CN114956196B - 一种丙酮传感材料及其快速制备方法 - Google Patents

一种丙酮传感材料及其快速制备方法 Download PDF

Info

Publication number
CN114956196B
CN114956196B CN202210706037.0A CN202210706037A CN114956196B CN 114956196 B CN114956196 B CN 114956196B CN 202210706037 A CN202210706037 A CN 202210706037A CN 114956196 B CN114956196 B CN 114956196B
Authority
CN
China
Prior art keywords
acetone
gas sensor
preparation
prepared
coral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210706037.0A
Other languages
English (en)
Other versions
CN114956196A (zh
Inventor
宋吉明
巫蓉
方键
张跃跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Green Industry Innovation Research Institute of Anhui University
Original Assignee
Green Industry Innovation Research Institute of Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Industry Innovation Research Institute of Anhui University filed Critical Green Industry Innovation Research Institute of Anhui University
Priority to CN202210706037.0A priority Critical patent/CN114956196B/zh
Publication of CN114956196A publication Critical patent/CN114956196A/zh
Application granted granted Critical
Publication of CN114956196B publication Critical patent/CN114956196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明公开了一种丙酮传感材料及其快速制备方法,属于半导体金属氧化物气体传感器技术领域。采用快速固相合成法,通过研磨和煅烧来合成珊瑚状形貌的Co3O4纳米材料,将其制备成气敏元件,在160℃最佳操作温度下,基于制备的珊瑚状Co3O4材料组装的气敏元件对50 ppm丙酮灵敏度最高,能达到17.8,响应时间为160 s,恢复时间为28 s,该传感材料对丙酮有着优异的选择性,具有较好的实际应用价值。

Description

一种丙酮传感材料及其快速制备方法
技术领域
本发明属于半导体金属氧化物气体传感器技术领域,具体涉及开发了一种固相合成法快速制备珊瑚状四氧化三钴纳米材料,由该纳米材料组装的气体传感器对丙酮具有优异的传感性能。
背景技术
半导体金属氧化物因为具有灵敏度高、稳定性好、易于制备等优点,在检测有毒有害气体方面有极大的优势,所以在气体传感领域被广泛使用。丙酮是重要的有机合成原料,有易燃、易挥发,化学性质较活泼等基本性质,但其具有剧毒,对人体危害非常大,吸入过量丙酮会麻痹神经,导致恶心、头晕、甚至昏迷等健康危害,所以迫切需要制备出一种灵敏度高且选择性好的丙酮气体传感器。目前用于检测丙酮的气体传感器有较多报道,发明专利“一种基于晶相改进的CdSnO3纳米半导体敏感材料的丙酮气体传感器及其制备方法”(CN114062446A)制备的CdSnO3基丙酮气体传感器在300℃温度下对100 ppm丙酮气体的响应值为17.78;专利“基于分枝状异质结阵列丙酮气体传感器、制备方法及应用”(CN112255277B)制备了TiO2/α-Fe2O3基分支状丙酮气体传感器,其在225℃温度下对100ppm丙酮气体的响应值为21.9;专利“一维α-Fe2O3纳米棒的制备方法及基于α-Fe2O3纳米棒的丙酮传感器”(CN108776156B)将Fe(NO3)2·9H2O溶于去离子水,用氢氧化钠调pH值,经水热、洗涤和干燥后,得到α-Fe2O3纳米棒,基于该纳米棒组装的传感器,其在225℃温度下对100 ppm丙酮气体的响应值为4.56。虽然在半导体氧化物气体传感器的研究上已取得了很大进步,但进一步提高丙酮传感器的灵敏度、选择性和降低最佳操作温度等技术参数是非常有必要的。
四氧化三钴(Co3O4)是典型的p型半导体金属氧化物,由于其禁带宽度接近可见光能量,且无毒、具有强耐腐蚀性,在光催化剂、超级电容器和气体传感器等领域引起了广泛关注。调控形貌是增强气体传感器的气敏性能一种方法。如专利“一种四氧化三钴纳米材料的制备方法及其产品和应用”(CN111003732A)用溶剂热法制备Co前驱体材料,然后将其均匀分散在Co盐溶液中,经过冷冻干燥去除溶剂,煅烧后得到四氧化三钴,用该材料制备的传感器在150℃温度下对50 ppm甲醛气体的响应值高达18.7,但其制备方法较复杂。本发明的反应物前驱体是醋酸钴,经过研磨和煅烧获得了珊瑚状Co3O4纳米结构粉末,该方法制备时间较短,且无毒环保,使用该材料制备的气体传感器对丙酮的响应高,选择性好,操作简便。
发明内容
本发明提供了一种快速制备丙酮传感材料的方法,制备方法快速简便且无毒环保,通过研磨和煅烧合成了珊瑚状Co3O4纳米材料,将该材料制备成传感器用于丙酮检测,灵敏度高,选择性好。
本发明所述的一种高响应的珊瑚状Co3O4纳米材料的丙酮传感器,由外表面带有两条平行、环状且彼此分立的金电极的陶瓷管衬底,涂覆在陶瓷管外表面、金电极上的纳米敏感材料和置于陶瓷管内的镍镉加热线圈组成,制备步骤如下:
1、珊瑚状Co3O4纳米材料的制备方法:
(1)将0.01~0.03 mmolCo(CH3COO)2·4H2O和0.01~0.03 mmol的H2C2O4·2H2O在研钵中均匀研磨20~40 min,同时在研磨的过程中滴加少许无水乙醇;
(2)将上述样品转移至50℃~70℃的烘箱中干燥,得到粉红色的粉末;
(3)将得到的粉红色粉末放入马弗炉中在400~600℃温度下煅烧1~3 h,得到最终产物,珊瑚状Co3O4纳米材料,为黑色粉末。
2、基于Co3O4纳米材料传感器的制备方法:
本发明所涉及的传感器采用的是旁热式结构,具体工艺如下:将制好的30~60 mg粉末与2~3滴松油醇混合,在玛瑙研钵中顺时针研磨20~40 min均匀形成浆液,再用刷子将浆液均匀涂在陶瓷管表面,以形成薄的传感材料涂层,在基座上焊接好后,老化2~3天,制成旁热式烧结型气敏元件。
附图说明:
图1为实施例1所得样品扫描电镜图(SEM);
图2为实施例1、2、3制备的气敏元件对50 ppm丙酮的响应值随工作温度变化的曲线图;
图3为实施例1所制备的样品的响应恢复时间图;
图4为实施例1制备的气敏元件在最佳操作温度对50 ppm的不同有机气体的敏感性能测试图;
具体实施方式:
以下结合实施例对本发明做具体的说明,使熟悉本领域的技术人在研读本说明书之后能据以实施,其中实施例1为最佳制备条件。应当理解,此处所描述的具体实施案例仅用以解释本发明专利,并不用于限定本发明专利。
实施例1:一种丙酮传感材料及其快速制备方法
(1)将0.02 mmol Co(CH3COO)2·4H2O和0.02 mmol H2C2O4·2H2O在研钵中均匀研磨30 min,同时在研磨的过程中滴加少许无水乙醇;
(2)将上述样品转移至60℃的烘箱中干燥,得到粉红色的粉末;
(3)将得到的粉红色粉末放入马弗炉中在400℃下煅烧2 h,得到最终产物,图1显示该样品是由大量的纳米粒子组成的珊瑚状形貌,粒子尺寸为10~20 nm;
(4)取30 mg制得的黑色粉末放入玛瑙研钵中,滴加1~2滴松油醇后顺时针研磨30min形成浆液,用毛刷取适量浆液涂覆在市售陶瓷管外表面,静置2天,在基座上先用高性能焊锡丝焊接陶瓷管,再将加热丝穿过陶瓷管用锡丝焊上;
(5)将制备好的传感器置于老化台在200℃的条件下老化72 h,得到基于400℃煅烧Co3O4纳米材料的气敏元件。
实施例2:一种丙酮传感材料及其快速制备方法
(1)将0.02 mmol Co(CH3COO)2·4H2O和0.02 mmol H2C2O4·2H2O在研钵中均匀研磨30 min,同时在研磨的过程中滴加少许无水乙醇;
(2)将上述样品转移至60℃的烘箱中干燥,得到粉红色的粉末;
(3)将得到的粉红色粉末放入马弗炉中在500℃下煅烧2 h,得到最终产物;
(4)气敏元件制备步骤同实施例1的方法,得到基于500℃煅烧Co3O4纳米材料的气敏元件。
实施例3:一种丙酮传感材料及其快速制备方法
(1)将0.02 mmol Co(CH3COO)2·4H2O和0.02 mmol H2C2O4·2H2O在研钵中均匀研磨30 min,同时在研磨的过程中滴加少许无水乙醇;
(2)将上述样品转移至60℃的烘箱中干燥,得到粉红色的粉末;
(3)将得到的粉红色粉末放入马弗炉中在600℃下煅烧2 h,得到最终产物;
(4)气敏元件制备步骤同实施例1的方法,得到基于600 ℃煅烧Co3O4纳米材料的气敏元件。
实施例4:Co3O4纳米材料的气敏元件传感性能测试
气敏元件特性的测试采用静态配气法,通过WS-30A型气敏元件测试系统在5.0 V的加热电压下测试80℃到240℃工作温度范围内,不同煅烧温度的Co3O4材料制备的气敏元件对50 ppm丙酮的响应值随工作温度变化曲线如图2,从图2中可以看出煅烧温度为400℃的Co3O4气敏元件在160℃的工作温度下,对丙酮有优良的响应值为17.8,其响应恢复时间如图3所示,响应时间为160 s,恢复时间为28 s;同样的,采用静态配气法,通过WS-30A型气敏元件测试系统在5.0 V的加热电压下测试煅烧温度为400℃的Co3O4材料制备的气敏元件对其他有机化合物的响应值,如图4显示了在160℃温度下对50 ppm的甲醛、甲醇、丙酮、异丙醇、乙醇、三乙胺的响应值分别为1.7、2.1、17.8、3.6、2.7、4.3,从图4的测试结果可以看出煅烧温度为400℃的Co3O4气敏元件对丙酮检测具有良好的选择性。

Claims (1)

1.一种丙酮传感材料的快速制备方法,其特征在于,包括以下工艺步骤:
(a)将0.02mmol Co(CH3COO)2·4H2O和0.02mmol H2C2O4·2H2O在研钵中均匀研磨30min,同时在研磨的过程中滴加少许无水乙醇;
(b)将上述样品转移至60℃的烘箱中干燥,得到粉红色的粉末;
(c)将得到的粉红色粉末放入马弗炉中在400℃下煅烧2h,得到最终产物,珊瑚状Co3O4纳米材料,为黑色粉末;
上述制备方法获得的珊瑚状Co3O4纳米材料组装成的气体传感器,在160℃的工作温度下,对丙酮的响应值为17.8,其响应时间为160s,恢复时间为28s。
CN202210706037.0A 2022-06-21 2022-06-21 一种丙酮传感材料及其快速制备方法 Active CN114956196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210706037.0A CN114956196B (zh) 2022-06-21 2022-06-21 一种丙酮传感材料及其快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210706037.0A CN114956196B (zh) 2022-06-21 2022-06-21 一种丙酮传感材料及其快速制备方法

Publications (2)

Publication Number Publication Date
CN114956196A CN114956196A (zh) 2022-08-30
CN114956196B true CN114956196B (zh) 2024-01-30

Family

ID=82964898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210706037.0A Active CN114956196B (zh) 2022-06-21 2022-06-21 一种丙酮传感材料及其快速制备方法

Country Status (1)

Country Link
CN (1) CN114956196B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114414634B (zh) * 2022-01-20 2023-07-21 重庆工商大学 一种铁掺杂的羟基锡酸钴气体传感器材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674482A (zh) * 2012-05-22 2012-09-19 上海大学 树枝状四氧化三钴纳米材料及其制备方法
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN106006761A (zh) * 2016-06-29 2016-10-12 渤海大学 一种四氧化三钴等级结构材料的制备方法
CN110885099A (zh) * 2019-11-26 2020-03-17 东莞理工学院 一种四氧化三钴的无溶剂合成方法及其应用
CN113624808A (zh) * 2020-05-06 2021-11-09 中国石油大学(华东) 一种对丙酮气体敏感的三维放射状四氧化三钴纳米线团簇

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674482A (zh) * 2012-05-22 2012-09-19 上海大学 树枝状四氧化三钴纳米材料及其制备方法
CN105489885A (zh) * 2016-01-08 2016-04-13 厦门大学 一种多孔微米棒状四氧化三钴及其制备方法与应用
CN106006761A (zh) * 2016-06-29 2016-10-12 渤海大学 一种四氧化三钴等级结构材料的制备方法
CN110885099A (zh) * 2019-11-26 2020-03-17 东莞理工学院 一种四氧化三钴的无溶剂合成方法及其应用
CN113624808A (zh) * 2020-05-06 2021-11-09 中国石油大学(华东) 一种对丙酮气体敏感的三维放射状四氧化三钴纳米线团簇

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Co3O4 纳米材料的固相化学合成及CO催化氧化性能;王坤;《中国优秀硕士学位论文数据库,工程科技I辑》;第15页 *
基于NASICON 和Co3O4 敏感电极的丙酮传感器的研究;金贵新等;电子元件与材料;第33卷(第4期);第56-59页 *

Also Published As

Publication number Publication date
CN114956196A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis and gas sensing properties of α-Fe2O3@ ZnO core–shell nanospindles
EP2988121B1 (en) Methylbenzene gas sensor using chrome-doped nickel oxide nanostructures and method for producing same
CN110237802A (zh) 铋-钨酸铋-溴氧化铋三元复合物及其制备方法和应用
CN114956196B (zh) 一种丙酮传感材料及其快速制备方法
Young et al. Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor
CN104990961A (zh) 一种基于Al掺杂的NiO纳米棒花材料的乙醇气体传感器及制备方法
CN109142465B (zh) 一种低温检测甲醛的铈掺杂二氧化锡传感材料的制备方法
CN110455891B (zh) 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN111830089A (zh) 一种基于双壳形Cu2O分等级结构微米球敏感材料的正丙醇气体传感器及其制备方法
CN113049646B (zh) 一种基于Cu7S4-CuO分等级结构微米花敏感材料的硫化氢传感器及其制备方法
Ying et al. UV-enhanced NO2 gas sensors based on In2O3/ZnO composite material modified by polypeptides
Ji et al. Co3O4/In2O3 pn heterostructures based gas sensor for efficient structure-driven trimethylamine detection
CN108152338A (zh) 基于等价Sn2+间隙掺杂的NiO纳米花状微球的二甲苯气体传感器及其制备方法
CN110117025B (zh) 一种ZnO/Zn2SnO4异质结构复合气敏材料及制备方法和应用
KR101293948B1 (ko) 가스센서용 복합재료 및 그 제조방법
CN111252816A (zh) 一种Nb-NiO纳米材料及其制备方法和应用
CN110108760B (zh) 一种h2s气敏元件及其制备方法
CN111735856A (zh) 一种掺杂型MoO3纳米带、其制备方法及应用
CN117105289A (zh) 一种NiO/CdS纳米颗粒异质结阵列及其制备方法和应用
CN109264796A (zh) 一种棒状NiO/α-Fe2O3复合气敏材料及其制备方法和应用
CN110243880B (zh) 一种检测氨气的气敏材料的制备方法及应用
CN113189148B (zh) 一种氧化铟基褶皱微球用于乙醇检测的方法及应用
KR102356185B1 (ko) 가스 센서 및 이의 제조 방법
CN114264703B (zh) 一种基于立方/六方相CdS复合纳米材料的正丙醇传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant