CN114988866A - 一种5g陶瓷滤波器材料、其低温烧结方法及应用 - Google Patents

一种5g陶瓷滤波器材料、其低温烧结方法及应用 Download PDF

Info

Publication number
CN114988866A
CN114988866A CN202210407349.1A CN202210407349A CN114988866A CN 114988866 A CN114988866 A CN 114988866A CN 202210407349 A CN202210407349 A CN 202210407349A CN 114988866 A CN114988866 A CN 114988866A
Authority
CN
China
Prior art keywords
ceramic
filter material
low
ceramic filter
milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210407349.1A
Other languages
English (en)
Other versions
CN114988866B (zh
Inventor
孔令兵
张太运
许积文
朱兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Tiersai New Material Co ltd
Original Assignee
Zhejiang Tiersai New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Tiersai New Material Co ltd filed Critical Zhejiang Tiersai New Material Co ltd
Priority to CN202210407349.1A priority Critical patent/CN114988866B/zh
Publication of CN114988866A publication Critical patent/CN114988866A/zh
Application granted granted Critical
Publication of CN114988866B publication Critical patent/CN114988866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种滤波器材料,特别涉及一种5G陶瓷滤波器材料、其低温烧结方法及应用,属于陶瓷材料技术领域。一种5G陶瓷滤波器材料的低温烧结方法,该方法包括如下步骤:S1、根据陶瓷材料的化学计量比进行原料的配料;S2、将所述原料混合后进行高能球磨处理,得到陶瓷粉体;所述高能球磨为采用碳化钨磨罐及磨球的干磨工艺,所述的磨球是4‑6毫米直径的磨球、8‑10毫米直径的磨球中的一种或两种组合,球:料重量比为20∶1~80∶1;S3、将步骤S2得到的陶瓷粉体干压成型,制成圆片,在1000~1300℃的温度下烧结,保温时间为1~12h,得到产品。

Description

一种5G陶瓷滤波器材料、其低温烧结方法及应用
技术领域
本发明涉及一种滤波器材料,特别涉及一种5G陶瓷滤波器材料、其低温烧结方法及应用,属于陶瓷材料技术领域。
背景技术
随着5G的逐渐实施,基站用滤波器由原来的金属腔变成介质陶瓷,称为陶瓷滤波器。根据电磁学原理,谐振器的尺寸和电介质材料的介电常数的平方根成反比。所以一个给定频率的滤波器来说,电介质材料的介电常数越大,所需要的电介质陶瓷的体积就越小,也就是说滤波器的尺寸也就越小。因此,微波介质陶瓷材料的高介电常数有利于微波介质滤波器的小型化、集成化。
目前5G基站用陶瓷滤波器主要采用传统的陶瓷材料制备工艺,其中粉体处理过程主要涉及湿法球磨工艺,但是该工艺也具有弊端:一方面湿法球磨只能起到一般的混合作用,另一方面,工艺比较耗时。这种情况下生产的陶瓷滤波器需要较高的烧结温度(>1300℃),对于烧结温度超过1300℃的陶瓷滤波器材料还无法适用,因此如何制备陶瓷滤波器并降低烧结温度是亟需解决的技术难点。
发明内容
本发明的目的在于提供一种5G陶瓷滤波器材料的低温烧结方法,该方法通过对球磨工艺的改进,实现了材料的低温烧结,同时简化了制备工艺,缩短了工时。
本发明解决其技术问题所采用的技术方案是:
一种5G陶瓷滤波器材料的低温烧结方法,该方法包括如下步骤:
S1、根据陶瓷材料的化学计量比进行原料的配料;
S2、将所述原料混合后进行高能球磨处理,得到陶瓷粉体;
所述高能球磨为采用碳化钨磨罐及磨球的干磨工艺,所述的磨球是4-6毫米直径的磨球、8-10毫米直径的磨球中的一种或两种组合,球料重量比为20∶1~80∶1;
S3、将步骤S2得到的陶瓷粉体干压成型,制成圆片,在1000~1300℃的温度下烧结,保温时间为l~12h,得到产品。
本发明中,对得到的产品进行性能方面的检测,具体是用热膨胀仪测量圆片生坯的烧结曲线,根据烧结曲线总结出粉体的烧结性能;另外,实验后经动态烧结的样品用于密度测量。
所述高能球磨区别于传统的以无水乙醇或去离子水为介质的湿法球磨,不采用任何液体介质。
本发明提供的陶瓷材料化学通式为:(1-x)MgTiO3-xCaTiO3,并包括Bi2O3、CuO、MnO2、CoO等微量掺杂成分中的一种或几种,以(1-x)MgTiO3-xCaTiO3的重量计为100%,各种掺杂成分总量重量百分比不超过3%。在本发明中,所述化学通式中,其中,x优选为0.005-0.10,各种微量掺杂成分总量重量百分比不超过3%。该陶瓷材料采用现有的湿法球磨工艺需要>1300℃的温度烧结。由于烧结温度过高导致晶粒生长过大,机械性能严重下降;同时高温带来更大的能耗问题。
本发明提供的5G陶瓷滤波器材料以(Mg0.95Ca0.05)TiO3为基体,微量掺杂成分用以材料改性。
在本发明中,所述碳化钨球磨罐容量为250毫升或500毫升,优选为500毫升。
作为优选,所述磨球为碳化钨磨球,所述烧结温度为1053~1121℃。
作为优选,步骤S2中所述高能球磨的转速为150~250rpm,球磨时间为4-24小时。转速优选为200rpm,球磨时间优选为8小时。
作为优选,步骤S3中陶瓷粉体的干压成型,是在添加适当PVA粘结剂的情况下,20±2MPa压力下进行干压成型,得到的生坯直径10±0.1毫米,厚度1±0.02毫米。
作为优选,步骤S3中的烧结,控制升温速率为1~20℃/min,降温速率10℃/min至600℃后再随炉降温至室温。
作为优选,所述的磨球是由5毫米和10毫米直径的碳化钨磨球以重量比为1∶1的组合组成。
作为优选,所述陶瓷材料为Mg0.95Ca0.05TiO3,以Mg0.95Ca0.05TiO3的重量计为100%,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
一种所述的低温烧结方法制得的5G陶瓷滤波器材料。
一种本发明所述的5G陶瓷滤波器材料作为5G通讯基站中滤波器件的应用。
本发明的有益效果是:
本发明通过高能球磨技术,避开了传统陶瓷工艺中普遍采用的湿法球磨步骤,不仅缩短了工艺周期,而且由于高能球磨对粉体颗粒的细化效果更好,从而有效地降低了烧结温度150-200℃,实现了产品的低温烧结,使得材料的机械强度提高30-50%,产品的生产能耗降低40%。
附图说明
图1是实施例2制得的陶瓷粉体的烧结曲线;
图2是实施例2制得的陶瓷粉体烧结后代表性扫描电镜照片。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
在本发明中,若无特殊说明,所有原料均为本领域技术人员熟知的市售商品,原料纯度优选在99%以上。
在本发明中,所述氧化镁,纯度优选为99.8%,所述碳酸钙,纯度优选为99%,所述二氧化钛,纯度优选为99%,所述微量掺杂成分,纯度优选为99%。
在本发明中,采用热膨胀仪测量陶瓷粉体烧结性能的升温速度为1~20℃/min。
在本发明中,烧结样品用阿基米德法测量密度,用扫描电子显微镜观察陶瓷微观结构、晶粒大小及尺寸分布。
在本发明中,所述压制优选在模具中进行。本发明对于所述模具没有特殊限定,采用本领域熟知的模具即可。在本发明的实施例中,所述模具优选为圆柱形模具。在本发明中,所述压制过程中优选为利用模具将二级陶瓷粉体制成高密度、高强度的陶瓷生坯。本发明对所述压制的具体操作没有特别要求,采用本领域技术人员所熟知的压制操作即可。
在本发明中,所述烧结处理的具体操作优选为:将压制所得到的压片放置到垫有氧化铝陶瓷板上,然后在压片表面撒上一层薄薄的陶瓷粉体。
在本发明中,所述碳化钨球磨罐容量为250毫升或500毫升,优选为500毫升。
实施例1
一种5G陶瓷滤波器材料的低温烧结方法,具体步骤如下:
(1)配料:按陶瓷材料分子式根据化学计量比称取MgO、CaCO3、TiO2,及Bi2O3、CuO、MnO2的原料,称取制备出0.1mol陶瓷粉体所需原料,其中,
5G陶瓷材料成分:Mg0.95Ca0.05TiO3,以Mg0.95Ca0.05TiO3的重量计为100%(下同),微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
(2)球磨:将称取的原料放入内有不同大小碳化钨球(直径5和10毫米,数量比为2∶1)的250毫升碳化钨球磨罐中,球料重量比为20∶1。采用行星式球磨机球磨10h;球磨过程中每25分钟停止5分钟让球磨罐降温,以保证球磨罐温度不至于过高。
(3)干压成型:将球磨好的粉料直接取出,添加适量PVA溶液作为粘结剂,制成圆片,直径10±0.1毫米,厚度1+0.02毫米。
(4)烧结性能测试:采用商用热膨胀仪对圆片生坯进行烧结性能测试,升温速度10℃/min,获得烧结曲线。根据烧结曲线总结粉体的烧结性能参数。
(5)密度测量:采用阿基米德法测量烧结性能测试完成所获得样品的密度。
(6)微观结构分析:采用扫描电镜对陶瓷样品的自然断面进行分析,获得微观结构照片,分析晶粒大小及尺寸分布。
实施例2
一种5G陶瓷滤波器材料的低温烧结方法,具体步骤如下:
(1)配料:按陶瓷材料分子式根据化学计量比称取MgO、CaCO3、TiO2,及Bi2O3、CuO、MnO2的原料,称取制备出0.1mol陶瓷粉体所需原料,其中,
5G陶瓷材料成分:Mg0.95Ca0.05TiO3,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
(2)球磨:将称取的原料放入内有不同大小碳化钨球(直径5和10毫米,数量比为1∶1)的250毫升碳化钨球磨罐中,球料重量比为20∶1。采用行星式球磨机球磨10h;球磨过程中每25分钟停止5分钟让球磨罐降温,以保证球磨罐温度不至于过高。
(3)干压成型:将球磨好的粉料直接取出,添加适量PVA溶液作为粘结剂,制成圆片,直径10±0.1毫米,厚度1±0.02毫米。
(4)至(6)步骤同实施例1。
实施例2制得的陶瓷粉体的烧结曲线见图1;陶瓷粉体烧结后代表性扫描电镜照片见图2。根据图1可知,所得粉体的最大收缩率在1080℃左右,这一温度比通常所需1300℃降低了超过200℃。由图2可知,所得滤波器陶瓷样品的断面出现沿晶和穿晶两种断裂模式,说明陶瓷的晶界强度已经达到材料的理论值水平。也就是说,滤波器陶瓷的机械强度已经达到最优化要求。
实施例3
一种5G陶瓷滤波器材料的低温烧结方法,具体步骤如下:
(1)配料:按陶瓷材料分子式根据化学计量比称取MgO、CaCO3、TiO2,及Bi2O3、CuO、MnO2的原料,称取制备出0.1mol陶瓷粉体所需原料,其中,
5G陶瓷材料成分:Mg0.95Ca0.05TiO3,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
(2)球磨:将称取的原料放入内有不同大小碳化钨球(直径5和10毫米,数量比为1∶2)的250毫升碳化钨球磨罐中,球料重量比为20∶1。采用行星式球磨机球磨10h;球磨过程中每25分钟停止5分钟让球磨罐降温,以保证球磨罐温度不至于过高。
(3)干压成型:将球磨好的粉料直接取出,添加适量PVA溶液作为粘结剂,制成圆片,直径10±0.1毫米,厚度1±0.02毫米。
(4)至(6)步骤同实施例1。
实施例4
一种5G陶瓷滤波器材料的低温烧结方法,具体步骤如下:
(1)配料:按陶瓷材料分子式根据化学计量比称取MgO、CaCO3、TiO2,及Bi2O3、CuO、MnO2的原料,称取制备出0.1mol陶瓷粉体所需原料,其中,
5G陶瓷材料成分:Mg0.95Ca0.05TiO3,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
(2)球磨:将称取的原料放入内有直径5毫米碳化钨球磨的250毫升碳化物球磨罐中,球料重量比为20∶1。采用行星式球磨机球磨10h;球磨过程中每25分钟停止5分钟让球磨罐降温,以保证球磨罐温度不至于过高。
(3)干压成型:将球磨好的粉料直接取出,添加适量PVA溶液作为粘结剂,制成圆片,直径10±0.1毫米,厚度1±0.02毫米。
(4)至(6)步骤同实施例1。
实施例5
一种5G陶瓷滤波器材料的低温烧结方法,具体步骤如下:
(1)配料:按陶瓷材料分子式根据化学计量比称取MgO、CaCO3、TiO2,及Bi2O3、CuO、MnO2的原料,称取制备出0.1mol陶瓷粉体所需原料,其中,
5G陶瓷材料成分:Mg0.95Ca0.05TiO3,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
(2)球磨:将称取的原料放入内有直径10毫米碳化钨球磨的250毫升碳化物球磨罐中,球料重量比为20∶1。采用行星式球磨机球磨10h;球磨过程中每25分钟停止5分钟让球磨罐降温,以保证球磨罐温度不至于过高。
(3)干压成型:将球磨好的粉料直接取出,添加适量PVA溶液作为粘结剂,制成圆片,直径10±0.1毫米,厚度1±0.02毫米。
(4)至(6)步骤同实施例1。
对实施例1~5得到的数据进行记录,碳化钨磨球尺寸及配比对收缩率峰值温度、最大收缩率和相对密度的影响见表1。表1中的收缩率峰值是通过各实施例的烧结曲线得到,烧结温度越低,收缩率越大,相对密度越高,5G陶瓷滤波器材料的性能越好。
表1碳化钨磨球尺寸及配比的影响
Figure BDA0003601290930000061
表1的结果表明,当5毫米和10毫米的碳化钨磨球重量比为1∶1时,得到的5G陶瓷滤波器材料综合性能最佳。本发明所述的高能球磨可以有效地降低5G陶瓷滤波器的烧结温度,同时采用的干磨工艺简化了工艺过程。烧结温度降低效果可以通过碳化钨磨球的尺寸及配比得到优化。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本发明所提供的一种5G陶瓷滤波器材料、其低温烧结方法及应用进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种5G陶瓷滤波器材料的低温烧结方法,其特征在于该方法包括如下步骤:
S1、根据陶瓷材料的化学计量比进行原料的配料;
S2、将所述原料混合后进行高能球磨处理,得到陶瓷粉体;
所述高能球磨为采用碳化钨磨罐及磨球的干磨工艺,所述的磨球是4-6毫米直径的磨球、8-10毫米直径的磨球中的一种或两种组合,球料重量比为20∶1~80∶1;
S3、将步骤S2得到的陶瓷粉体干压成型,制成圆片,在1000~1300℃的温度下烧结,保温时间为1~12h,得到产品。
2.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:所述陶瓷材料的化学通式为:(1-x)MgTiO3-xCaTiO3,其中,x=0.005-0.10;所述陶瓷材料还包括Bi2O3、CuO、MnO2、CoO等微量掺杂成分中的一种或几种,以(1-x)MgTiO3-xCaTiO3的重量计为100%,各种掺杂成分总量重量百分比不超过3%。
3.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:所述磨球为碳化钨磨球,所述烧结温度为1053~1121℃。
4.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:步骤S2中所述高能球磨的转速为150~250rpm,球磨时间为4-24小时。
5.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:步骤S3中陶瓷粉体的干压成型,是在添加适当PVA粘结剂的情况下,20±2MPa压力下进行干压成型,得到的生坯直径10±0.1毫米,厚度1±0.02毫米。
6.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:步骤S3中的烧结,控制升温速率为1~20℃/min,降温速率10℃/min至600℃后再随炉降温至室温。
7.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:所述的磨球是由5毫米和10毫米直径的碳化钨磨球以重量比为1∶1的组合组成。
8.根据权利要求1所述的5G陶瓷滤波器材料的低温烧结方法,其特征在于:所述陶瓷材料为Mg0.95Ca0.05TiO3,以Mg0.95Ca0.05TiO3的重量计为100%,微量掺杂0.5%Bi2O3、0.5%CuO、0.6%MnO2
9.一种权利要求1所述的低温烧结方法制得的5G陶瓷滤波器材料。
10.一种权利要求1至9所述的5G陶瓷滤波器材料作为5G通讯基站中滤波器件的应用。
CN202210407349.1A 2022-04-18 2022-04-18 一种5g陶瓷滤波器材料、其低温烧结方法及应用 Active CN114988866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210407349.1A CN114988866B (zh) 2022-04-18 2022-04-18 一种5g陶瓷滤波器材料、其低温烧结方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210407349.1A CN114988866B (zh) 2022-04-18 2022-04-18 一种5g陶瓷滤波器材料、其低温烧结方法及应用

Publications (2)

Publication Number Publication Date
CN114988866A true CN114988866A (zh) 2022-09-02
CN114988866B CN114988866B (zh) 2023-10-13

Family

ID=83023708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210407349.1A Active CN114988866B (zh) 2022-04-18 2022-04-18 一种5g陶瓷滤波器材料、其低温烧结方法及应用

Country Status (1)

Country Link
CN (1) CN114988866B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360772A (en) * 1990-07-25 1994-11-01 Kyocera Corporation Ceramic material reinforced by the incorporation of TiC, TiCN and TiN whiskers and processes for production thereof
CN1530964A (zh) * 2003-03-17 2004-09-22 Tdk��ʽ���� 电介质瓷器组合物及利用所述组合物的电介质谐振器
CN1690014A (zh) * 2004-04-30 2005-11-02 天津大学 微波陶瓷电容器的陶瓷材料及其制造方法
CN1724462A (zh) * 2005-07-04 2006-01-25 浙江大学 低温烧结(Ca,Mg)TiO3系微波介质陶瓷及制备工艺
CN103864414A (zh) * 2014-01-28 2014-06-18 江苏南瓷绝缘子股份有限公司 一种低介电常数的微波介质陶瓷及其制备方法
CN105254293A (zh) * 2015-11-27 2016-01-20 广东成电华瓷电子科技有限公司 一种微波介质陶瓷材料及其制备方法
CN106083033A (zh) * 2016-06-07 2016-11-09 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN111732429A (zh) * 2020-05-31 2020-10-02 深圳陶陶科技有限公司 一种微波介质陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360772A (en) * 1990-07-25 1994-11-01 Kyocera Corporation Ceramic material reinforced by the incorporation of TiC, TiCN and TiN whiskers and processes for production thereof
CN1530964A (zh) * 2003-03-17 2004-09-22 Tdk��ʽ���� 电介质瓷器组合物及利用所述组合物的电介质谐振器
CN1690014A (zh) * 2004-04-30 2005-11-02 天津大学 微波陶瓷电容器的陶瓷材料及其制造方法
CN1724462A (zh) * 2005-07-04 2006-01-25 浙江大学 低温烧结(Ca,Mg)TiO3系微波介质陶瓷及制备工艺
CN103864414A (zh) * 2014-01-28 2014-06-18 江苏南瓷绝缘子股份有限公司 一种低介电常数的微波介质陶瓷及其制备方法
CN105254293A (zh) * 2015-11-27 2016-01-20 广东成电华瓷电子科技有限公司 一种微波介质陶瓷材料及其制备方法
CN106083033A (zh) * 2016-06-07 2016-11-09 电子科技大学 一种微波介质陶瓷材料及其制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN111732429A (zh) * 2020-05-31 2020-10-02 深圳陶陶科技有限公司 一种微波介质陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.A. SANOJ等: "Sinterability and microwave dielectric properties of nano structured 0.95MgTiO3–0.05CaTiO3 synthesised by top down and bottom up approaches", 《JOURNAL OF ALLOYS AND COMPOUNDS》, vol. 509, no. 6, 10 December 2010 (2010-12-10), pages 3089 - 3095, XP027589814 *
曾贵玉等: "《微纳米含能材料》", 31 May 2015, 国防工业出版社, pages: 20 *
王自敏编著: "《铁氧体生产工艺技术》", 重庆大学出版社, pages: 34 *

Also Published As

Publication number Publication date
CN114988866B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
JP2022531868A (ja) ハイエントロピー希土類高靭性タンタル酸塩セラミックス及びその製造方法
CN103130499B (zh) 一种微波介质陶瓷材料的制备方法
CN101468915A (zh) 一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法
CN111635222B (zh) 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN111116192B (zh) 一种微波铁氧体材料、制备方法及微波通信器件
CN103172367A (zh) 一种微波介质陶瓷材料的制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN102875143A (zh) 微波介质陶瓷材料的制备方法
CN112341192B (zh) 一种高储能密度钛酸铋钠基无铅介质材料及其制备方法
CN114988866B (zh) 一种5g陶瓷滤波器材料、其低温烧结方法及应用
CN113004036A (zh) 高抗热震性中介微波介质陶瓷及制备方法
CN116003106B (zh) 一种高介电纯相高熵氧化物材料及其制备方法
CN114853467B (zh) 一种ito平面靶材及其制备方法
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
CN115057698A (zh) 一种低介电石榴石型微波介质陶瓷材料及其制备方法
CN116063067A (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN115010499A (zh) 一种稀土氟化物与氧化钪双掺制备高性能氮化铝陶瓷基板的方法
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
CN115504776B (zh) 一种Y(3-x)RxMgAl3SiO12石榴石型微波介质陶瓷材料及其制备方法
CN109748584B (zh) 一种钆钡掺杂镍酸盐陶瓷及其制备方法和应用
CN113121219B (zh) 一种低介低损耗高导热的微波介质陶瓷及其制备方法
CN114890786B (zh) 一种近零温漂5g陶瓷滤波器材料及其制备方法
CN114956798B (zh) 一种高q值低温漂低k陶瓷滤波器材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A 5G ceramic filter material, its low-temperature sintering method and application

Granted publication date: 20231013

Pledgee: Zhejiang Tailong Commercial Bank Co.,Ltd. Jiaxing Pinghu Sub branch

Pledgor: Zhejiang Tiersai New Material Co.,Ltd.

Registration number: Y2024980033157

PE01 Entry into force of the registration of the contract for pledge of patent right