CN114958880B - 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用 - Google Patents

大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用 Download PDF

Info

Publication number
CN114958880B
CN114958880B CN202210357829.1A CN202210357829A CN114958880B CN 114958880 B CN114958880 B CN 114958880B CN 202210357829 A CN202210357829 A CN 202210357829A CN 114958880 B CN114958880 B CN 114958880B
Authority
CN
China
Prior art keywords
gly
ala
thr
soybean
cys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210357829.1A
Other languages
English (en)
Other versions
CN114958880A (zh
Inventor
王庆钰
赵诗慧
闫帆
刘雅婧
王英
李景文
杨旭光
孙墨楠
张鑫生
王乐
赵磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210357829.1A priority Critical patent/CN114958880B/zh
Publication of CN114958880A publication Critical patent/CN114958880A/zh
Application granted granted Critical
Publication of CN114958880B publication Critical patent/CN114958880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/02Thioester hydrolases (3.1.2)
    • C12Y301/02014Oleoyl-[acyl-carrier-protein] hydrolase (3.1.2.14), i.e. ACP-thioesterase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明适用于分子生物学与分子育种领域,提供了大豆脂酰‑酰基载体蛋白硫酯酶GmFATA2基因及应用,包括:大豆脂酰‑酰基载体蛋白硫酯酶GmFATA2基因碱基序列如SEQ ID NO.1,所述SEQ ID NO.1由1128个碱基组成,所述大豆脂酰‑酰基载体蛋白硫酯酶GmFATA2基因编码蛋白质的氨基酸序列如SEQ ID NO.2,所述SEQ ID NO.2由375个氨基酸残基组成,包含4个Hot‑dog结合域,自氨基端的第85至371位氨基酸残基。采用本发明提供的高油酸转基因大豆的培育方法生产出的含有GmFATA2基因的转基因大豆,总脂肪酸含量改变并不明显,但其油酸含量有明显提高,对改良大豆的油分含量,特别是培育高油酸大豆品种具有重要意义。

Description

大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用
技术领域
本发明属于分子生物学与分子育种领域,尤其涉及大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用。
背景技术
大豆作为世界范围内普遍种植的重要的经济作物,为人类提供了丰富的植物蛋白质和脂质。大豆也是世界上最大的油料作物和主要的植物油来源,世界油料产量中大豆居首位占57%。大豆含油量约为20%左右,大豆油脂脂肪酸由棕搁酸(16:0)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)及亚麻酸(18:3)等五种主要脂肪酸组成。一般说来,亚油酸含量最高,占脂肪酸总量的50%-55%以上,其次为油酸占20%左石,棕搁酸10%-14%,亚麻酸7%-13%。深入研究大豆油分合成途径中的相关基因分子生物学特征,基因表达调控,饱和和不饱和脂肪酸比例平衡,将为大豆油合理的生产和应用提供指导。
植物油主要贮藏在植物的种子与果实中,植物油的主要成分为三酰甘油。三酰甘油是由3个长链脂肪酸经过酯化作用与甘油连接而成。脂肪酸划分为饱和脂肪酸与不饱和脂肪酸两类,饱和脂肪酸烃类基团是全由单键构成的烷烃基,主要有棕榈酸、硬脂酸,不饱和脂肪酸烃基是含有碳-碳双键的烯烃基主要有油酸、亚油酸、亚麻酸。脂肪酸从头合成与衍生在叶绿体中进行,产物是长链脂肪酸酰基CoA,然后其进入内质网中脱去酰基CoA使长链脂肪酸与甘油连接。脂肪酸从头合成的初始底物为乙酰辅酶A,乙酰辅酶A是由葡萄糖经过糖酵解产生丙酮酸经过脱氢酶作用产生的。乙酰辅酶A经过脂肪酸合酶复合体(FAS)催化每次循环催化增加两个碳原子,直到合成含有16个或18个饱和碳原子的酰基载体蛋白,然后在酰基去饱和酶的催化下形成含有碳-碳双键碳骨架。饱和脂肪酸酰基载体蛋白和不饱和脂肪酸酰基载体蛋白分别由两种酰基-ACP硫酯酶催化形成自由脂肪酸。自由脂肪酸在长链酰基CoA合成酶作用下,合成酰基CoA,并从叶绿体转运到内质网,参与到Kennedy代谢途径中,合成三酰甘油。
大豆的游离脂肪中亚油酸含量占比最高约50%,而油酸的含量占比约20%,油酸仅占总游离脂肪酸含量的1/5。油酸具有能够降低胆固醇、防止脂肪硬化,抵抗心脑血管疾病的益处,因此培育具有高油酸占比的大豆品种是大豆育种的研究方向之一。种质资源和诱变材料中能够提供改良大豆油酸品质的育种材料及其有限,因此使用基因工程技术,获得高油酸含量的大豆材料为大豆品质育种提供了优质大豆品系。
发明内容
本发明实施例的目的在于提供大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用,旨在解决现有技术中脂酰-酰基载体蛋白(ACP)硫酯酶A2基因在转基因大豆育种中的空白,培育高油酸大豆新种质,提高大豆的油酸含量,从而促进大豆生产。
本发明所提供的大豆油分相关脂酰-酰基载体蛋白(ACP)硫酯酶A2,命名为GmFATA2
本发明是这样实现的,大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因,包括:
大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因碱基序列如SEQ ID NO.1,所述SEQID NO.1由1128个碱基组成,所述大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因编码蛋白质的氨基酸序列如SEQ ID NO.2,所述SEQ ID NO.2由375个氨基酸残基组成,包含4个Hot-dog结合域,自氨基端的第85至371位氨基酸残基。
大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在提高大豆油酸方面的应用,其特征在于,利用任何一种可以引导外源基因在植物中表达的载体,将大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因导入植物细胞,可获得对油分含量提高的转基因植株
进一步的技术方案,使用大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因构建植物表达载体时,在其转录起始核苷酸前加上任何一种增强启动子或诱导型启动子。
进一步的技术方案,携带有大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因的表达载体通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、微注射、电导和农杆菌介导常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株。
进一步的技术方案,所述转化的植物组织为单子叶植物或双子叶植物。
本发明实施例提供的大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用,本发明克隆了一个大豆油分相关脂酰-酰基载体蛋白(ACP)硫酯酶A2基因GmFATA2,已将该基因的编码的蛋白质序列上传至NCBI网站中,该基因编码蛋白主要负责将游离脂肪酸ACP从叶绿体中转移到细胞质中进行积累;在植物中过量表达该基因可以促进目标大豆内油酸含量的提高;本发明构建的GmFATA2基因重组植物表达载体pTF101-GmFATA2,将GmFATA2基因5'端和3'端分别引入CaMV35S启动子和nos终止子,提高了该基因的表达水平;通过大豆子叶节转化技术将该基因转入东农50大豆中,获得了三个转GmFATA2基因的东农50大豆品系;采用本发明提供的高油酸转基因大豆的培育方法生产出的含有GmFATA2基因的转基因大豆,总脂肪酸含量改变并不明显,但其油酸含量有明显提高,对改良大豆的油分含量,特别是培育高油酸大豆品种具有重要意义。
