CN114934035A - 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用 - Google Patents

一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用 Download PDF

Info

Publication number
CN114934035A
CN114934035A CN202210355246.5A CN202210355246A CN114934035A CN 114934035 A CN114934035 A CN 114934035A CN 202210355246 A CN202210355246 A CN 202210355246A CN 114934035 A CN114934035 A CN 114934035A
Authority
CN
China
Prior art keywords
gly
leu
mutant
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210355246.5A
Other languages
English (en)
Other versions
CN114934035B (zh
Inventor
曾静
何础阔
袁林
郭建军
侯安伟
聂俊辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Microbiology Jiangxi Academy Of Sciences Jiangxi Institute Of Watershed Ecology
Original Assignee
Institute Of Microbiology Jiangxi Academy Of Sciences Jiangxi Institute Of Watershed Ecology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Microbiology Jiangxi Academy Of Sciences Jiangxi Institute Of Watershed Ecology filed Critical Institute Of Microbiology Jiangxi Academy Of Sciences Jiangxi Institute Of Watershed Ecology
Priority to CN202210355246.5A priority Critical patent/CN114934035B/zh
Publication of CN114934035A publication Critical patent/CN114934035A/zh
Application granted granted Critical
Publication of CN114934035B publication Critical patent/CN114934035B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体及其制备方法和应用,属于基因工程和酶工程领域。对嗜热酸性III型普鲁兰水解酶TK‑PUL中进化偶联氨基酸残基对K526/L538进行饱和突变,构建相应的饱和突变体文库,通过比较各突变体对可溶性淀粉的酶活力,筛选出针对可溶性淀粉的比酶活力显著提高的III型普鲁兰水解酶突变体Mut(K526N/L538E)。本发明提供的III型普鲁兰水解酶突变体Mut对可溶性淀粉的酶活力由对照(突变前)的54.08U/mg提高到190.47U/mg,提高了2.52倍,更适用于淀粉酶法制糖工业,有利于简化工艺、节约能源。

Description

一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变 体及其制备方法和应用
技术领域
本发明涉及基因工程和酶工程技术领域,特别是涉及一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体及其制备方法和应用。
背景技术
淀粉糖是以农产品中淀粉含量较高的农作物为原料,运用液化、糖化、转苷、脱色以及离子交换等生物技术手段精制生产的不同种类的糖品。淀粉糖消费领域广、数量大,是淀粉深加工的支柱产品。我国的淀粉制糖工业发展迅速,淀粉糖的产量、种类、质量、规模都处于较高水平,其中产量仅次于美国,居世界第二位。因此,优化淀粉制糖工艺的相关研究对于我国淀粉制糖工业的进一步发展具有重要的技术和经济意义。
现行淀粉制糖工艺包括液化和糖化两个步骤。由液化转入糖化时需要降低温度并加酸降低糖浆的pH,并且糖化过程中使用了多种水解酶。这些因素使得淀粉制糖的工艺复杂、能耗大、生产成本增加,同时降低了生产效率。若某种淀粉水解酶能够以单酶在液化条件下同时进行液化和糖化两个步骤,则可以省去多种淀粉水解酶的应用以及调节温度、pH的过程以简化工艺、降低成本,并且在液化的高温下还可以获得较高的反应速率。因此,人们希望能够获得一种在液化条件下有效水解淀粉为淀粉糖的淀粉水解酶。
嗜热酸性III型普鲁兰水解酶能够水解淀粉中α-1,4-糖苷键和α-1,6-糖苷键,在高温的液化条件下,且在无其他淀粉水解酶辅助的情况下完全水解淀粉为淀粉糖,使淀粉酶法制糖工业的液化过程和糖化过程合二为一,从而大大降低生产成本,提高生产效率。目前已知酶活力最高的嗜热酸性III型普鲁兰水解酶是来源于嗜热古生菌Thermococcuskodakarensis的TK-PUL(Ahmad N,Rashid N,Haider M S,et al.Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcuskodakarensis[J].Applied and Environmental Microbiology,2014,80(3):1108-1114.)。TK-PUL的酶学性质完全适用于淀粉酶法制糖工业,可以单独完全水解淀粉为淀粉糖。但是TK-PUL的催化活性尚不能满足淀粉酶法制糖工业的需求,这限制了TK-PUL在淀粉酶法制糖工业中的应用。
发明内容
为解决嗜热酸性III型普鲁兰水解酶TK-PUL的催化活性不能满足淀粉酶法制糖工艺的需求的问题,本发明的目的是提供一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体及其制备方法和应用。
为实现上述目的,本发明提供了如下方案:
本发明提供一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体(Mut),其氨基酸序列如SEQ ID NO:1所示:MKKGGLLLILLILVSIASGCISESNENQTATASTVPPTSVTPSQSSTPTTSTSTYGPSERTELKLPSVNYTPIYVGIEKGCPSGRVPVKFTYNPGNKTVKSVSLRGSFNNWGEWPMELKNGTWETTVCLRPGRYEYKYFINGQWVKDMSDDGTGRPYDPDADAYAPDGYGGKNAVRVVEGREAFYVEFDPRDPAYLSIADKRTVVRFEAKRDTVESAVLVTDHGNYTMKLQVWWDFGETWRAEMPVEPADYYILVTSSDGGKFAVLNTSESPFFHFDGVEGFPQLEWVSNGITYQIFPDRFNNGNKSNDALALDHDELILNQVNPGQPILSNWSDPITPLHCCHQYFGGDIKGITEKLDYLQSLGVTIIYINPIFLSGSAHGYDTYDYYRLDPKFGTEDELREFLDEAHRRGMRVIFDFVPNHCGIGNPAFLDVWEKGNESPYWDWFFVKKWPFKLGDGSAYVGWWGFGSLPKLNTANQEVREYLIGAALHWIEFGFDGIRVDVPNEVLDPGTFFPELRKAVKEKNPDAYLVGEIWTESPEWVKGDRFDSLMNYALGRDILLNYAKGLLSGESAMKMMGRYYASYGENVVAMGFNLVDSHDTSRVLTDLGGGKLGDTPSNESIQRLKLLSTLLYALPGTPVTFQGDERGLLGDKGHYDEQRYPIQWDTVNEDVLNHYRALAELRKRVPALRSSAMRFYTAKGGVMAFFRGHHDEVLVVANSWKKPALLELPEGEWKVIWPEDFSPELLRGTVEVPAIGIIILERG。
本发明还提供所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的基因。
进一步地,所述基因的核苷酸序列如SEQ ID NO:2所示:ATGAAAAAAGGTGGTCTGCTGCTCATTCTCCTGATTCTGGTCTCAATCGCCAGCGGATGTATCTCGGAGAGCAACGAAAATCAAACTGCAACGGCTTCGACCGTTCCACCGACTTCAGTGACACCCTCACAGTCTTCCACTCCCACAACCTCGACCTCGACGTACGGCCCTTCCGAAAGAACGGAGCTTAAACTTCCTTCGGTTAACTACACTCCCATCTACGTCGGCATAGAGAAAGGCTGTCCCTCCGGAAGAGTCCCGGTGAAGTTCACGTACAACCCCGGAAACAAGACCGTAAAGTCTGTCAGCCTCCGCGGGAGCTTCAACAACTGGGGAGAGTGGCCGATGGAGCTGAAGAACGGCACGTGGGAGACGACCGTCTGTCTCCGCCCTGGAAGGTATGAGTATAAGTACTTCATCAACGGCCAGTGGGTCAAGGACATGTCCGACGACGGGACGGGAAGGCCCTACGACCCCGATGCAGACGCCTATGCCCCCGATGGCTACGGGGGAAAGAACGCCGTGAGGGTAGTTGAGGGCCGCGAAGCGTTCTACGTGGAGTTCGATCCAAGAGACCCAGCCTACCTCAGCATCGCGGACAAAAGAACCGTGGTCAGGTTCGAGGCTAAGAGAGACACCGTCGAGTCTGCGGTTCTCGTTACGGATCACGGGAACTACACGATGAAGCTTCAGGTCTGGTGGGACTTCGGCGAAACCTGGCGCGCCGAGATGCCAGTTGAACCCGCTGATTATTACATTCTCGTAACCTCCTCCGACGGCGGGAAGTTTGCCGTCCTAAACACAAGCGAAAGCCCGTTCTTCCACTTTGATGGCGTTGAGGGGTTCCCCCAGCTGGAGTGGGTGAGCAACGGGATAACCTACCAGATATTCCCCGACAGGTTCAACAACGGCAATAAAAGCAACGATGCCCTAGCTTTGGATCACGACGAGCTAATTTTGAACCAGGTTAATCCAGGGCAGCCAATCCTCTCCAACTGGAGCGACCCGATAACGCCCCTCCACTGCTGCCACCAGTACTTCGGCGGCGACATAAAGGGAATAACGGAGAAGCTCGACTACCTTCAGAGCCTAGGTGTTACTATAATCTACATCAACCCGATTTTCCTCTCGGGAAGCGCCCACGGCTACGACACCTACGACTACTACCGGCTCGACCCCAAGTTCGGGACCGAGGATGAGCTGAGAGAGTTCCTCGATGAGGCCCACAGGAGGGGAATGAGGGTAATCTTCGATTTCGTGCCCAACCACTGCGGCATAGGGAATCCAGCCTTCCTCGACGTCTGGGAGAAGGGCAACGAAAGCCCATACTGGGACTGGTTCTTCGTCAAGAAGTGGCCCTTCAAGCTCGGCGATGGGAGCGCCTACGTCGGCTGGTGGGGCTTTGGGAGCCTTCCGAAGCTCAACACTGCCAACCAGGAGGTCAGGGAGTACCTGATAGGAGCGGCCCTCCACTGGATAGAGTTCGGCTTTGACGGCATTAGGGTGGATGTGCCGAACGAAGTCCTCGACCCGGGGACGTTCTTCCCGGAGCTGAGAAAGGCAGTTAAGGAGAAAAACCCCGACGCGTACCTCGTCGGCGAGATATGGACGGAATCCCCGGAGTGGGTGAAGGGAGACCGCTTCGACTCCCTCATGAACTACGCCCTCGGGAGGGACATCCTCCTGAACTACGCTAAGGGCCTGCTCAGCGGAGAAAGTGCAATGAAAATGATGGGACGTTACTACGCTTCCTACGGCGAGAACGTAGTTGCGATGGGCTTCAACCTCGTTGATTCGCACGACACTTCGAGGGTTCTCACTGACCTCGGTGGTGGCAAACTGGGAGACACACCGTCAAACGAGTCAATTCAGAGGCTCAAGCTCCTCTCAACGCTCCTCTATGCCCTGCCCGGAACTCCCGTCACCTTCCAGGGGGACGAGAGGGGACTGCTCGGAGACAAGGGACACTACGATGAGCAACGCTATCCGATACAGTGGGATACTGTGAACGAGGACGTCCTGAACCACTACAGGGCACTGGCGGAGCTCAGAAAAAGAGTTCCCGCATTGAGGAGCAGCGCAATGAGGTTCTACACTGCCAAAGGCGGCGTTATGGCCTTCTTCAGGGGACATCATGACGAGGTTCTCGTCGTTGCCAACAGCTGGAAGAAGCCAGCCCTACTGGAGCTTCCCGAGGGAGAGTGGAAAGTAATCTGGCCTGAGGATTTCAGCCCGGAACTGCTTCGCGGCACAGTTGAAGTGCCAGCCATAGGGATAATCATCCTTGAGCGGGGTTGA。
本发明还提供一种能表达生产所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的载体。
本发明还提供一种能表达生产所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的基因工程菌。
本发明还提供所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的制备方法,以氨基酸序列如SEQ ID NO:3所示(MKKGGLLLILLILVSIASGCISESNENQTATASTVPPTSVTPSQSSTPTTSTSTYGPSERTELKLPSVNYTPIYVGIEKGCPSGRVPVKFTYNPGNKTVKSVSLRGSFNNWGEWPMELKNGTWETTVCLRPGRYEYKYFINGQWVKDMSDDGTGRPYDPDADAYAPDGYGGKNAVRVVEGREAFYVEFDPRDPAYLSIADKRTVVRFEAKRDTVESAVLVTDHGNYTMKLQVWWDFGETWRAEMPVEPADYYILVTSSDGGKFAVLNTSESPFFHFDGVEGFPQLEWVSNGITYQIFPDRFNNGNKSNDALALDHDELILNQVNPGQPILSNWSDPITPLHCCHQYFGGDIKGITEKLDYLQSLGVTIIYINPIFLSGSAHGYDTYDYYRLDPKFGTEDELREFLDEAHRRGMRVIFDFVPNHCGIGNPAFLDVWEKGNESPYWDWFFVKKWPFKLGDGSAYVGWWGFGSLPKLNTANQEVREYLIGAALHWIEFGFDGIRVDVPNEVLDPGTFFPELRKAVKEKKPDAYLVGEIWTLSPEWVKGDRFDSLMNYALGRDILLNYAKGLLSGESAMKMMGRYYASYGENVVAMGFNLVDSHDTSRVLTDLGGGKLGDTPSNESIQRLKLLSTLLYALPGTPVTFQGDERGLLGDKGHYDEQRYPIQWDTVNEDVLNHYRALAELRKRVPALRSSAMRFYTAKGGVMAFFRGHHDEVLVVANSWKKPALLELPEGEWKVIWPEDFSPELLRGTVEVPAIGIIILERG)的III型普鲁兰水解酶TK-PUL为出发序列,将TK-PUL中第526位赖氨酸(K)突变为天冬酰胺(N),以及第538位亮氨酸(L)突变为谷氨酸(E)。
进一步地,上述制备方法,具体步骤如下:
1)根据Thermococcus kodakarensis的III型普鲁兰水解酶TK-PUL的基因序列,其基因序列如SEQ ID NO:4所示(ATGAAAAAAGGTGGTCTGCTGCTCATTCTCCTGATTCTGGTCTCAATCGCCAGCGGATGTATCTCGGAGAGCAACGAAAATCAAACTGCAACGGCTTCGACCGTTCCACCGACTTCAGTGACACCCTCACAGTCTTCCACTCCCACAACCTCGACCTCGACGTACGGCCCTTCCGAAAGAACGGAGCTTAAACTTCCTTCGGTTAACTACACTCCCATCTACGTCGGCATAGAGAAAGGCTGTCCCTCCGGAAGAGTCCCGGTGAAGTTCACGTACAACCCCGGAAACAAGACCGTAAAGTCTGTCAGCCTCCGCGGGAGCTTCAACAACTGGGGAGAGTGGCCGATGGAGCTGAAGAACGGCACGTGGGAGACGACCGTCTGTCTCCGCCCTGGAAGGTATGAGTATAAGTACTTCATCAACGGCCAGTGGGTCAAGGACATGTCCGACGACGGGACGGGAAGGCCCTACGACCCCGATGCAGACGCCTATGCCCCCGATGGCTACGGGGGAAAGAACGCCGTGAGGGTAGTTGAGGGCCGCGAAGCGTTCTACGTGGAGTTCGATCCAAGAGACCCAGCCTACCTCAGCATCGCGGACAAAAGAACCGTGGTCAGGTTCGAGGCTAAGAGAGACACCGTCGAGTCTGCGGTTCTCGTTACGGATCACGGGAACTACACGATGAAGCTTCAGGTCTGGTGGGACTTCGGCGAAACCTGGCGCGCCGAGATGCCAGTTGAACCCGCTGATTATTACATTCTCGTAACCTCCTCCGACGGCGGGAAGTTTGCCGTCCTAAACACAAGCGAAAGCCCGTTCTTCCACTTTGATGGCGTTGAGGGGTTCCCCCAGCTGGAGTGGGTGAGCAACGGGATAACCTACCAGATATTCCCCGACAGGTTCAACAACGGCAATAAAAGCAACGATGCCCTAGCTTTGGATCACGACGAGCTAATTTTGAACCAGGTTAATCCAGGGCAGCCAATCCTCTCCAACTGGAGCGACCCGATAACGCCCCTCCACTGCTGCCACCAGTACTTCGGCGGCGACATAAAGGGAATAACGGAGAAGCTCGACTACCTTCAGAGCCTAGGTGTTACTATAATCTACATCAACCCGATTTTCCTCTCGGGAAGCGCCCACGGCTACGACACCTACGACTACTACCGGCTCGACCCCAAGTTCGGGACCGAGGATGAGCTGAGAGAGTTCCTCGATGAGGCCCACAGGAGGGGAATGAGGGTAATCTTCGATTTCGTGCCCAACCACTGCGGCATAGGGAATCCAGCCTTCCTCGACGTCTGGGAGAAGGGCAACGAAAGCCCATACTGGGACTGGTTCTTCGTCAAGAAGTGGCCCTTCAAGCTCGGCGATGGGAGCGCCTACGTCGGCTGGTGGGGCTTTGGGAGCCTTCCGAAGCTCAACACTGCCAACCAGGAGGTCAGGGAGTACCTGATAGGAGCGGCCCTCCACTGGATAGAGTTCGGCTTTGACGGCATTAGGGTGGATGTGCCGAACGAAGTCCTCGACCCGGGGACGTTCTTCCCGGAGCTGAGAAAGGCAGTTAAGGAGAAAAAGCCCGACGCGTACCTCGTCGGCGAGATATGGACGCTCTCCCCGGAGTGGGTGAAGGGAGACCGCTTCGACTCCCTCATGAACTACGCCCTCGGGAGGGACATCCTCCTGAACTACGCTAAGGGCCTGCTCAGCGGAGAAAGTGCAATGAAAATGATGGGACGTTACTACGCTTCCTACGGCGAGAACGTAGTTGCGATGGGCTTCAACCTCGTTGATTCGCACGACACTTCGAGGGTTCTCACTGACCTCGGTGGTGGCAAACTGGGAGACACACCGTCAAACGAGTCAATTCAGAGGCTCAAGCTCCTCTCAACGCTCCTCTATGCCCTGCCCGGAACTCCCGTCACCTTCCAGGGGGACGAGAGGGGACTGCTCGGAGACAAGGGACACTACGATGAGCAACGCTATCCGATACAGTGGGATACTGTGAACGAGGACGTCCTGAACCACTACAGGGCACTGGCGGAGCTCAGAAAAAGAGTTCCCGCATTGAGGAGCAGCGCAATGAGGTTCTACACTGCCAAAGGCGGCGTTATGGCCTTCTTCAGGGGACATCATGACGAGGTTCTCGTCGTTGCCAACAGCTGGAAGAAGCCAGCCCTACTGGAGCTTCCCGAGGGAGAGTGGAAAGTAATCTGGCCTGAGGATTTCAGCCCGGAACTGCTTCGCGGCACAGTTGAAGTGCCAGCCATAGGGATAATCATCCTTGAGCGGGGTTGA),采用化学全合成的方法合成基因后,将其克隆到重组质粒pSTOP1622中,构建重组质粒pSTOP1622-tkpulh;
2)采用在线工具Evcouplings-PLM(http://www.EVfold.org/)分析TK-PUL中催化结构域(G281~A694)中的进化偶联位点。在Evcouplings-PLM运算产生的氨基酸残基对中选择PLM score最高的氨基酸残基对K526/L538作为饱和突变的候选位点。以重组质粒为pSTOP1622-tkpul模板,运用全质粒PCR方法对氨基酸残基对K526/L538进行饱和突变。并将包含有饱和突变的重组质粒库转化枯草芽孢杆菌Bacillus subtilis WB600,构建相应的饱和突变体文库;
3)采用高通量筛选方法从上述饱和突变体文库中筛选获得α-淀粉酶活性最高的突变体Mut(K526N/L538E)。
本发明还提供所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体在淀粉酶法制糖工业的应用。
本发明对III型普鲁兰水解酶TK-PUL的催化结构域进行进化偶联分析,选择其中进化偶联强度最高的氨基酸残基对构建相应的饱和突变体文库(对嗜热酸性III型普鲁兰水解酶TK-PUL中进化偶联氨基酸残基对K526/L538进行饱和突变,构建相应的饱和突变体文库)。通过比较突变体的α-淀粉酶活性,筛选出针对可溶性淀粉的比酶活力显著提高的III型普鲁兰水解酶突变体Mut(K526N/L538E)。
本发明公开了以下技术效果:
本发明提供的III型普鲁兰水解酶TK-PUL突变体Mut对可溶性淀粉的酶活力由对照(突变前)的54.08U/mg提高到190.47U/mg,提高了2.52倍。以可溶性淀粉为底物,III型普鲁兰水解酶TK-PUL突变体Mut的最适反应温度为100℃,最适反应pH为4.5,于pH值为3.0~7.0的范围内具有80%以上的稳定性,于90℃的半衰期为19h。嗜热酸性III型普鲁兰水解酶TK-PUL突变体Mut的淀粉降解能力显著提高,可有效完全水解淀粉为淀粉糖,并且其酶学性质符合淀粉酶法制糖工艺的需要,更适用于淀粉酶法制糖工业,有利于简化工艺、节约能源。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为TK-PUL和突变体的SDS-PAGE检测图;
图2为TK-PUL和突变体的最适反应温度;
图3为TK-PUL和突变体的于90℃的热稳定性;
图4为TK-PUL和突变体的最适反应pH;
图5为TK-PUL和突变体的pH稳定性。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实验条件:
1、菌株与载体
大肠杆菌Escherichia coli JM109(江西省科学院微生物研究所实验室保存),枯草芽孢杆菌Bacillus subtilis WB600(江西省科学院微生物研究所实验室保存),枯草芽孢杆菌表达载体pSTOP1622(购自MoBiTec公司)。
2、酶类及其他生化试剂
基因定点突变试剂盒购自上海碧云天生物技术有限公司,KOD-Plus-neo DNA聚合酶购自Toyobo公司,DNA限制性内切酶、T4 DNA连接酶购自Fermentase公司,DNA胶回收试剂盒、质粒抽提试剂盒E.Z.N.A.购自Omega Bio-tek公司,Chelating SepharoseTM Fast Flow购自美国GE Healthcare公司,可溶性淀粉、玉米淀粉购自百威灵科技有限公司,其它化学试剂均为国产或进口分析纯。
3、培养基
LB培养基(g/L):胰蛋白胨10、酵母提取物5、NaCl 10,pH 7.0。筛选培养基采用含50μg/mL氨苄青霉素的LB培养基。
本发明中所用到的分子克隆技术和蛋白质检测技术均为本领域中的常规技术。在以下实施例中未作详细介绍的技术,均按照如下实验手册中的相关部分来进行。Green MR,Sambrook J.Molecular cloning:a laboratory manual[M].New York:Cold SpringHarbor Laboratory Press,2012。
实施例1TK-PUL突变体文库的构建与高通量筛选
(1)基因tkpul的合成
根据基因tkpul在NCBI数据库中的Gene ID(3235344),搜索获得其基因序列,如SEQ ID NO:4所示,交由上海博益生物科技有限公司进行TK-PUL的全基因合成。
(2)表达载体pSTOP1622-tkpulh的构建
根据TK-PUL的基因序列设计PCR引物P1、P2(表1),以合成基因tkpul为模板,以P1、P2为引物,进行PCR扩增。PCR扩增条件为:95℃10min;98℃30sec,60℃30sec,74℃1min,30个循环;74℃,5min。扩增产物经Spe I和BamH I双酶切,连接至载体pSTOP1622,构建重组质粒pSTOP1622-tkpulh。
表1构建重组质粒所用引物
Figure BDA0003582249920000091
注:下划线标注的部分为限制性酶切割位点,加粗标示的“NNK”为引入的简并密码子。
(3)饱和突变体文库的构建
采用在线工具Evcouplings-PLM(http://www.EVfold.org/)分析TK-PUL中催化结构域(G281~A694)中的进化偶联位点。在Evcouplings-PLM运算产生的氨基酸残基对中选择PLM score最高氨基酸残基对K526/L538作为饱和突变的位点。以重组质粒pSTOP1622-tkpulh为模板,以表1中P3和P4为引物,采用基因定点突变试剂盒对K526/L538位点进行饱和突变。PCR扩增条件为:94℃5min;94℃30sec,55℃20sec,68℃4min,35个循环;68℃,10min。扩增产物经Dpn I酶处理后电击转化入大肠杆菌E.coli JM109感受态细胞,涂布含有100μg/mL氨苄青霉素的LB平板,于37℃过夜培养。收集LB固体平板上所有转化子,提取其中所含重组质粒。将所获得的重组质粒转化B.subtilis WB600,将转化子涂布于含100μg/mL卡那霉素的LB固体平板上,于37℃过夜培养,即获得饱和突变体文库。
(4)饱和突变体文库的高通量筛选
取灭菌、烘干的96孔板,每孔加入500μL LB培养基。用灭菌牙签挑取上述LB固体上单菌落,转移到培养孔中,依次反复直至挑选结束。盖上盖子,于摇床中37℃过夜培养。用移液器按照顺序将活化后的种子液以1%接种量转接至新的含有500μL LB培养基96孔板中,37℃培养5h后向每孔中补加木糖溶液至其终浓度为0.5%,然后再于37℃培养20h。
将培养后的96孔板于4℃下4000×g离心10min,离心后的上清用于α-淀粉酶活性的高通量检测。取灭菌、烘干的96孔板,每孔加入100μL发酵液上清,然后加入100μL含1%(m/v)可溶性淀粉的50mmol/L MES,pH 4.5缓冲液,于100℃反应10min后,向其中补加300μL3,5-二硝基水杨酸,沸水浴反应10min后转移至冰水浴中快速冷却。取洁净的酶标板加入150μL无菌水和50μL反应液并混匀,用酶标仪测定540nm下的吸光值。吸光值的大小反应突变体的酶活大小。
将筛选出吸光值最大的突变体对应的重组枯草芽孢杆菌(B.subtilis WB600/pSTOP1622-mut)接种于含有100μg/mL氨苄霉素的20mL LB液体培养基中,37℃快速振荡培养过夜。待培养结束后,收集菌体,并提取重组质粒pSTOP1622-mut。对重组质粒进行基因测序分析,与TK-PUL的基因序列进行对比,并利用三联体密码子推定突变体Mut包含的氨基酸突变为K526N/L538E。
实施例2突变体Mut的酶学性质验证
(1)重组酶的诱导表达与纯化
取含有重组质粒的B.subtilis WB600菌株和含有pSTOP1622的B.subtilis WB600菌株(作为对照),分别接种于含有100μg/mL氨苄霉素的20mL LB液体培养基中,37℃快速振荡培养过夜。将过夜培养物以1%接种量转接至含有100μg/mL氨苄霉素的50mL LB液体培养基中,37℃快速振荡培养至菌液OD600nm达到0.8左右。添加终浓度为0.5%的木糖,继续于37℃培养30h后,12000r/min离心10min收集发酵上清液。
采用Ni2+亲和层析柱对发酵上清液中目的蛋白质进行纯化,用250mmol/L咪唑洗脱缓冲液洗脱,即得到纯化后的重组酶。利用SDS-PAGE检测重组酶的纯度,并采用Bradford法测定重组酶的浓度。
(2)重组酶以可溶性淀粉为底物的比酶活力和动力学常数测定
重组酶对可溶性淀粉的比酶活力测定:将10μL酶液与490μL含1%(m/v)可溶性淀粉的50mmol/L MES,pH 5.0缓冲液混合,于100℃反应30min后,迅速放入冰水浴中终止反应,然后采用3,5-二硝基水杨酸法测定反应体系中还原糖量。生成的还原糖通过麦芽糖标准工作曲线折算为麦芽糖质量表示。酶活力单位(U)定义:在一定反应条件下,每分钟催化产生1μmol麦芽糖的酶量为一个酶活力单位(U)。重组酶对可溶性淀粉的酶活力测定结果如表2所示。突变体Mut于100℃的比酶活力由突变前(TK-PUL)的54.08U/mg提高至190.47U/mg,提高了2.52倍。
重组酶的动力学常数测定:用50mmol/L MES,pH 4.5缓冲液配制不同浓度的可溶性淀粉,分别向不同浓度底物中加入等量的酶液,测定重组酶以不同浓度的可溶性淀粉为底物的比酶活力。根据双倒数作图法以底物浓度的倒数为横坐标,以比酶活力的倒数为纵坐标作图,直线的斜率为Km/Vmax,截距为1/Vmax,计算米氏常数Km和反应常数kcat。可溶性淀粉的浓度梯度设定为0.5、1.0、1.5、2.0、2.5、3.0、3.5mg/mL。重组酶的动力学常数测定结果如表2所示。与TK-PUL相比,突变体Mut以可溶性淀粉为底物的Km值明显下降,kcat值明显升高。这表明,突变体Mut对可溶性淀粉的底物结合能力和降解能力明显提高。突变体Mut于100℃对可溶性淀粉的kcat/Km值由突变前(TK-PUL)的43.49mL/(mg·s)提高至165.02mL/(mg·s),提高了2.79倍。
表2TK-PUL及突变体Mut于100℃的比酶活力和动力学常数
Figure BDA0003582249920000121
(3)温度和pH值对重组酶的活性和稳定性的影响
重组酶的最适反应温度测定:参照“重组酶对可溶性淀粉的酶活力测定”方法混合酶液和底物,将混合物分别于40~110℃反应30min,测定不同温度条件下比酶活力。将所测得的最高比酶活力定义为100%,并以相对酶活的百分比对温度作图,确定酶的最适反应温度。重组酶的最适反应温度测定结果如图2所示。TK-PUL和突变体Mut的最适反应温度均为100℃。
重组酶的热稳定性测定:将酶液于90℃保温,分时间梯度取出部分样品,以1%(m/v)可溶性淀粉溶液为底物于100℃下测定样品的比酶活力。将未处理的酶液的酶活定义为100%,并以相对酶活的百分比对时间作图,评价酶的热稳定性。重组酶的热稳定性测定结果如图3所示。TK-PUL于90℃的半衰期约为20h,突变体Mut于90℃的半衰期约为19h。与TK-PUL相比,突变体Mut的热稳定性略有下降。
重组酶的最适反应pH测定:将酶液与不同pH的1%(m/v)可溶性淀粉溶液混合,于100℃下测定样品的比酶活力。将所测得的最高比酶活力定义为100%,并以相对酶活的百分比对pH值作图,确定酶的最适反应pH。采用不同缓冲液配制不同pH的1%(m/v)可溶性淀粉溶液:50mmol/L MES(pH 3.0~7.0)、50mmol/L MOPS(pH 7.0~9.0)。重组酶的最适反应pH测定结果如图4所示。TK-PUL及突变体Mut的最适反应pH均约为4.5,并且TK-PUL及突变体Mut的最适反应pH曲线的变化趋势基本相同。
重组酶的pH稳定性测定:将酶液用不同pH(3.0~9.0)缓冲液[包括50mmol/L MES(pH 3.0~7.0)、50mmol/L MOPS(pH 7.0~9.0)]稀释,将其在不同pH条件下于37℃处理2h,然后用最适反应pH缓冲液稀释,并参照“重组酶对可溶性淀粉的酶活力测定”方法测定样品的比酶活力。将未处理样品的比酶活力定义为100%,计算处理后样品的相对酶活,并以相对酶活的百分比对pH作图,评价重组酶的pH稳定性。重组酶的pH稳定性测定结果如图5所示。TK-PUL和突变体Mut的pH稳定性基本一致,在pH值为3~7的范围内,具有80%以上的剩余酶活。
以上酶学性质测定结果显示:突变体Mut的最适反应温度、最适反应pH和pH稳定性与TK-PUL基本一致。此外,与TK-PUL相比,突变体Mut于90℃的热稳定性略有下降。TK-PUL于90℃的半衰期约为20h,突变体Mut于90℃的半衰期约为19h。
(4)重组酶对玉米淀粉的水解作用
重组酶对玉米淀粉的水解作用:将5mL含30%(m/v)玉米淀粉的50mmol/L MES、pH4.5缓冲液于100℃处理30min后,向其中加入500U的酶液,于90℃进行反应。在反应时间分别为0、1、5、10、15、20h时,取出500μL样品,迅速放入冰水浴中终止反应,然后采用3,5-二硝基水杨酸法测定反应体系中还原糖量。生成的还原糖通过麦芽糖标准工作曲线折算为麦芽糖质量表示。重组酶TK-PUL和突变体Mut水解玉米淀粉获得的还原糖量如表3所示。重组酶TK-PUL和突变体Mut水解玉米淀粉获得的还原糖量随着反应时间的延长而增加,并且突变体Mut水解玉米淀粉获得还原糖量高于TK-PUL水解玉米淀粉获得的还原糖量。当反应时间为20h时,突变体Mut水解玉米淀粉获得的还原糖量约为TK-PUL水解玉米淀粉获得的还原糖量的1.78倍。
表3TK-PUL及突变体Mut水解玉米淀粉获得的还原糖量
Figure BDA0003582249920000131
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
序列表
<110> 江西省科学院微生物研究所(江西省流域生态研究所)
<120> 一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体及其制备方法和应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 765
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Lys Lys Gly Gly Leu Leu Leu Ile Leu Leu Ile Leu Val Ser Ile
1 5 10 15
Ala Ser Gly Cys Ile Ser Glu Ser Asn Glu Asn Gln Thr Ala Thr Ala
20 25 30
Ser Thr Val Pro Pro Thr Ser Val Thr Pro Ser Gln Ser Ser Thr Pro
35 40 45
Thr Thr Ser Thr Ser Thr Tyr Gly Pro Ser Glu Arg Thr Glu Leu Lys
50 55 60
Leu Pro Ser Val Asn Tyr Thr Pro Ile Tyr Val Gly Ile Glu Lys Gly
65 70 75 80
Cys Pro Ser Gly Arg Val Pro Val Lys Phe Thr Tyr Asn Pro Gly Asn
85 90 95
Lys Thr Val Lys Ser Val Ser Leu Arg Gly Ser Phe Asn Asn Trp Gly
100 105 110
Glu Trp Pro Met Glu Leu Lys Asn Gly Thr Trp Glu Thr Thr Val Cys
115 120 125
Leu Arg Pro Gly Arg Tyr Glu Tyr Lys Tyr Phe Ile Asn Gly Gln Trp
130 135 140
Val Lys Asp Met Ser Asp Asp Gly Thr Gly Arg Pro Tyr Asp Pro Asp
145 150 155 160
Ala Asp Ala Tyr Ala Pro Asp Gly Tyr Gly Gly Lys Asn Ala Val Arg
165 170 175
Val Val Glu Gly Arg Glu Ala Phe Tyr Val Glu Phe Asp Pro Arg Asp
180 185 190
Pro Ala Tyr Leu Ser Ile Ala Asp Lys Arg Thr Val Val Arg Phe Glu
195 200 205
Ala Lys Arg Asp Thr Val Glu Ser Ala Val Leu Val Thr Asp His Gly
210 215 220
Asn Tyr Thr Met Lys Leu Gln Val Trp Trp Asp Phe Gly Glu Thr Trp
225 230 235 240
Arg Ala Glu Met Pro Val Glu Pro Ala Asp Tyr Tyr Ile Leu Val Thr
245 250 255
Ser Ser Asp Gly Gly Lys Phe Ala Val Leu Asn Thr Ser Glu Ser Pro
260 265 270
Phe Phe His Phe Asp Gly Val Glu Gly Phe Pro Gln Leu Glu Trp Val
275 280 285
Ser Asn Gly Ile Thr Tyr Gln Ile Phe Pro Asp Arg Phe Asn Asn Gly
290 295 300
Asn Lys Ser Asn Asp Ala Leu Ala Leu Asp His Asp Glu Leu Ile Leu
305 310 315 320
Asn Gln Val Asn Pro Gly Gln Pro Ile Leu Ser Asn Trp Ser Asp Pro
325 330 335
Ile Thr Pro Leu His Cys Cys His Gln Tyr Phe Gly Gly Asp Ile Lys
340 345 350
Gly Ile Thr Glu Lys Leu Asp Tyr Leu Gln Ser Leu Gly Val Thr Ile
355 360 365
Ile Tyr Ile Asn Pro Ile Phe Leu Ser Gly Ser Ala His Gly Tyr Asp
370 375 380
Thr Tyr Asp Tyr Tyr Arg Leu Asp Pro Lys Phe Gly Thr Glu Asp Glu
385 390 395 400
Leu Arg Glu Phe Leu Asp Glu Ala His Arg Arg Gly Met Arg Val Ile
405 410 415
Phe Asp Phe Val Pro Asn His Cys Gly Ile Gly Asn Pro Ala Phe Leu
420 425 430
Asp Val Trp Glu Lys Gly Asn Glu Ser Pro Tyr Trp Asp Trp Phe Phe
435 440 445
Val Lys Lys Trp Pro Phe Lys Leu Gly Asp Gly Ser Ala Tyr Val Gly
450 455 460
Trp Trp Gly Phe Gly Ser Leu Pro Lys Leu Asn Thr Ala Asn Gln Glu
465 470 475 480
Val Arg Glu Tyr Leu Ile Gly Ala Ala Leu His Trp Ile Glu Phe Gly
485 490 495
Phe Asp Gly Ile Arg Val Asp Val Pro Asn Glu Val Leu Asp Pro Gly
500 505 510
Thr Phe Phe Pro Glu Leu Arg Lys Ala Val Lys Glu Lys Asn Pro Asp
515 520 525
Ala Tyr Leu Val Gly Glu Ile Trp Thr Glu Ser Pro Glu Trp Val Lys
530 535 540
Gly Asp Arg Phe Asp Ser Leu Met Asn Tyr Ala Leu Gly Arg Asp Ile
545 550 555 560
Leu Leu Asn Tyr Ala Lys Gly Leu Leu Ser Gly Glu Ser Ala Met Lys
565 570 575
Met Met Gly Arg Tyr Tyr Ala Ser Tyr Gly Glu Asn Val Val Ala Met
580 585 590
Gly Phe Asn Leu Val Asp Ser His Asp Thr Ser Arg Val Leu Thr Asp
595 600 605
Leu Gly Gly Gly Lys Leu Gly Asp Thr Pro Ser Asn Glu Ser Ile Gln
610 615 620
Arg Leu Lys Leu Leu Ser Thr Leu Leu Tyr Ala Leu Pro Gly Thr Pro
625 630 635 640
Val Thr Phe Gln Gly Asp Glu Arg Gly Leu Leu Gly Asp Lys Gly His
645 650 655
Tyr Asp Glu Gln Arg Tyr Pro Ile Gln Trp Asp Thr Val Asn Glu Asp
660 665 670
Val Leu Asn His Tyr Arg Ala Leu Ala Glu Leu Arg Lys Arg Val Pro
675 680 685
Ala Leu Arg Ser Ser Ala Met Arg Phe Tyr Thr Ala Lys Gly Gly Val
690 695 700
Met Ala Phe Phe Arg Gly His His Asp Glu Val Leu Val Val Ala Asn
705 710 715 720
Ser Trp Lys Lys Pro Ala Leu Leu Glu Leu Pro Glu Gly Glu Trp Lys
725 730 735
Val Ile Trp Pro Glu Asp Phe Ser Pro Glu Leu Leu Arg Gly Thr Val
740 745 750
Glu Val Pro Ala Ile Gly Ile Ile Ile Leu Glu Arg Gly
755 760 765
<210> 2
<211> 2298
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgaaaaaag gtggtctgct gctcattctc ctgattctgg tctcaatcgc cagcggatgt 60
atctcggaga gcaacgaaaa tcaaactgca acggcttcga ccgttccacc gacttcagtg 120
acaccctcac agtcttccac tcccacaacc tcgacctcga cgtacggccc ttccgaaaga 180
acggagctta aacttccttc ggttaactac actcccatct acgtcggcat agagaaaggc 240
tgtccctccg gaagagtccc ggtgaagttc acgtacaacc ccggaaacaa gaccgtaaag 300
tctgtcagcc tccgcgggag cttcaacaac tggggagagt ggccgatgga gctgaagaac 360
ggcacgtggg agacgaccgt ctgtctccgc cctggaaggt atgagtataa gtacttcatc 420
aacggccagt gggtcaagga catgtccgac gacgggacgg gaaggcccta cgaccccgat 480
gcagacgcct atgcccccga tggctacggg ggaaagaacg ccgtgagggt agttgagggc 540
cgcgaagcgt tctacgtgga gttcgatcca agagacccag cctacctcag catcgcggac 600
aaaagaaccg tggtcaggtt cgaggctaag agagacaccg tcgagtctgc ggttctcgtt 660
acggatcacg ggaactacac gatgaagctt caggtctggt gggacttcgg cgaaacctgg 720
cgcgccgaga tgccagttga acccgctgat tattacattc tcgtaacctc ctccgacggc 780
gggaagtttg ccgtcctaaa cacaagcgaa agcccgttct tccactttga tggcgttgag 840
gggttccccc agctggagtg ggtgagcaac gggataacct accagatatt ccccgacagg 900
ttcaacaacg gcaataaaag caacgatgcc ctagctttgg atcacgacga gctaattttg 960
aaccaggtta atccagggca gccaatcctc tccaactgga gcgacccgat aacgcccctc 1020
cactgctgcc accagtactt cggcggcgac ataaagggaa taacggagaa gctcgactac 1080
cttcagagcc taggtgttac tataatctac atcaacccga ttttcctctc gggaagcgcc 1140
cacggctacg acacctacga ctactaccgg ctcgacccca agttcgggac cgaggatgag 1200
ctgagagagt tcctcgatga ggcccacagg aggggaatga gggtaatctt cgatttcgtg 1260
cccaaccact gcggcatagg gaatccagcc ttcctcgacg tctgggagaa gggcaacgaa 1320
agcccatact gggactggtt cttcgtcaag aagtggccct tcaagctcgg cgatgggagc 1380
gcctacgtcg gctggtgggg ctttgggagc cttccgaagc tcaacactgc caaccaggag 1440
gtcagggagt acctgatagg agcggccctc cactggatag agttcggctt tgacggcatt 1500
agggtggatg tgccgaacga agtcctcgac ccggggacgt tcttcccgga gctgagaaag 1560
gcagttaagg agaaaaaccc cgacgcgtac ctcgtcggcg agatatggac ggaatccccg 1620
gagtgggtga agggagaccg cttcgactcc ctcatgaact acgccctcgg gagggacatc 1680
ctcctgaact acgctaaggg cctgctcagc ggagaaagtg caatgaaaat gatgggacgt 1740
tactacgctt cctacggcga gaacgtagtt gcgatgggct tcaacctcgt tgattcgcac 1800
gacacttcga gggttctcac tgacctcggt ggtggcaaac tgggagacac accgtcaaac 1860
gagtcaattc agaggctcaa gctcctctca acgctcctct atgccctgcc cggaactccc 1920
gtcaccttcc agggggacga gaggggactg ctcggagaca agggacacta cgatgagcaa 1980
cgctatccga tacagtggga tactgtgaac gaggacgtcc tgaaccacta cagggcactg 2040
gcggagctca gaaaaagagt tcccgcattg aggagcagcg caatgaggtt ctacactgcc 2100
aaaggcggcg ttatggcctt cttcagggga catcatgacg aggttctcgt cgttgccaac 2160
agctggaaga agccagccct actggagctt cccgagggag agtggaaagt aatctggcct 2220
gaggatttca gcccggaact gcttcgcggc acagttgaag tgccagccat agggataatc 2280
atccttgagc ggggttga 2298
<210> 3
<211> 765
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Lys Lys Gly Gly Leu Leu Leu Ile Leu Leu Ile Leu Val Ser Ile
1 5 10 15
Ala Ser Gly Cys Ile Ser Glu Ser Asn Glu Asn Gln Thr Ala Thr Ala
20 25 30
Ser Thr Val Pro Pro Thr Ser Val Thr Pro Ser Gln Ser Ser Thr Pro
35 40 45
Thr Thr Ser Thr Ser Thr Tyr Gly Pro Ser Glu Arg Thr Glu Leu Lys
50 55 60
Leu Pro Ser Val Asn Tyr Thr Pro Ile Tyr Val Gly Ile Glu Lys Gly
65 70 75 80
Cys Pro Ser Gly Arg Val Pro Val Lys Phe Thr Tyr Asn Pro Gly Asn
85 90 95
Lys Thr Val Lys Ser Val Ser Leu Arg Gly Ser Phe Asn Asn Trp Gly
100 105 110
Glu Trp Pro Met Glu Leu Lys Asn Gly Thr Trp Glu Thr Thr Val Cys
115 120 125
Leu Arg Pro Gly Arg Tyr Glu Tyr Lys Tyr Phe Ile Asn Gly Gln Trp
130 135 140
Val Lys Asp Met Ser Asp Asp Gly Thr Gly Arg Pro Tyr Asp Pro Asp
145 150 155 160
Ala Asp Ala Tyr Ala Pro Asp Gly Tyr Gly Gly Lys Asn Ala Val Arg
165 170 175
Val Val Glu Gly Arg Glu Ala Phe Tyr Val Glu Phe Asp Pro Arg Asp
180 185 190
Pro Ala Tyr Leu Ser Ile Ala Asp Lys Arg Thr Val Val Arg Phe Glu
195 200 205
Ala Lys Arg Asp Thr Val Glu Ser Ala Val Leu Val Thr Asp His Gly
210 215 220
Asn Tyr Thr Met Lys Leu Gln Val Trp Trp Asp Phe Gly Glu Thr Trp
225 230 235 240
Arg Ala Glu Met Pro Val Glu Pro Ala Asp Tyr Tyr Ile Leu Val Thr
245 250 255
Ser Ser Asp Gly Gly Lys Phe Ala Val Leu Asn Thr Ser Glu Ser Pro
260 265 270
Phe Phe His Phe Asp Gly Val Glu Gly Phe Pro Gln Leu Glu Trp Val
275 280 285
Ser Asn Gly Ile Thr Tyr Gln Ile Phe Pro Asp Arg Phe Asn Asn Gly
290 295 300
Asn Lys Ser Asn Asp Ala Leu Ala Leu Asp His Asp Glu Leu Ile Leu
305 310 315 320
Asn Gln Val Asn Pro Gly Gln Pro Ile Leu Ser Asn Trp Ser Asp Pro
325 330 335
Ile Thr Pro Leu His Cys Cys His Gln Tyr Phe Gly Gly Asp Ile Lys
340 345 350
Gly Ile Thr Glu Lys Leu Asp Tyr Leu Gln Ser Leu Gly Val Thr Ile
355 360 365
Ile Tyr Ile Asn Pro Ile Phe Leu Ser Gly Ser Ala His Gly Tyr Asp
370 375 380
Thr Tyr Asp Tyr Tyr Arg Leu Asp Pro Lys Phe Gly Thr Glu Asp Glu
385 390 395 400
Leu Arg Glu Phe Leu Asp Glu Ala His Arg Arg Gly Met Arg Val Ile
405 410 415
Phe Asp Phe Val Pro Asn His Cys Gly Ile Gly Asn Pro Ala Phe Leu
420 425 430
Asp Val Trp Glu Lys Gly Asn Glu Ser Pro Tyr Trp Asp Trp Phe Phe
435 440 445
Val Lys Lys Trp Pro Phe Lys Leu Gly Asp Gly Ser Ala Tyr Val Gly
450 455 460
Trp Trp Gly Phe Gly Ser Leu Pro Lys Leu Asn Thr Ala Asn Gln Glu
465 470 475 480
Val Arg Glu Tyr Leu Ile Gly Ala Ala Leu His Trp Ile Glu Phe Gly
485 490 495
Phe Asp Gly Ile Arg Val Asp Val Pro Asn Glu Val Leu Asp Pro Gly
500 505 510
Thr Phe Phe Pro Glu Leu Arg Lys Ala Val Lys Glu Lys Lys Pro Asp
515 520 525
Ala Tyr Leu Val Gly Glu Ile Trp Thr Leu Ser Pro Glu Trp Val Lys
530 535 540
Gly Asp Arg Phe Asp Ser Leu Met Asn Tyr Ala Leu Gly Arg Asp Ile
545 550 555 560
Leu Leu Asn Tyr Ala Lys Gly Leu Leu Ser Gly Glu Ser Ala Met Lys
565 570 575
Met Met Gly Arg Tyr Tyr Ala Ser Tyr Gly Glu Asn Val Val Ala Met
580 585 590
Gly Phe Asn Leu Val Asp Ser His Asp Thr Ser Arg Val Leu Thr Asp
595 600 605
Leu Gly Gly Gly Lys Leu Gly Asp Thr Pro Ser Asn Glu Ser Ile Gln
610 615 620
Arg Leu Lys Leu Leu Ser Thr Leu Leu Tyr Ala Leu Pro Gly Thr Pro
625 630 635 640
Val Thr Phe Gln Gly Asp Glu Arg Gly Leu Leu Gly Asp Lys Gly His
645 650 655
Tyr Asp Glu Gln Arg Tyr Pro Ile Gln Trp Asp Thr Val Asn Glu Asp
660 665 670
Val Leu Asn His Tyr Arg Ala Leu Ala Glu Leu Arg Lys Arg Val Pro
675 680 685
Ala Leu Arg Ser Ser Ala Met Arg Phe Tyr Thr Ala Lys Gly Gly Val
690 695 700
Met Ala Phe Phe Arg Gly His His Asp Glu Val Leu Val Val Ala Asn
705 710 715 720
Ser Trp Lys Lys Pro Ala Leu Leu Glu Leu Pro Glu Gly Glu Trp Lys
725 730 735
Val Ile Trp Pro Glu Asp Phe Ser Pro Glu Leu Leu Arg Gly Thr Val
740 745 750
Glu Val Pro Ala Ile Gly Ile Ile Ile Leu Glu Arg Gly
755 760 765
<210> 4
<211> 2298
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgaaaaaag gtggtctgct gctcattctc ctgattctgg tctcaatcgc cagcggatgt 60
atctcggaga gcaacgaaaa tcaaactgca acggcttcga ccgttccacc gacttcagtg 120
acaccctcac agtcttccac tcccacaacc tcgacctcga cgtacggccc ttccgaaaga 180
acggagctta aacttccttc ggttaactac actcccatct acgtcggcat agagaaaggc 240
tgtccctccg gaagagtccc ggtgaagttc acgtacaacc ccggaaacaa gaccgtaaag 300
tctgtcagcc tccgcgggag cttcaacaac tggggagagt ggccgatgga gctgaagaac 360
ggcacgtggg agacgaccgt ctgtctccgc cctggaaggt atgagtataa gtacttcatc 420
aacggccagt gggtcaagga catgtccgac gacgggacgg gaaggcccta cgaccccgat 480
gcagacgcct atgcccccga tggctacggg ggaaagaacg ccgtgagggt agttgagggc 540
cgcgaagcgt tctacgtgga gttcgatcca agagacccag cctacctcag catcgcggac 600
aaaagaaccg tggtcaggtt cgaggctaag agagacaccg tcgagtctgc ggttctcgtt 660
acggatcacg ggaactacac gatgaagctt caggtctggt gggacttcgg cgaaacctgg 720
cgcgccgaga tgccagttga acccgctgat tattacattc tcgtaacctc ctccgacggc 780
gggaagtttg ccgtcctaaa cacaagcgaa agcccgttct tccactttga tggcgttgag 840
gggttccccc agctggagtg ggtgagcaac gggataacct accagatatt ccccgacagg 900
ttcaacaacg gcaataaaag caacgatgcc ctagctttgg atcacgacga gctaattttg 960
aaccaggtta atccagggca gccaatcctc tccaactgga gcgacccgat aacgcccctc 1020
cactgctgcc accagtactt cggcggcgac ataaagggaa taacggagaa gctcgactac 1080
cttcagagcc taggtgttac tataatctac atcaacccga ttttcctctc gggaagcgcc 1140
cacggctacg acacctacga ctactaccgg ctcgacccca agttcgggac cgaggatgag 1200
ctgagagagt tcctcgatga ggcccacagg aggggaatga gggtaatctt cgatttcgtg 1260
cccaaccact gcggcatagg gaatccagcc ttcctcgacg tctgggagaa gggcaacgaa 1320
agcccatact gggactggtt cttcgtcaag aagtggccct tcaagctcgg cgatgggagc 1380
gcctacgtcg gctggtgggg ctttgggagc cttccgaagc tcaacactgc caaccaggag 1440
gtcagggagt acctgatagg agcggccctc cactggatag agttcggctt tgacggcatt 1500
agggtggatg tgccgaacga agtcctcgac ccggggacgt tcttcccgga gctgagaaag 1560
gcagttaagg agaaaaagcc cgacgcgtac ctcgtcggcg agatatggac gctctccccg 1620
gagtgggtga agggagaccg cttcgactcc ctcatgaact acgccctcgg gagggacatc 1680
ctcctgaact acgctaaggg cctgctcagc ggagaaagtg caatgaaaat gatgggacgt 1740
tactacgctt cctacggcga gaacgtagtt gcgatgggct tcaacctcgt tgattcgcac 1800
gacacttcga gggttctcac tgacctcggt ggtggcaaac tgggagacac accgtcaaac 1860
gagtcaattc agaggctcaa gctcctctca acgctcctct atgccctgcc cggaactccc 1920
gtcaccttcc agggggacga gaggggactg ctcggagaca agggacacta cgatgagcaa 1980
cgctatccga tacagtggga tactgtgaac gaggacgtcc tgaaccacta cagggcactg 2040
gcggagctca gaaaaagagt tcccgcattg aggagcagcg caatgaggtt ctacactgcc 2100
aaaggcggcg ttatggcctt cttcagggga catcatgacg aggttctcgt cgttgccaac 2160
agctggaaga agccagccct actggagctt cccgagggag agtggaaagt aatctggcct 2220
gaggatttca gcccggaact gcttcgcggc acagttgaag tgccagccat agggataatc 2280
atccttgagc ggggttga 2298

Claims (7)

1.一种淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体,其特征在于,其氨基酸序列如SEQ ID NO:1所示。
2.一种编码权利要求1所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的基因。
3.根据权利要求2所述的基因,其特征在于,所述基因的核苷酸序列如SEQ ID NO:2所示。
4.一种能表达生产权利要求1所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的载体。
5.一种能表达生产权利要求1所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的基因工程菌。
6.如权利要求1所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体的制备方法,其特征在于,以氨基酸序列如SEQ ID NO:3所示的III型普鲁兰水解酶TK-PUL为出发序列,将TK-PUL中第526位赖氨酸(K)突变为天冬酰胺(N),以及第538位亮氨酸(L)突变为谷氨酸(E)。
7.权利要求1所述淀粉降解能力提高的嗜热酸性III型普鲁兰水解酶突变体在淀粉酶法制糖工业的应用。
CN202210355246.5A 2022-04-06 2022-04-06 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用 Active CN114934035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210355246.5A CN114934035B (zh) 2022-04-06 2022-04-06 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210355246.5A CN114934035B (zh) 2022-04-06 2022-04-06 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114934035A true CN114934035A (zh) 2022-08-23
CN114934035B CN114934035B (zh) 2023-03-28

Family

ID=82862472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210355246.5A Active CN114934035B (zh) 2022-04-06 2022-04-06 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114934035B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975989A (zh) * 2023-01-17 2023-04-18 江西省科学院微生物研究所(江西省流域生态研究所) 一种制备玉米抗性淀粉的iii型普鲁兰水解酶突变体及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350599B1 (en) * 2000-01-12 2002-02-26 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties
US20160194620A1 (en) * 2006-08-04 2016-07-07 Amano Enzyme Inc. Method for designing mutated enzyme, method for preparing the same, and mutated enzyme
CN108396019A (zh) * 2018-03-01 2018-08-14 江南大学 一种降低普鲁兰酶对环糊精敏感性的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350599B1 (en) * 2000-01-12 2002-02-26 Novozymes A/S Pullulanase variants and methods for preparing such variants with predetermined properties
US20160194620A1 (en) * 2006-08-04 2016-07-07 Amano Enzyme Inc. Method for designing mutated enzyme, method for preparing the same, and mutated enzyme
CN108396019A (zh) * 2018-03-01 2018-08-14 江南大学 一种降低普鲁兰酶对环糊精敏感性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKASHI TONOZUKA等: "Mutagenesis-induced conformational change in domain B of a pullulan-hydrolyzing α-amylase TVA I" *
甄杰等: ".一个新型耐热普鲁兰酶的结构与功能" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975989A (zh) * 2023-01-17 2023-04-18 江西省科学院微生物研究所(江西省流域生态研究所) 一种制备玉米抗性淀粉的iii型普鲁兰水解酶突变体及其制备方法和应用
CN115975989B (zh) * 2023-01-17 2023-07-04 江西省科学院微生物研究所(江西省流域生态研究所) 一种制备玉米抗性淀粉的iii型普鲁兰水解酶突变体及其制备方法和应用

Also Published As

Publication number Publication date
CN114934035B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN111676210B (zh) 一种提高纤维素酶活性的方法及纤维素酶突变体5i77-m和应用
CN113862241B (zh) 一种壳聚糖酶Csncv及其突变体CsnB和应用
CN110358750B (zh) 新型蔗糖磷酸化酶突变体及其在合成甘油葡糖苷中的应用
CN109971734B (zh) 一种pH不敏感高温耐受性HSL家族脂类水解酶及应用
CN113151237B (zh) 一种稳定性提高的蔗糖异构酶突变体及其构建方法
CN111471666A (zh) 比活及热稳定性提高的葡萄糖淀粉酶突变体ga3及其基因和应用
CN117625581B (zh) 一种N-乙酰氨基葡萄糖苷酶突变体Ea2F及其应用
CN113684198B (zh) 一种提高纤维素酶催化效率的方法及突变体5i77-m2
CN110373403B (zh) 耐高温中性普鲁兰酶及其应用
CN114934035B (zh) 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用
CN108841809A (zh) 具有高比活及热稳定性的淀粉酶突变体及其基因和应用
CN110184259B (zh) 一种厌氧芽孢杆菌来源普鲁兰酶突变体及其应用
CN109182301B (zh) 一种二糖降解酶基因及其应用
CN108823186B (zh) 一种玉米淀粉降解能力提高的嗜热酸性生淀粉α-淀粉酶突变体及其制备方法和应用
CN114606216B (zh) 一种表达量提高的α-淀粉酶突变体Q441N/N442H及其编码基因和应用
CN110592119A (zh) 一种来源于类芽孢杆菌新型普鲁兰酶及其基因与应用
CN113755473B (zh) 分泌表达量提高的葡萄糖淀粉酶突变体m5及其基因和应用
CN116121227A (zh) β-1,3-葡聚糖酶突变体N54W及其基因和应用
Ayadi et al. Excretory overexpression of Paenibacillus pabuli US132 cyclodextrin glucanotransferase (CGTase) in Escherichia coli: gene cloning and optimization of the culture conditions using experimental design
CN112342208B (zh) 一种普鲁兰酶突变体
CN114317495A (zh) 一种热稳定性提高的葡聚糖酶突变体及其应用
CN110452899B (zh) 一种葡萄糖异构酶、突变体及其在制备d-果糖中的应用
CN114395543B (zh) 一种海藻糖合酶突变体及其应用
CN114752581B (zh) 一种α-半乳糖苷酶突变体及其应用
CN111961657B (zh) 具有高耐热性的α-淀粉酶突变体K152H/A166C/E168H及其基因和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant