CN114940517A - 一种FeCoNi碱式碳酸盐电极材料及其制备方法 - Google Patents

一种FeCoNi碱式碳酸盐电极材料及其制备方法 Download PDF

Info

Publication number
CN114940517A
CN114940517A CN202210422889.7A CN202210422889A CN114940517A CN 114940517 A CN114940517 A CN 114940517A CN 202210422889 A CN202210422889 A CN 202210422889A CN 114940517 A CN114940517 A CN 114940517A
Authority
CN
China
Prior art keywords
feconi
electrode material
basic carbonate
salt
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210422889.7A
Other languages
English (en)
Other versions
CN114940517B (zh
Inventor
宋吉明
王小露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202210422889.7A priority Critical patent/CN114940517B/zh
Publication of CN114940517A publication Critical patent/CN114940517A/zh
Application granted granted Critical
Publication of CN114940517B publication Critical patent/CN114940517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种FeCoNi碱式碳酸盐电极材料及其制备方法,采用一步水热法加入了Fe盐、Ni盐和Co盐,制备了FeCoNi碱式碳酸盐复合材料。制备的复合材料形貌新颖,结构独特,具有大的比表面积,作为超级电容器电极材料,可以提供更多的电子通路,高价态的Fe3+在电容器电荷储存过程提供更多的氧化还原位点从而获得更多的赝电容性质,典型条件下获得的样品,在电流密度为0.5 Ag‑1时,比电容达到2163 Fg‑1,在1至10 A g‑1的电流密度下的倍率电容保持率为81.2%。本发明制备方法简单,材料成本低,超级电容性能好,用作超级电容器电极材料,具有很好的应用前景。

Description

一种FeCoNi碱式碳酸盐电极材料及其制备方法
技术领域
本发明为一种FeCoNi电极材料及其制备方法,具体涉及采用一步水热法制备纳米花状形貌的FeCoNi碱式碳酸盐,该材料可应用于超级电容器器件。
背景技术
近年来电极材料的开发成为了新能源器件研究的热点问题,超级电容器器件作为一种绿色高效储能器可广泛应用于生产生活中。研发一种高效、稳定、成本低、储能丰富的电极材料对超级电容器的发展至关重要。赝电容电极材料作为典型的法拉第电极材料,可以在电解质表面发生可逆的氧化还原反应,能够提供比双电层材料更大的电容和能量密度,而被广泛关注。
过渡金属层状双氢氧化物(LDHs)具有独特的插层的结构以及离子交换特性,优异的电导率和热导率,成为了理想的电化学转换和存储材料。例如,中国专利CN112490017A报道了“一种NiCo-LDH纳米材料的制备方法及其应用”,按比例将镍源和钴源溶解于异丙醇、丙三醇制备了NiCo-LDH纳米球,并应用于超级电容器,具有良好的循环稳定性。但LDH材料通常存在严重的堆叠问题,会使电解质离子传输变得困难(Journal of MaterialsScience & Technology 2019, 35, 8, 1691-1699)。为了解决堆积问题,通常的解决方案是制备出具有特色形貌和结构的LDH材料。例如,中国专利CN109650465B报道了“一种镍钴双金属氢氧化物纳米片的制备方法”,该纳米片以Co(NO3)2,Ni(NO3)2,和尿素为原料制备而成,其具有二维纳米片和三维纳米花结构,NiCo-LDHs作为电极材料,循环稳定性好且存储容量较高。研究者们为了实现LDH材料的更高比电容,常常将LDH材料与其他电化学材料复合实现更高的比电容、更高的能量密度更好的循环稳定性。例如中国专利CN109686585A报道了“一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法”,制备的NiCo-LDH/rGO复合材料在2 A/g的电流密度下,电容为2130 F/g。
镍钴金属组成的层状双氢氧化物作为超级电容器电极材料,其电化学性能常常受到材料堆叠问题和较差的导电性能的限制。目前较为流行的改善材料的导电率方法是将NiCo-LDH与高导电性的rGO、碳纳米管材料复合,但往往复合实验步骤复杂,复合材料成本较高。而本发明采用简单的一步水热法把高价态的Fe3+引入LDH,制备了一种Fe、Co、Ni三金属纳米针交叉编织的花状FeCoNi碱式碳酸盐复合材料,材料具有比电容高、循环稳定性好等特点。
发明内容
本发明提供了一种纳米针交叉编织的花状FeCoNi碱式碳酸盐电极材料及其制备方法,并将制备的碱式碳酸盐用作超级电容器的电极材料,获得了良好的比电容和倍率性能。
三金属FeCoNi碱式碳酸盐的制备方法:
称一定量的镍盐、钴盐、铁盐、NH4F、和尿素转移至烧杯中,加25-35 mL去离子水,在室温下搅拌直至溶解,再转移至50 mL的聚四氟乙烯高压反应釜内胆中,密闭反应釜,在电热恒温鼓风干燥箱中反应,反应温度120℃-160℃、保温6-8 h,随后反应釜冷却室温后,用无水乙醇和去离子水交替洗涤样品三次,在60℃-80℃下烘12 h,获得FeCoNi碱式碳酸盐。
所述一定量的镍盐、钴盐、铁盐、NH4F、和尿素的范围为:0.2~0.7 g的Ni(NO3)2·6H2O,0.2~0.7 g的Co(CO3)2·6H2O,0.05~0.25 g FeSO4·7H2O,0~1 g NH4F、0~1.5 g尿素。
所述的镍盐为阿拉丁的Ni(NO3)2·6H2O (AR,99%)
所述的钴盐为阿拉丁的Co(CO3)2·6H2O (AR,99%)
所述的铁盐为阿拉丁的FeSO4·7H2O (AR,99%)
所述的清洗剂为国药购买的95 wt%乙醇;
所述的电化学工作站是上海辰华电化学工作站(CHI600E);
附图说明:
图1为实施例1所得样品扫描电镜图(SEM)
图2为实施例2所得样品扫描电镜图(SEM)
图3为实施例1和2所得样品的X射线粉末衍射图(XRD)
图4为实施例1和2所得样品的倍率性能图
图5为实施例1和2所得样品的电化学阻抗谱(EIS)图
图6为实施例1所得样品的测试的循环伏安曲线(CV)图
图7为实施例1所得样品的测试的恒电流充放电(GCD)图
具体实施方式:
以下结合实施例对本发明做具体的说明:(实施例1为发明内容中制备FeCoNi碱式碳酸盐电极材料的最佳实例)
实施例1:网状FeCoNi碱式碳酸盐电极材料的制备方法;
准确称量0.6 g Ni(NO3)2·6H2O、0.6 g Co(CO3)2·6H2O、0.5 g NH4F、0.139 gFeSO4·7H2O和1.2 g尿素转移至烧杯中加35 mL去离子水,室温下搅拌2 h,再转移至50 mL的聚四氟乙烯高压反应釜中,在电热恒温鼓风干燥箱中反应6 h,反应温度为120oC,随后反应釜冷却室温,用乙醇和去离子水交替洗涤样品3次,在60oC下烘干,获得FeCoNi碱式碳酸盐。
采用日本S-4800场发射式扫描电镜对实施例1中FeCoNi-LDH的形貌进行表征,采用日本SmartLab 9 KW X射线衍射仪对实施例1中FeCoNi-LDH物相进行了表征。图1中FeCoNi碱式碳酸盐复合材料是由长度为5 μm纳米针交叉编织的网状花结构,而整体的花的尺寸大约为10 μm左右,相互交联的纳米针结构具有多方向的电子通路;图3为网状花结构的FeCoNi碱式碳酸盐的X射线粉末衍射图,可以看出纳米针交叉编织的网状花FeCoNi碱式碳酸盐为Co5.84Fe2.16(OH)16(CO3)1.08·0.32H2O (PDF#50-0235)、Co(NH3)5(OH)CO3 (PDF#47-0935)和Ni0.75Fe0.25(CO3)0.125(OH)2·0.38H2O (PDF#40-0215)三种物质的复合物。
实施例2:松针束状FeCoNi碱式碳酸盐电极材料的制备方法;
准确称量0.3 g Ni(NO3)2·6H2O、0.3 g Co(CO3)2·6H2O、0.3 g NH4F、0.0695 gFeSO4·7H2O和0.6 g尿素转移至烧杯中加35 mL去离子水,在室温下搅拌2 h,再转移至50mL的聚四氟乙烯高压反应釜中,在电热恒温鼓风干燥箱中反应6 h,反应温度为120oC,随后反应釜冷却室温,用乙醇和去离子水交替洗涤6次,在60oC下烘干,获得松针束状FeCoNi碱式碳酸盐。
图2为实施例2的松针束状FeCoNi碱式碳酸盐复合材料的SEM图,是由长度为1.5 μm纳米针组成的束状结构;图3为实施例2的松针束状FeCoNi碱式碳酸盐的XRD图,可以看出松针组成的束状FeCoNi碱式碳酸盐为Co5.84Fe2.16(OH)16(CO3)1.08·0.32H2O (PDF#50-0235)、Co(NH3)5(OH)CO3 (PDF#47-0935)和Ni0.75Fe0.25(CO3)0.125(OH)2·0.38H2O (PDF#40-0215)三种物质的复合物。
实施例3:电化学性质方面的测试
将实施例1和实施例2合成的FeCoNi碱式碳酸盐作为电极材料涂样于Ni泡沫集流体上,选择6 M KOH溶液作为电解质,在CHI660E电化学工作站上测试电极FeCoNi-LDH的电化学性能。图4为实施例1和2样品的倍率性能图,图中发现通过实施例1获得的网状花结构的FeCoNi碱式碳酸盐样品具有最高的比电容;实施例1和2样品在1至 10 Ag-1的电流密度下的倍率电容保持率分别为81.2%,82.62%,说明Fe3+的引入极大的提高了碱式碳酸碳酸盐的电化学性能。图5展示实施例1和2中FeCoNi碱式碳酸盐的电化学阻抗EIS曲线图,显示了两种碱式碳酸盐的样品都有优异的阻抗性能,相比之下实施例1中网状结构的FeCoNi碱式碳酸盐具有最小的内阻,最小的转移电阻和最小的扩散电阻。图6为实施例1的FeCoNi-LDH样品在扫描速度为10、20、30、50、80、100 mVs-1下的CV曲线图,随着扫描速度的增加CV曲线的形状保持良好,说明样品具有较好的电化学性能。图7为实施例1的FeCoNi-LDH样品在0.5、1、2、4、5、10、20 Ag-1的电流密度下获得比电容约为2163、2113、2054、1943、1907、1718、1408F g-1

Claims (4)

1.一种FeCoNi碱式碳酸盐电极材料及其制备方法,其特征在于称一定量的镍盐、钴盐、铁盐、NH4F、和尿素转移至烧杯中,加25-35 mL去离子水,在室温下搅拌至溶解,再转移至50mL的聚四氟乙烯高压反应釜内胆中,密闭反应釜,在电热恒温鼓风干燥箱中反应,反应温度120℃-160℃、保温6-8 h,随后反应釜冷却室温,用无水乙醇和去离子水交替洗涤样品三次,在60℃-80℃下烘12 h,获得FeCoNi碱式碳酸盐。
2.如权利要求1所述一种FeCoNi碱式碳酸盐电极材料及其制备方法,一定量的镍盐、钴盐、铁盐、NH4F、和尿素的范围为:0.2~0.7g的Ni(NO3)2·6H2O,0.2~0.7g的Co(CO3)2·6H2O,0.05~0.25 g FeSO4·7H2O,0~1g NH4F、0~1.5 g尿素。
3.如权利要求1所述一种FeCoNi碱式碳酸盐电极材料及其制备方法,其最佳制备条件为:准确称量0.6 g Ni(NO3)2·6H2O、0.6 g Co(CO3)2·6H2O、0.5 g NH4F、0.139 g FeSO4·7H2O和1.2 g尿素转移至烧杯中加35 mL去离子水,在室温下搅拌2 h,再转移至50 mL的聚四氟乙烯高压反应釜中,120℃反应6 h,用乙醇和去离子水交替洗涤三次,获得网状FeCoNi碱式碳酸盐电极材料。
4.如权利要求3所述的一种FeCoNi碱式碳酸盐电极材料及其制备方法,其特征在于:对制备的网状结构FeCoNi碱式碳酸盐电极材料进行电化学表征,该材料在电流密度为0.5 Ag-1时,比电容达到2163 F g-1;在1至 10 A g-1的电流密度下的倍率电容保持率为81.2%。
CN202210422889.7A 2022-04-21 2022-04-21 一种FeCoNi碱式碳酸盐电极材料及其制备方法 Active CN114940517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210422889.7A CN114940517B (zh) 2022-04-21 2022-04-21 一种FeCoNi碱式碳酸盐电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210422889.7A CN114940517B (zh) 2022-04-21 2022-04-21 一种FeCoNi碱式碳酸盐电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114940517A true CN114940517A (zh) 2022-08-26
CN114940517B CN114940517B (zh) 2024-01-19

Family

ID=82907117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210422889.7A Active CN114940517B (zh) 2022-04-21 2022-04-21 一种FeCoNi碱式碳酸盐电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114940517B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448537A (zh) * 2015-12-09 2016-03-30 华东理工大学 改性聚烯烃弹性体可拉伸凝胶及其用途
CN106587171A (zh) * 2016-12-08 2017-04-26 北京印刷学院 一种水热法制备超级电容器电极材料碱式碳酸镍钴的方法
US20170165652A1 (en) * 2015-12-15 2017-06-15 Uop Llc Crystalline transition metal molybdotungstate
CN108682561A (zh) * 2018-05-28 2018-10-19 江苏大学 一种超级电容器电极材料及制备方法
JP2019021424A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN110335760A (zh) * 2019-04-30 2019-10-15 安徽大学 一种镍掺杂的带状纳米碱式碳酸钴电极材料的制备方法
CN110890227A (zh) * 2019-12-10 2020-03-17 武汉理工大学 一种松针状镍钴铜碱式碳酸盐纳米复合材料及其制备方法和应用
CN112382514A (zh) * 2020-10-21 2021-02-19 中国矿业大学 一种全固态柔性超级电容器用NiCo2O4@Ni-Co LDH复合电极的制备方法
CN112467077A (zh) * 2020-11-29 2021-03-09 西北工业大学 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN113213554A (zh) * 2021-04-28 2021-08-06 合肥工业大学 海胆花状Ni0.3Co0.6Cu0.1(CO3)0.5(OH)电极材料的制备方法
CN114068952A (zh) * 2021-10-21 2022-02-18 华南理工大学 一种具有花状结构的整体式过渡金属氮化物电催化剂及其制备方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448537A (zh) * 2015-12-09 2016-03-30 华东理工大学 改性聚烯烃弹性体可拉伸凝胶及其用途
US20170165652A1 (en) * 2015-12-15 2017-06-15 Uop Llc Crystalline transition metal molybdotungstate
CN106587171A (zh) * 2016-12-08 2017-04-26 北京印刷学院 一种水热法制备超级电容器电极材料碱式碳酸镍钴的方法
JP2019021424A (ja) * 2017-07-12 2019-02-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
CN108682561A (zh) * 2018-05-28 2018-10-19 江苏大学 一种超级电容器电极材料及制备方法
CN110335760A (zh) * 2019-04-30 2019-10-15 安徽大学 一种镍掺杂的带状纳米碱式碳酸钴电极材料的制备方法
CN110890227A (zh) * 2019-12-10 2020-03-17 武汉理工大学 一种松针状镍钴铜碱式碳酸盐纳米复合材料及其制备方法和应用
CN112382514A (zh) * 2020-10-21 2021-02-19 中国矿业大学 一种全固态柔性超级电容器用NiCo2O4@Ni-Co LDH复合电极的制备方法
CN112467077A (zh) * 2020-11-29 2021-03-09 西北工业大学 有效增强多种过渡金属氧化物储电性能的普适性电化学改性制备方法
CN113213554A (zh) * 2021-04-28 2021-08-06 合肥工业大学 海胆花状Ni0.3Co0.6Cu0.1(CO3)0.5(OH)电极材料的制备方法
CN114068952A (zh) * 2021-10-21 2022-02-18 华南理工大学 一种具有花状结构的整体式过渡金属氮化物电催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114940517B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
Huang et al. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@ polyaniline
Qi et al. Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercial conductive textile for flexible high-performance asymmetric supercapacitors
Wang et al. Design and synthesis of ternary-component layered double hydroxides for high-performance supercapacitors: understanding the role of trivalent metal ions
Chen et al. Hierarchical CoMn-layered double hydroxide nanowires on nickel foam as electrode material for high-capacitance supercapacitor
Li et al. Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors
Huang et al. Lawn-like FeCo2S4 hollow nanoneedle arrays on flexible carbon nanofiber film as binder-free electrodes for high-performance asymmetric pseudocapacitors
Qiu et al. Ni-doped cobalt hexacyanoferrate microcubes as battery-type electrodes for aqueous electrolyte-based electrochemical supercapacitors
Shen et al. Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@ NiMoO4/PANI
Wang et al. Urchin-like Ni1/3Co2/3 (CO3) 0.5 OH· 0.11 H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
Ouyang et al. Fabrication of Ni-Mn LDH/Co3O4 on carbon paper for the application in supercapacitors
Li et al. Two-dimensional hierarchical MoS2 lamella inserted in CoS2 flake as an advanced supercapacitor electrode
Guo et al. Sandwich-like porous MXene/Ni3S4/CuS derived from MOFs as superior supercapacitor electrode
Liu et al. Facile synthesis of polypyrrole nanofiber (PPyNF)/NiO x composites by a microwave method and application in supercapacitors
Hu et al. CuO@ NiCoFe-S core–shell nanorod arrays based on Cu foam for high performance energy storage
CN109741966B (zh) 一种Ni6MnO8@碳纳米管复合材料及其制备方法和应用
Luo et al. Urchin-like NiCo 2 O 4 hollow microspheres with oxygen vacancies synthesized by self-template for supercapacitor
Chen et al. In-situ growth of core-shell NiCo2O4@ Ni-Co layered double hydroxides for all-solid-state flexible hybrid supercapacitor
Yang et al. Hierarchical NiCo2O4 nanostructured arrays decorated over the porous Ni/C as battery-type electrodes for supercapacitors
CN111933455A (zh) 应用于超级电容器的PNT@NiCo-LDH复合材料及其制备方法
Liu et al. Core-shell structured Ni6MnO8@ carbon nanotube hybrid as high-performance pseudocapacitive electrode material
CN113421781A (zh) 一种镍钴氧化物@镍钴氢氧化物核壳结构电极材料的制备方法
Zhang et al. Design and synthesis of Co3S4@ CoCH/NF for high performance asymmetric supercapacitors
Wang et al. Hybrid high performance supercapacitor based on zeolitic imidazolate frameworks-67-derived nano-structure NiCo2S4
CN108281292B (zh) 一种Ni-Co-S纳米针阵列的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant