∶1的比例,在3℃环境下将制备磷酸镧的前驱体溶液混合配置成质量浓度为80g/L的磷酸镧混合液;所述的制备磷酸镧的前驱体溶液为植酸水溶液和硝酸镧水溶液组合;
(4)室温下,将步骤(2)中煅烧后的纤维预制体浸入步骤(3)中制得的磷酸镧混合溶液30min,取出纤维预制体浸入90℃恒温去离子水浴中保温5min;
(5)将步骤(4)中浸渍后的纤维预制体取出,用去离子水清洗,置于120℃烘箱中干燥30min,快速放入700℃管式炉中保温5min后取出;
(6)重复步骤(4)~(5),重复10次后,得到具有磷酸镧的纤维预制体;
(7)将步骤(6)中的纤维预制体在1100℃高温热处理30min后,制得具有LaPO4界面的氧化物纤维预制体;
(8)将步骤(7)中的具有LaPO4界面的氧化物纤维预制体放入浓度为0.1mol/L的催化剂溶液中浸渍10min后,放入80℃烘箱中干燥10h后取出制得带有催化剂的纤维预制体;所述催化剂溶液为氯化铁乙醇溶液;
(9)将步骤(8)中的带有催化剂的纤维预制体放入管式炉中,抽真空至2kPa后,以350mL/min通入高纯氩气,以5℃/min升温速率升温至1050℃后,通入三氯甲基硅烷和H2混合气体,气体流量分别为50mL/min和500mL/min,沉积2h后制得纤维表面带有SiC纳米线的纤维预制体;
(10)将步骤(9)中的纤维表面带有SiC纳米线的纤维预制体放入化学气相沉积炉内,抽真空至2kPa后,以5℃/min升温速率升温至550℃,通入流量为200mL/min和100mL/min的H2将AlCl3和SiCl4分别带入反应室,同时通入流量为200mL/min的H2和100mL/min的CO2气体,沉积50h;再以相同升温速率升温至1050℃,沉积20h,得到SiC纳米线增强的mullite-Al2O3复合材料;
(11)将步骤(10)中的SiC纳米线增强的mullite-Al2O3复合材料置于箱式炉中,以10℃/min升温速率至1250℃,保温2h将基体中的非α-Al2O3相转变为α-Al2O3相,制得含LaPO4界面的SiC纳米线增强的mullite-Al2O3复合材料。

Claims (2)

1.一种SiC纳米线增强氧化物陶瓷基复合材料,其特征在于:包括氧化物基体、氧化物纤维预制体以及处于基体及纤维预制体之间的界面相;所述基体为SiC纳米线增强的mullite-Al2O3,所述的SiC纳米线长度为5μm~110μm,直径为20nm~140nm;所述纤维预制体为三维编织的氧化铝纤维预制体,纤维体积分数为30%~60%,所述的氧化铝纤维为连续纤维,直径为10μm~12μm;所述的界面相为LaPO4界面,厚度为50nm~100nm。
2.一种SiC纳米线增强氧化物陶瓷基复合材料的制备方法,包括以下顺序步骤:
(1)采用三维编织工艺,将氧化铝纤维编织成纤维预制体,预制体规格为(10~200)×(10~200)×(2~10)mm3的平板状纤维预制体;所述的三维编织工艺为三维四向编织工艺,三维五向编织工艺,三维六向编织工艺或三维七向编织工艺;
(2)将步骤(1)的纤维预制体置于管式炉中,在600℃~900℃空气环境下煅烧30min~60min;
(3)将制备磷酸镧的前驱体溶液在<5℃的低温环境中保存15min~20min,按照原子比镧∶磷=0.8∶1~1.2∶1的比例,在<5℃环境下将制备磷酸镧的前驱体溶液混合配置成质量浓度为20g/L~100g/L的磷酸镧混合液;所述的制备磷酸镧的前驱体溶液为磷酸水溶液和柠檬酸镧水溶液组合或植酸水溶液和硝酸镧水溶液组合;
(4)室温下,将步骤(2)中煅烧后的纤维预制体浸入步骤(3)中制得的磷酸镧混合溶液15min~30min,取出纤维预制体浸入80℃~90℃恒温去离子水浴中保温5min~10min;
(5)将步骤(4)中浸渍后的纤维预制体取出,用去离子水清洗,置于100℃~120℃烘箱中干燥30min~60min,快速放入500℃~800℃管式炉中保温5min~10min后取出;
(6)重复步骤(4)~(5),重复5次~10次后,得到具有不同磷酸镧厚度的纤维预制体;
(7)将步骤(6)中的纤维预制体在700℃~1100℃高温热处理30min~60min后,制得具有LaPO4界面的氧化物纤维预制体;
(8)将步骤(7)中的具有LaPO4界面的氧化物纤维预制体放入浓度为0.05mol/L~0.1mol/L的催化剂溶液中浸渍10min~15min后,放入20℃~80℃烘箱中干燥5h~20h后取出制得带有催化剂的纤维预制体;所述催化剂溶液为硝酸镍乙醇溶液、硫酸镍乙醇溶液、氯化铁乙醇溶液、氯化亚铁乙醇溶液、硫酸铁乙醇溶液、二茂铁乙醇溶液或氯化钴乙醇溶液中的一种;
(9)将步骤(8)中的带有催化剂的纤维预制体放入管式炉中,抽真空至2kPa后,以300mL/min~500mL/min通入高纯氩气,以5℃/min~10℃/min升温速率升温至1000℃~1150℃后,通入三氯甲基硅烷和H2混合气体,气体流量分别为20mL/min~150mL/min和350mL/min~700mL/min,沉积2h~4h后制得纤维表面带有SiC纳米线的纤维预制体;
(10)将步骤(9)中的纤维表面带有SiC纳米线的纤维预制体放入化学气相沉积炉内,抽真空至2kPa后,以5℃/min~10℃/min升温速率升温至400℃~600℃,通入流量为100mL/min~200mL/min和0mL/min~200mL/min的H2将AlCl3和SiCl4分别带入反应室,同时通入流量为0mL/min~600mL/min的H2和100mL/min~200mL/min的CO2气体,沉积40h~60h;再以相同升温速率升温至1000℃~1100℃,沉积20h~40h,得到SiC纳米线增强的mullite-Al2O3复合材料;
(11)将步骤(10)中的SiC纳米线增强的mullite-Al2O3复合材料置于箱式炉中,以5℃/min~10℃/min升温速率至1200℃~1250℃,保温1h~2h将基体中的非α-Al2O3相转变为α-Al2O3相,制得含LaPO4界面的SiC纳米线增强的mullite-Al2O3复合材料。
CN202010709111.5A 2020-07-16 2020-07-16 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法 Pending CN113943169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010709111.5A CN113943169A (zh) 2020-07-16 2020-07-16 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010709111.5A CN113943169A (zh) 2020-07-16 2020-07-16 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113943169A true CN113943169A (zh) 2022-01-18

Family

ID=79326974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010709111.5A Pending CN113943169A (zh) 2020-07-16 2020-07-16 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113943169A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988906A (zh) * 2022-05-23 2022-09-02 南通大学 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665463A (en) * 1994-04-15 1997-09-09 Rockwell International Corporation Fibrous composites including monazites and xenotimes
CN101012767A (zh) * 2007-01-12 2007-08-08 华南理工大学 陶瓷载体负载催化剂的汽车尾气净化装置及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN105272325A (zh) * 2015-11-13 2016-01-27 中航复合材料有限责任公司 一种连续氧化物纤维织物表面涂层的制备方法
CN106966742A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
WO2019166228A1 (de) * 2018-03-01 2019-09-06 Siemens Aktiengesellschaft Faserverbundwerkstoff mit fasern mit einer gleitschicht aus lanthanphosphat; bauteil; gasturbine; verfahren zum herstellen sowie prozessanlage
CN111005226A (zh) * 2019-12-04 2020-04-14 航天特种材料及工艺技术研究所 一种氧化铝纤维三维织物界面改性的方法及由此制得的改性氧化铝纤维三维织物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665463A (en) * 1994-04-15 1997-09-09 Rockwell International Corporation Fibrous composites including monazites and xenotimes
CN101012767A (zh) * 2007-01-12 2007-08-08 华南理工大学 陶瓷载体负载催化剂的汽车尾气净化装置及其制备方法
CN105237021A (zh) * 2015-09-11 2016-01-13 西北工业大学 SiC纳米线改性陶瓷基复合材料界面制备陶瓷基复合材料的方法
CN105272325A (zh) * 2015-11-13 2016-01-27 中航复合材料有限责任公司 一种连续氧化物纤维织物表面涂层的制备方法
CN106966742A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
WO2019166228A1 (de) * 2018-03-01 2019-09-06 Siemens Aktiengesellschaft Faserverbundwerkstoff mit fasern mit einer gleitschicht aus lanthanphosphat; bauteil; gasturbine; verfahren zum herstellen sowie prozessanlage
CN111005226A (zh) * 2019-12-04 2020-04-14 航天特种材料及工艺技术研究所 一种氧化铝纤维三维织物界面改性的方法及由此制得的改性氧化铝纤维三维织物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈照峰等: ""用化学气相渗透法制备莫来石陶瓷基复合材料"", 《南京航空航天大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988906A (zh) * 2022-05-23 2022-09-02 南通大学 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107353025B (zh) 一种耐1200℃抗氧化的陶瓷基复合材料的制备方法
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN114988906B (zh) 一种连续纤维增强氧化铝陶瓷基复合材料及其制备方法
CN101503305A (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
WO2023103209A1 (zh) 一种改性碳纤维增韧氧化铝自愈合陶瓷的制备方法
CN101913894A (zh) 一种碳化硅陶瓷基复合材料的双重自愈合改性方法
CN102167623B (zh) 炭素材料抗氧化涂层及制备方法
CN105110809A (zh) 石墨烯改性高热导率三维炭/炭复合材料的制备方法
CN109811327B (zh) 一种纳米界面层/碳纳米管-c/c复合材料及其制备方法
CN109678540B (zh) Bn纳米管界面相强韧化碳纤维增强陶瓷基复合材料及其制备方法
CN109293367B (zh) 一种磷酸铈改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN106966742A (zh) 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
CN113943168A (zh) 一种新型高强度氧化物陶瓷基复合材料及其制备方法
Zhang et al. Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance
CN113845367A (zh) 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN113943169A (zh) 一种SiC纳米线增强氧化物陶瓷基复合材料及其制备方法
CN106747555A (zh) 一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法
CN104926343B (zh) 含界面相的硅酸铝纤维增强氧化物陶瓷及其制备方法
CN114478015A (zh) 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法
CN114315395A (zh) SiCf/SiC复合材料的SiC纳米线增韧PyC/SiC复合界面及其制备方法
CN117024164A (zh) 一种陶瓷改性碳碳复合材料鼻锥及其制备方法
CN113135740B (zh) 一种陶瓷基复合材料及其制备方法和应用
CN110407597B (zh) 一种稀土氧化物改性碳化硅陶瓷基复合材料及其制备方法
CN111233498A (zh) 一种环境障碍涂层及其制备方法和应用
CN113800934B (zh) 一种莫来石纤维增强陶瓷基复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220118