附图说明
图1为本发明实施例提供的大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因的PCR扩增结果;
图2为本发明实施例提供的大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因亚细胞定位结果(a:白光、绿色荧光GFP、红色荧光RFP下原生质体图像;b:白光下原生质体图像;c:绿色荧光GFP原生质体中的叶绿体发光;d:红色荧光RFP原生质体的叶绿体自发光);
图3为本发明实施例提供的大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因组织表达模式;
图4为pTF-101-GmFATA2结构示意图;
图5为大豆子叶节农杆菌转化流程图(A:GM萌发培养基萌发大豆;B:共培养培养基SCCM让菌进一步侵染大豆;C:筛选培养基S1中继续培养大豆;D:筛选培养基S2对转化大豆进行筛选,未侵染的大豆逐步发黄;E:抽茎培养基中进行抽茎;F:生根培养基RM中使其生根);
图6大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在部分T3代转基因大豆中的bar试纸条鉴定结果;
图7东农50和转FATA2基因东农50大豆脂肪酸含量测定(东农50与三个T3代GmFATA2转基因植株系总油分含量图);
图8东农50与三个T3代GmFATA2转基因植株系脂肪酸组分含量图(数据代表至少三个独立试验的平均±SD,误差线表示三个重复的SE;*p<0.05和**p<0.01,通过独立样本t检验方法判断差异显著性)。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
实施例1:GmFATA2基因的克隆及序列分析
大豆RNA的提取及cDNA的合成:用RNAplant plus Reagent(购自TIANGEN)提取大豆Williams82叶片总RNA,用M-MLV reverse transcriptase(RNase H-)(购自TaKaRa)进行反转录,合成cDNA。
引物的设计与合成:将大豆品种Williams82的3个时期(20、30和50天)未成熟胚表达谱测序所得序列(华大基因完成)输入NCBI中进行Blast比对,获得一个与植物中FATA2蛋白序列同源性较高的未知cDNA序列。根据已获得的未知cDNA序列,其核苷酸序列如SEQ IDN0.1所述,设计合成引物,F:5’-AGGTTGGTTCGGTTTGGTGA-3’,R:5’-TTGGGTGGAAGCACACGTAA-3’。以上述cDNA为模板,按照以下反应体系及条件进行PCR扩增:25μL体系,内含10×PCRBuffer 2.5μL,2.5mmol/L dNTP mix 2μL,10μmol/L的引物F和引物R各1μL,cDNA 1μL,EXTaq(购自TaKaRa)0.3μL,补去离子水至25μL。反应条件:预变性94℃8min;94℃40s,56℃40s,72℃1min,30个循环;72℃延伸8min。将上述扩增片段回收后与克隆载体pMD18-T(购自TaKaRa)进行连接,鉴定后送华大基因测序,验证序列正确。
经PCR扩增得到包含有GmFATA2基因全长OFR的序列,全长1369bp,内含1128的GmFATA2基因全序列,编码一个由375个氨基酸残基组成的蛋白质,包含4个Hot-dog结合域。
实施例2:GmFATA2基因亚细胞定位结果
为研究GmFATA2蛋白在植物细胞中的定位情况,使用无缝克隆方法构建3301-gfp亚细胞定位载体,GmFATA2-GFP-F:5’-cagctccagctccagTCTAGAGATTGCTCTAGAATGT-3’和GmFATA2-GFP R:5’-tatggagaaagcttgTTGCATGCCTGCAGGTCGACGA-3’,克隆连接至pCAMBIA3301构建重组载体,CaCl2法转入农杆菌感受态细胞EHA105(上海唯地),倒置培养2d,挑取阳性克隆接种到含有抗生素的5mL LB培养基中,28℃,200r/min培养至菌液浑浊,用5mL农杆菌缓冲液洗涤3次,稀释至菌体浓度(A600值)为200时,避光静置2h。选择长有8叶左右的本氏烟的第2~4叶,快速撕取内表皮,平铺于MS固体培养基,25℃下暗培养36h。农杆菌注射法将质粒pCAMBIA3301-GFP、pCAMBIA3301-GmFATA2-GFP转化到内表皮,25℃共培养36h后,制片,用Olympus FV3000激光共聚焦显微镜(Olympus公司,日本)观察。
实施例3:GmFATA2基因在大豆组织中的表达模式
分别提取大豆Williams 82的根、茎、叶、花和10、20、30、40天胚的总RNA并反转录成cDNA,方法同实施例1。以上述根、茎、叶、花和20天胚的cDNA为模板进行实时荧光定量PCR,方法同实施例2。
GmFATA2基因在大豆不同组织中的相对表达量(平均值):
结果表明GmFATA2基因在大豆的20天的胚中表达量最高,表达量依次为:20胚﹥叶﹥30天胚>根﹥10天胚﹥茎>花>40天胚。
实施例4:过表达GmFATA2基因的大豆遗传转化载体pTF-101-GmFATA2构建
为了研究GmFATA2基因的功能将GmFATA2基因连入pTF-101上载体中。分别使用限制性内切酶xbalⅠ和SacⅠ对基因和载体进行双酶切。电泳结果显示酶切条带大小符合预期。通过回收、连接载体大片段和基因,构建了新的植物表达载体pTF-101-GmFATA2并转化大肠杆菌。而后通过菌落分别对基因和的构建特异性进行检测。电泳结果显示基因扩增片段大小与预期产物大小相符,泳道构建特异性检测扩增目的条带大小与预计产物大小相符载体示意图见图5。
实施例5:GmFATA2基因转化东农50大豆
利用农杆菌侵染大豆子叶节法将pTF-101-GmFATA2转化大豆东农50中,具体方法如下:
大豆遗传转化:
1.挑选成熟饱满圆润的大豆种子,经氯气消毒后接种到萌发培养基(GM)上,GM主要成分是B5盐和有机养分(3%蔗糖、0.6%的琼脂、B5维生素1mg/L、pH5.5),培养1天。
2.在液体共培养培养基(LCCM)中将萌发的大豆种子去掉种皮,留下约3mm的下胚轴,顺下胚轴将大豆分为两半,在分生区划伤子叶制造伤口,把外植体置于液体共培养培养基(LCCM)中,共培养培养基(LCCM)主要成分B5盐和有机养分、BA 1.67mg/L、IBA 0.2mg/L、乙酰丁香酮(acetosyring one,AS)100μmol/L、蔗糖30g/L、pH 5.4。
3.农杆菌活化后接单菌落于含相应抗生素的50mLYEP培养基中28℃,200rpm/min摇至OD600nm=0.6,离心后用共培养培养基重悬至OD600nm=0.6-0.8。
4.子叶节外植体浸入菌液约45min,转接到含6g/L琼脂粉的共培养培养基(SCCM)中(附加二硫基苏糖醇1mmol/L+硫代硫酸钠1mmol/L+半胱氨酸8.8mmol/L),20℃暗培养48h。
5.再把外植体转入含蔗糖6g/L的固体筛选培养基(S1、S2)中继续筛选,每7d继代一次。继代两次后去掉子叶,把含芽发生区的部分转接到无激素的筛选培养基(SE)上,两周继代一次。芽长出后将其切下接至B5、IBA 2.0mg/L并有筛选压力的生根培养基(RM)上生根。
6.将生根的植株移至高湿度的灭菌砂土中,用透明的保鲜膜封好以保持湿度,于24℃左右、相对湿度为75%、光照强度为150μmol·m-2·s-1、光周期为20h的培养室培养1-2周。2-7d内逐渐揭去保鲜膜使苗驯化。然后便可将其移入温室生长、开花、结实。10待烟大豆苗根系发育好后,移入土中。
图5大豆子叶节农杆菌转化流程图。
转基因大豆的筛选及鉴定:
1.取T0代大豆叶片,按照UniversalGenomicDNAExtractionKitVer.3.0(购自TaKaRa)说明书中的方法提取叶片总RNA;
2.将提取的RNA稀释50倍后,取1μL为模板,以实施例1中的引物进行常规PCR验证。其中以未转化的野生大豆阴性对照,质粒pTF101-GmFATA2为阳性对照;
3.收获阳性大豆植株的种子,即T0代种子;
4.将T0代种子种入土中获得T1代大豆苗,对其继续提取RNA进行PCR检测,取T1代阳性大豆植株进行后续鉴定试验。
图6为GmFATA2在部分T3代转基因大豆中的Bar试纸条鉴定结果,表明GmFATA2基因已经成功整合到大豆基因组中。
实施例6:东农50和转FATA2基因东农50大豆脂肪酸含量测定
测定大豆种子大量样品的粗脂肪含量,一般采用索氏提取器抽提法。具体步骤如下:
(1)选取籽粒饱满,均匀一致的转基因大豆种子和东农50(对照),将样品预先在恒温烘箱中干燥制备。
(2)将滤纸剪成适当大小,折成一边不封口的小纸包,用铅笔进行编号,按顺序排列在培养皿中。
(3)将培养皿和滤纸包一起放入100℃烘箱中干燥2时左右取出后室温放置30min左右。分别放入同一个称量瓶中称重,记作a。
(4)用干净的小钥匙将已经磨好的样品4g/包小心地分装入滤纸包中,封上滤纸包口,并按原顺序排列在培养皿中,再次放入100℃烘箱中干燥后取出,室温放置30min左右别放原称量瓶中称重(小误差),记作b两次重量之差为样品重量。
(5)索氏法抽提:在YG-2型索氏脂肪抽提器的抽提简底部之溶剂回收咀上装一段优质橡皮管,夹上弹簧夹。将样品滤纸包放入抽提简中,倒入无水乙醚或者石油醚,没过滤纸样品包的高度,组装好提取器的各个部分,浸泡数小时将浸泡后的无水乙醚(石油醚)放入抽提瓶中,然后在抽提筒中重新倒人无水乙醚(石油醚),使其完全浸泡滤纸样品包,检查好抽提器的各部分气密性,接通冷凝水,在80℃水浴锅中进行抽提,调节水流速度,控制好冷凝滴加速度,抽提6h左右。抽提完毕后,取出滤纸样包,放在培养皿盖中,在烘箱中80℃恒温干燥3-4h。干燥后,取出放入干燥器至室温,再次放在原称量瓶中称重,记作c。
计算公式:粗脂肪%=(b-c)/(b-a)*100%
注意:每个样品三次平行测定的结果用算术平均值表示,保留小数后两位。
采用加热甲酯化提取法对大豆各类脂肪酸,使用气相色谱分析各类脂肪酸含量。
甲酯化提取法:称取大豆粉0.03g,放入2.mL的离心管中,加入1.0mL正己烷、1.0mL石油醚、0.7mL正己烷和0.3mL石油醚,超声30min;然后60℃水浴加热浸提20min,间隔充分摇匀,然后加入1.0ml 0.5mol/L甲醇钠溶液进行甲酯化,充分摇匀10min,使其充分甲酯化。再将其进行离心(5000r 15min),离心之后取其上清液,在上清液中加入少量的无水硫酸钠,静置,取其上清液放置于色谱专用管中,4℃冰箱保存待用。
气象色谱条件:毛细管色谱柱PEG-20M(30m*320um*0.33um),进样口为原装安捷伦分流进样口,温度250℃,FID氢火焰离子检测器温度290℃,N2流速为12.6mL/min,H2的流速为30mL/min,空气流速为400mL/min,分流比5:1,样品进样量为lμL。
对东农50及转化过表达GmFATA2基因的东农50大豆总油分和脂肪酸各组分含量测定分析,发现过表达GmFATA2基因的东农50大豆与东农50大豆总油分提高了1.68%,总油分含量提高并无明显差异,但油酸(18:1)含量比东农50高出了11.2%,存在极显著差异。而饱和脂肪酸:棕榈酸与硬脂酸总含量略微减少,但并没有显著的变化。
表2东农50和转FATA2基因东农50大豆油脂含量和各组分游离脂肪酸含量表
图7东农50和转FATA2基因东农50大豆脂肪酸含量测定
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
序列表
<110> 吉林大学
<120> 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1128
<212> PRT
<213> 大豆脂酰-酰基载体蛋白(ACP)硫酯酶A2基因的碱基序列(ArtificialSequence)
<400> 1
Ala Thr Gly Thr Thr Gly Ala Ala Gly Cys Thr Thr Thr Cys Gly Thr
1 5 10 15
Gly Cys Ala Ala Thr Gly Gly Cys Thr Thr Gly Gly Ala Cys Cys Gly
20 25 30
Gly Gly Cys Thr Cys Ala Cys Thr Cys Gly Cys Thr Gly Gly Cys Cys
35 40 45
Cys Ala Ala Thr Gly Cys Gly Gly Cys Thr Thr Thr Gly Cys Gly Gly
50 55 60
Gly Cys Cys Gly Gly Cys Cys Cys Gly Cys Cys Thr Gly Cys Gly Thr
65 70 75 80
Cys Gly Thr Cys Cys Cys Thr Cys Gly Cys Cys Gly Gly Ala Gly Gly
85 90 95
Ala Thr Ala Ala Gly Cys Gly Gly Cys Gly Thr Cys Thr Cys Cys Gly
100 105 110
Gly Ala Thr Thr Cys Thr Gly Gly Thr Cys Gly Cys Cys Gly Gly Gly
115 120 125
Cys Gly Gly Cys Ala Gly Gly Gly Cys Gly Ala Thr Cys Cys Gly Gly
130 135 140
Gly Thr Gly Thr Cys Gly Gly Cys Gly Gly Cys Gly Gly Thr Gly Gly
145 150 155 160
Thr Gly Thr Cys Gly Gly Cys Gly Ala Ala Gly Gly Ala Thr Gly Gly
165 170 175
Cys Gly Cys Gly Gly Thr Gly Gly Cys Gly Ala Cys Cys Cys Gly Gly
180 185 190
Gly Thr Gly Gly Ala Gly Gly Cys Gly Gly Ala Gly Thr Cys Cys Gly
195 200 205
Gly Gly Ala Cys Gly Cys Thr Gly Gly Cys Gly Gly Ala Cys Cys Gly
210 215 220
Gly Cys Thr Gly Ala Gly Gly Gly Thr Gly Gly Gly Gly Ala Gly Cys
225 230 235 240
Thr Thr Gly Ala Cys Gly Gly Ala Gly Gly Ala Thr Gly Gly Gly Thr
245 250 255
Thr Gly Thr Cys Thr Thr Ala Cys Ala Ala Gly Gly Ala Gly Ala Ala
260 265 270
Gly Thr Thr Cys Ala Thr Thr Gly Thr Gly Ala Gly Gly Ala Gly Cys
275 280 285
Thr Ala Cys Gly Ala Ala Gly Thr Thr Gly Gly Gly Ala Thr Cys Ala
290 295 300
Ala Thr Ala Ala Gly Ala Cys Thr Gly Cys Cys Ala Cys Thr Gly Thr
305 310 315 320
Thr Gly Ala Ala Ala Cys Cys Ala Thr Thr Gly Cys Thr Ala Ala Thr
325 330 335
Cys Thr Cys Thr Thr Gly Cys Ala Gly Gly Ala Gly Gly Thr Thr Gly
340 345 350
Gly Ala Thr Gly Thr Ala Ala Thr Cys Ala Thr Gly Cys Thr Cys Ala
355 360 365
Gly Ala Gly Thr Gly Thr Thr Gly Gly Ala Thr Ala Thr Thr Cys Thr
370 375 380
Ala Cys Thr Gly Ala Thr Gly Gly Thr Thr Thr Thr Gly Cys Ala Ala
385 390 395 400
Cys Cys Ala Cys Cys Cys Cys Thr Ala Cys Gly Ala Thr Gly Ala Gly
405 410 415
Ala Ala Ala Ala Thr Thr Gly Cys Gly Thr Cys Thr Cys Ala Thr Ala
420 425 430
Thr Gly Gly Gly Thr Thr Ala Cys Thr Gly Cys Thr Cys Gly Cys Ala
435 440 445
Thr Gly Cys Ala Cys Ala Thr Thr Gly Ala Ala Ala Thr Cys Thr Ala
450 455 460
Cys Ala Ala Ala Thr Ala Cys Cys Cys Thr Gly Cys Thr Thr Gly Gly
465 470 475 480
Ala Gly Thr Gly Ala Cys Gly Thr Thr Gly Thr Thr Gly Ala Gly Ala
485 490 495
Thr Ala Gly Ala Gly Ala Cys Ala Thr Gly Gly Thr Gly Cys Cys Ala
500 505 510
Ala Gly Gly Thr Gly Ala Ala Gly Gly Ala Ala Gly Gly Gly Thr Thr
515 520 525
Gly Gly Gly Ala Cys Ala Ala Gly Gly Cys Gly Thr Gly Ala Thr Thr
530 535 540
Thr Thr Ala Thr Ala Cys Thr Gly Ala Ala Ala Gly Ala Cys Thr Ala
545 550 555 560
Thr Gly Cys Ala Ala Gly Thr Gly Ala Thr Gly Cys Ala Gly Thr Cys
565 570 575
Ala Thr Thr Gly Gly Ala Ala Gly Gly Gly Cys Ala Ala Cys Ala Ala
580 585 590
Gly Cys Ala Ala Ala Thr Gly Gly Gly Thr Ala Ala Thr Gly Ala Thr
595 600 605
Gly Ala Ala Thr Cys Ala Gly Gly Ala Cys Ala Cys Cys Ala Gly Ala
610 615 620
Cys Gly Ala Cys Thr Cys Cys Ala Gly Ala Ala Ala Gly Thr Thr Thr
625 630 635 640
Cys Thr Gly Ala Thr Gly Ala Thr Gly Thr Thr Ala Ala Ala Gly Ala
645 650 655
Ala Gly Ala Gly Thr Ala Thr Thr Thr Gly Gly Thr Thr Thr Thr Cys
660 665 670
Thr Gly Thr Cys Cys Thr Cys Gly Ala Gly Ala Gly Cys Cys Cys Ala
675 680 685
Gly Gly Thr Thr Ala Gly Cys Ala Ala Thr Thr Cys Cys Ala Gly Ala
690 695 700
Gly Gly Cys Ala Gly Ala Thr Ala Gly Cys Ala Ala Thr Ala Ala Cys
705 710 715 720
Thr Thr Gly Ala Ala Gly Ala Ala Ala Ala Thr Ala Cys Cys Gly Ala
725 730 735
Ala Ala Thr Thr Gly Gly Ala Ala Gly Ala Cys Cys Cys Thr Gly Cys
740 745 750
Cys Cys Ala Gly Thr Ala Thr Thr Cys Cys Ala Gly Ala Cys Thr Thr
755 760 765
Gly Gly Ala Cys Thr Thr Gly Thr Gly Cys Cys Ala Ala Gly Ala Ala
770 775 780
Gly Ala Gly Cys Gly Gly Ala Thr Cys Thr Gly Gly Ala Cys Ala Thr
785 790 795 800
Gly Ala Ala Thr Cys Ala Gly Cys Ala Thr Gly Thr Thr Ala Ala Cys
805 810 815
Ala Ala Thr Gly Thr Cys Ala Cys Cys Thr Ala Thr Ala Thr Thr Gly
820 825 830
Gly Ala Thr Gly Gly Gly Thr Gly Cys Thr Thr Gly Ala Gly Ala Gly
835 840 845
Cys Ala Thr Gly Cys Cys Thr Cys Ala Ala Gly Ala Ala Ala Thr Cys
850 855 860
Ala Thr Thr Gly Ala Thr Ala Gly Thr Cys Ala Thr Gly Ala Gly Thr
865 870 875 880
Thr Gly Cys Ala Gly Ala Gly Thr Ala Thr Thr Ala Cys Cys Thr Thr
885 890 895
Gly Gly Ala Thr Thr Ala Cys Ala Gly Ala Cys Gly Ala Gly Ala Gly
900 905 910
Thr Gly Cys Gly Gly Ala Cys Ala Gly Cys Ala Thr Gly Ala Cys Ala
915 920 925
Thr Ala Gly Thr Thr Gly Ala Thr Thr Cys Cys Cys Thr Cys Ala Cys
930 935 940
Thr Ala Gly Thr Gly Thr Gly Gly Ala Ala Gly Ala Ala Ala Thr Cys
945 950 955 960
Cys Ala Gly Gly Gly Thr Gly Gly Thr Gly Cys Cys Gly Ala Gly Gly
965 970 975
Cys Ala Gly Thr Thr Thr Cys Ala Gly Ala Ala Cys Thr Gly Ala Ala
980 985 990
Ala Ala Gly Thr Ala Cys Ala Ala Ala Thr Gly Gly Ala Thr Cys Thr
995 1000 1005
Gly Cys Cys Ala Thr Gly Gly Cys Ala Ala Gly Gly Gly Ala Ala Gly
1010 1015 1020
Ala Cys Ala Ala Ala Cys Ala Thr Gly Ala Ala Cys Ala Cys Cys Ala
1025 1030 1035 1040
Gly Cys Ala Gly Thr Thr Thr Cys Thr Gly Cys Ala Thr Cys Thr Ala
1045 1050 1055
Cys Thr Thr Ala Gly Gly Thr Thr Gly Thr Cys Thr Ala Cys Thr Gly
1060 1065 1070
Ala Ala Gly Gly Ala Cys Thr Thr Gly Ala Gly Ala Thr Ala Ala Ala
1075 1080 1085
Cys Cys Gly Gly Gly Gly Ala Cys Gly Ala Ala Cys Gly Gly Ala Ala
1090 1095 1100
Thr Gly Gly Ala Gly Ala Ala Ala Gly Ala Ala Ala Gly Cys Thr Cys
1105 1110 1115 1120
Cys Ala Ala Gly Ala Thr Gly Ala
1125
<210> 2
<211> 375
<212> PRT
<213> 大豆脂酰-酰基载体蛋白(ACP)硫酯酶A2基因的碱基序列(ArtificialSequence)
<400> 2
Met Leu Lys Leu Ser Cys Asn Gly Leu Asp Arg Ala His Ser Leu Ala
1 5 10 15
Gln Cys Gly Phe Ala Gly Arg Pro Ala Cys Val Val Pro Arg Arg Arg
20 25 30
Ile Ser Gly Val Ser Gly Phe Trp Ser Pro Gly Gly Arg Ala Ile Arg
35 40 45
Val Ser Ala Ala Val Val Ser Ala Lys Asp Gly Ala Val Ala Thr Arg
50 55 60
Val Glu Ala Glu Ser Gly Thr Leu Ala Asp Arg Leu Arg Val Gly Ser
65 70 75 80
Leu Thr Glu Asp Gly Leu Ser Tyr Lys Glu Lys Phe Ile Val Arg Ser
85 90 95
Tyr Glu Val Gly Ile Asn Lys Thr Ala Thr Val Glu Thr Ile Ala Asn
100 105 110
Leu Leu Gln Glu Val Gly Cys Asn His Ala Gln Ser Val Gly Tyr Ser
115 120 125
Thr Asp Gly Phe Ala Thr Thr Pro Thr Met Arg Lys Leu Arg Leu Ile
130 135 140
Trp Val Thr Ala Arg Met His Ile Glu Ile Tyr Lys Tyr Pro Ala Trp
145 150 155 160
Ser Asp Val Val Glu Ile Glu Thr Trp Cys Gln Gly Glu Gly Arg Val
165 170 175
Gly Thr Arg Arg Asp Phe Ile Leu Lys Asp Tyr Ala Ser Asp Ala Val
180 185 190
Ile Gly Arg Ala Thr Ser Lys Trp Val Met Met Asn Gln Asp Thr Arg
195 200 205
Arg Leu Gln Lys Val Ser Asp Asp Val Lys Glu Glu Tyr Leu Val Phe
210 215 220
Cys Pro Arg Glu Pro Arg Leu Ala Ile Pro Glu Ala Asp Ser Asn Asn
225 230 235 240
Leu Lys Lys Ile Pro Lys Leu Glu Asp Pro Ala Gln Tyr Ser Arg Leu
245 250 255
Gly Leu Val Pro Arg Arg Ala Asp Leu Asp Met Asn Gln His Val Asn
260 265 270
Asn Val Thr Tyr Ile Gly Trp Val Leu Glu Ser Met Pro Gln Glu Ile
275 280 285
Ile Asp Ser His Glu Leu Gln Ser Ile Thr Leu Asp Tyr Arg Arg Glu
290 295 300
Cys Gly Gln His Asp Ile Val Asp Ser Leu Thr Ser Val Glu Glu Ile
305 310 315 320
Gln Gly Gly Ala Glu Ala Val Ser Glu Leu Lys Ser Thr Asn Gly Ser
325 330 335
Ala Met Ala Arg Glu Asp Lys His Glu His Gln Gln Phe Leu His Leu
340 345 350
Leu Arg Leu Ser Thr Glu Gly Leu Glu Ile Asn Arg Gly Arg Thr Glu
355 360 365
Trp Arg Lys Lys Ala Pro Arg
370 375

Claims (3)

1.大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在提高大豆油酸方面的应用,其特征在于,包括:
所述大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在提高大豆油酸方面的应用,利用可以引导外源基因在植物中表达的载体,将大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因导入植物细胞,可获得对油分含量提高的转基因植株;
所述大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因编码蛋白质的氨基酸序列如SEQ IDNO.2,所述SEQ ID NO.2由375个氨基酸残基组成,包含4个Hot-dog结合域,自氨基端的第85至371位氨基酸残基。
2.根据权利要求1所述大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在提高大豆油酸方面的应用,其特征在于,使用大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因构建植物表达载体时,在其转录起始核苷酸前加上增强启动子或诱导型启动子。
3.根据权利要求1所述大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因在提高大豆油酸方面的应用,其特征在于,携带有大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因的表达载体通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、微注射、电导或农杆菌介导常规生物学方法转化植物细胞或组织,并将转化的植物组织培育成植株,所述植物为大豆。
CN202210357829.1A 2022-04-06 2022-04-06 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用 Active CN114958880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210357829.1A CN114958880B (zh) 2022-04-06 2022-04-06 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210357829.1A CN114958880B (zh) 2022-04-06 2022-04-06 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用

Publications (2)

Publication Number Publication Date
CN114958880A CN114958880A (zh) 2022-08-30
CN114958880B true CN114958880B (zh) 2023-08-29

Family

ID=82977260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210357829.1A Active CN114958880B (zh) 2022-04-06 2022-04-06 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用

Country Status (1)

Country Link
CN (1) CN114958880B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115434009A (zh) * 2022-09-30 2022-12-06 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长源管路系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547941A1 (en) * 1994-08-31 1996-03-07 E.I. Dupont De Nemours & Company Nucleotide sequences of canola and soybean palmitoyl-acp thioesterase genes and their use in the regulation of fatty acid content of the oils of soybean and canola plants
CN1712527A (zh) * 2004-06-22 2005-12-28 中国科学院遗传与发育生物学研究所 大豆二酰甘油酰基转移酶及其编码基因与应用
CN101688220A (zh) * 2007-07-09 2010-03-31 拜尔生物科学公司 包含突变酰基-acp硫酯酶等位基因的芸苔属植物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483008B1 (en) * 1990-08-15 2002-11-19 Calgene Llc Methods for producing plants with elevated oleic acid content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2547941A1 (en) * 1994-08-31 1996-03-07 E.I. Dupont De Nemours & Company Nucleotide sequences of canola and soybean palmitoyl-acp thioesterase genes and their use in the regulation of fatty acid content of the oils of soybean and canola plants
CN1712527A (zh) * 2004-06-22 2005-12-28 中国科学院遗传与发育生物学研究所 大豆二酰甘油酰基转移酶及其编码基因与应用
CN101688220A (zh) * 2007-07-09 2010-03-31 拜尔生物科学公司 包含突变酰基-acp硫酯酶等位基因的芸苔属植物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PREDICTED: Glycine soja oleoyl-acyl carrier protein thioesterase 1, chloroplastic-like (LOC114423715), mRNA,ACCESSION:XM_028390575;GenBank;GenBank;第1-2页 *

Also Published As

Publication number Publication date
CN114958880A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN107435047B (zh) 一种植物磷信号网络中耐低磷关键基因GmPHR25及其与应用
WO2002014463A2 (en) Method for genetic transformation of woody trees
Naeem et al. Feasible regeneration and agro bacterium-mediated transformation of Brassica juncea with Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene
Wang et al. Transformation of Actinidia eriantha: a potential species for functional genomics studies in Actinidia
Kumar et al. Biotechnological approaches for the genetic improvement of Jatropha curcas L.: a biodiesel plant
CN114958880B (zh) 大豆脂酰-酰基载体蛋白硫酯酶GmFATA2基因及应用
CN110229224B (zh) SlRALF5基因作为负调控因子在提高番茄低温抗性中的应用
CN107353332A (zh) 一种水稻叶绿体发育调控基因ahs1及其编码的蛋白质与应用
CN110577960A (zh) 梨木质素合成基因PbMC1a/1b及其在果实品质遗传改良中的应用
CN107287211B (zh) 一个烟草阳离子/氯离子共转运基因及其应用
CN113151307A (zh) 一种烟草乙烯响应转录因子相关的基因及其应用
CN106591320A (zh) 促进提前开花的白桦BplSPL1基因及其编码蛋白
CN102586250A (zh) 一种姜花萜类花香基因Hctps1启动子及其应用
CN110862998A (zh) 紫苏fad8基因及其在提高植物不饱和脂肪酸含量和抗寒性能中的应用
CN111118042A (zh) 抗白粉病的葡萄钙依赖蛋白激酶基因VpCDPK9及其应用
CN110257401A (zh) 毛果杨PtrMYB119基因在提高烟草耐旱性中的应用
CN113528538B (zh) 黄瓜CsSTK基因、蛋白、表达载体及应用
CN102533804B (zh) 白沙蒿Δ12脂肪酸脱氢酶(As FAD2)基因及用途
CN108794611A (zh) 植物种子油分相关蛋白GhPDAT1d及其编码基因和应用
CN109402079A (zh) 一种多肽在提高植物超长链脂肪酸含量中的应用
CN110627887B (zh) SlTLFP8蛋白及其相关生物材料在调控番茄抗旱性中的应用
Liu et al. Establishment of an efficient plant regeneration culture protocol and achievement of successful genetic transformation in Jatropha curcas L.
CN112301046A (zh) 调控植物茎和侧枝发育的基因GhD14及其应用
CN105001316A (zh) GmWRI1在调控植物产量及种子脂肪酸含量中的应用
CA2375940A1 (en) Novel method for the generation and selection of transgenic linseed/flax plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant