CN114934012B - 一种纳米层状双氢氧化物在软骨再生中的应用及其制备 - Google Patents

一种纳米层状双氢氧化物在软骨再生中的应用及其制备 Download PDF

Info

Publication number
CN114934012B
CN114934012B CN202210528029.1A CN202210528029A CN114934012B CN 114934012 B CN114934012 B CN 114934012B CN 202210528029 A CN202210528029 A CN 202210528029A CN 114934012 B CN114934012 B CN 114934012B
Authority
CN
China
Prior art keywords
layered double
double hydroxide
nano layered
prepared
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210528029.1A
Other languages
English (en)
Other versions
CN114934012A (zh
Inventor
朱融融
程黎明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202210528029.1A priority Critical patent/CN114934012B/zh
Publication of CN114934012A publication Critical patent/CN114934012A/zh
Priority to PCT/CN2023/094575 priority patent/WO2023221988A1/zh
Application granted granted Critical
Publication of CN114934012B publication Critical patent/CN114934012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • A61K33/08Oxides; Hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1392Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from mesenchymal stem cells from other natural sources

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明公开了一种纳米层状双氢氧化物在软骨再生中的应用及其制备,具体公开纳米层状双氢氧化物在促进间充质干细胞成软骨分化中的应用以及纳米层状双氢氧化物在制备促进软骨再生、促进椎间盘修复或治疗椎间盘退变的药物中的应用。与未加入纳米层状双氢氧化物的间充质干细胞对比,加入了纳米层状双氢氧化物的间充质干细胞具有更好更快分化成软骨细胞的能力,具有广阔的应用前景。

Description

一种纳米层状双氢氧化物在软骨再生中的应用及其制备
技术领域
本发明涉及干细胞的诱导分化,具体地说,涉及一种纳米层状双氢氧化物在软骨再生中的应用及其制备。
背景技术
退行性椎间盘疾病是一种与年龄相关的疾病,如果脊柱椎骨之间的一个或多个椎间盘退化或破裂时会发生椎间盘退行性病变,导致下腰痛。下腰痛是发达国家中导致残疾的第三大疾病。椎间盘是一种复杂的无血管的结缔组织软骨结构,由称为纤维环的纤维软骨的厚外环组成外围结构。间充质干细胞具有良好的增殖和多项分化能力,同时自我更新能力强,这给椎间盘退变的治疗提供了一个很有前途的再生治疗替代方案。生物材料在软骨组织工程中扮演着不可或缺的角色,通过优化设计的可降解材料来传递细胞因子,可以刺激种子细胞粘附、增殖和分化,从而促进椎间盘再生。因此构建理想的促间充质干细胞向软骨分化的材料对于椎间盘的重建和再生是至关重要的。
纳米层状双氢氧化物(layered double hydroxides,LDHs)是由二价金属氢氧化物和三价金属氢氧化物有机结合组成的片层状结构的无机纳米材料,在生物医学领域展现出诸多应用潜能,如本申请人前期申报的专利ZL201810126426.X公开了纳米无机层状双氢氧化物-神经营养因子3对横断吸除脊髓损伤模型小鼠的行为学具有显著的恢复作用,对模型小鼠的电生理行为具有显著恢复作用,并随着时间推移,电生理信号增强,说明可以重建损伤区域的神经环路;专利CN103966160A公开了纳米层状双氢氧化物能够在不添加LIF因子的情况下,促进小鼠胚胎干细胞各多能性基因的表达,抑制细胞分化,且处理后的细胞仍然具有向三个胚层分化的潜能。
然而,目前未见纳米层状双氢氧化物诱导人间充质干细胞成软骨分化的相关报道。
发明内容
针对现有技术中的不足,本发明的目的是提供一种纳米层状双氢氧化物在软骨再生中的应用及其制备。具体技术方案如下:
本发明第一方面提供一种纳米层状双氢氧化物在促进间充质干细胞成软骨分化中的应用。
进一步地,所述间充质干细胞为脐带来源的间充质干细胞;
优选地,所述间充质干细胞为人脐带来源的间充质干细胞。
本发明第二方面提供一种纳米层状双氢氧化物在制备促进软骨再生、促进椎间盘修复或治疗椎间盘退变的药物中的应用。
本发明上述所述应用中,所述纳米层状双氢氧化物的通式为[M2+ (1-x)M3+ x(OH)2]x+[An-]x/n·zH2O,其中M2+为二价金属阳离子,M3+为三价金属阳离子,An-为层间化合价为n的阴离子,x为三价阳离子占所有阳离子的摩尔比,z是每个纳米层状双氢氧化物分子间结晶水的个数,所述M2+和M3+形成的盐均具有可溶性或微溶性。
进一步地,所述M2+为Mg2+、Zn2+或Ca2+
所述M3+为Al3+或Fe3+
所述An-为Cl-、NO3 -或SO4 2-
进一步地,所述(1-x):x=(0.1~5):1。
本发明第三方面提供一种促进间充质干细胞成软骨分化、促进软骨再生、促进椎间盘修复或治疗椎间盘退变的液体制剂,所述液体制剂包括间充质干细胞和纳米层状双氢氧化物;
优选地,所述液体制剂中纳米层状双氢氧化物的浓度为1μg/mL-40μg/mL;
优选地,所述间充质干细胞为脐带来源的间充质干细胞;
优选地,所述间充质干细胞为人脐带来源的间充质干细胞。
本发明第四方面提供一种纳米层状双氢氧化物的制备方法,包括如下步骤:
(1)将可溶性二价金属离子盐和可溶性三价金属离子盐溶解于水中,配制金属离子盐溶液;
(2)用去CO2的双蒸馏水作为溶剂,配制NaOH溶液;
(3)N2气氛,将金属离子盐溶液加入到剧烈搅拌的NaOH溶液中,得到第一悬浮液;
(4)将第一悬浮液转移至水热合成釜,在80-120℃条件下加热14-18h,得到第二悬浮液;
(5)第二悬浮液进行离心处理,收集产物并用去CO2的双蒸馏水洗涤,经干燥,得到纳米层状双氢氧化物。
进一步地,所述二价金属离子为Mg2+、Zn2+和Ca2+中的任一种;
所述三价金属离子为Al3+或Fe3+
优选地,所述可溶性二价金属离子盐选自硝酸镁、硝酸锌、硝酸钙、氯化镁、氯化锌、氯化钙、硫酸镁、硫酸锌和硫酸钙中的任一种;
优选地,所述可溶性三价金属离子盐选自硝酸铝、硝酸铁、氯化铁、氯化铝、硫酸铝和硫酸铁中的任一种;
优选地,所述二价金属离子与三价金属离子的摩尔比为(0.1~5):1。
进一步地,步骤(2)中NaOH溶液的浓度为0.015-0.05M;
步骤(3)中所述剧烈搅拌的转速为400-2000rpm;
步骤(5)中所述干燥为真空干燥。
本发明的有益效果在于:
本发明首次用纳米层状双氢氧化物(LDH)材料促进人脐带间充质干细胞(hUCMSC)向软骨细胞分化。从细胞存活率检测实验、阿利辛蓝染色情况的观察、实时定量PCR检测软骨分化基因的表达等发现所述纳米层状双氢氧化物与细胞相容性好,细胞毒性低,与未加入纳米层状双氢氧化物的人脐带间充质干细胞对比,加入了纳米层状双氢氧化物的人脐带间充质干细胞具有更好更快分化成软骨细胞的能力,也比未加入纳米层状双氢氧化物的人脐带间充质干细胞有更高的成软骨7个多潜能标志性基因SOX 9、COLX、COL1A1、COL3A1、COL3A1-2、COL6A1和MKX的表达,将纳米层状双氢氧化物处理人脐带间充质干细胞后移植入针刺造成的大鼠椎间盘退变模型中,能够修复椎间盘退变。因此纳米层状双氢氧化物具有促进人脐带间充质干细胞向软骨细胞分化的优点,具有广阔的应用前景。
附图说明
图1是本发明实施例1中的纳米层状双氢氧化物的透射电镜图。
图2是本发明实施例1中的不同浓度的纳米层状双氢氧化物处理hUCMSC细胞24h及48h的细胞毒性结果(CCK-8法)。其中,横坐标表示纳米层状双氢氧化物的浓度,纵坐标表示hUCMSC的细胞存活率,空白对照组存活率设为100%。
图3是本发明实施例1中不同浓度的纳米层状双氢氧化物处理Hucmsc 10天、14天以及21天后的阿利辛蓝染色图。
图4是本发明实施例1中10μg/mL纳米层状双氢氧化物处理hUCMSC细胞10天时7个多潜能基因的表达水平柱状图。其中,横坐标表示不同的软骨细胞标志性基因,纵坐标表示基因相对表达水平,对照组的相对表达水平设为1。
图5是将大鼠针刺后的椎间盘移植入LDH处理后的hUCMSC的X线和核磁共振图。
具体实施方式
下面结合附图对本发明提供的具体实施方式作详细说明。
人脐带间充质干细胞(hUCMSC)是一种具有低免疫原性,自我更新、增殖和多向分化的干细胞,它能分化骨、软骨以及脂肪和神经细胞。人脐带间充质干细胞还具有来源广泛、可塑性强、对供者无不利影响、无伦理限制,还能够分泌细胞因子等优势。因此人脐带间充质干细胞在软骨再生发育中作为种子细胞,用于实验研究也具有实验周期短、易于诱导分化和有利于实验的标准化的优点,因此本发明中主要采用人脐带间充质干细胞作为种子细胞。
以下实施例中,所使用的DMEM/F12、胎牛血清、非必需氨基酸、谷氨酰胺以及双抗为细胞培养基必需成分,用于维持细胞正常生长,为市售产品,购自美国Gibco公司,其他非自制试剂和原料均为一般市售商品。
以下实施例中,纳米层状双氢氧化物(LDH)采取了多种金属离子、阴离子组成及元素比例变化的制备方式,并且将多种LDH材料处理后的hUCMSC进行软骨分化,实验结果显示多种LDH纳米材料均有不同程度的促进hUCMSC成软骨分化的效果,其中效果最佳的一种材料合成方法展示于实施例1中,其他类型的材料展示于实施例2-4中。
实施例1
纳米层状双氢氧化物的制备,具体步骤如下:
步骤一,用6mmol硝酸镁与2mmol硝酸铁配制60mL盐溶液,其中Mg2+与Fe3+之间的摩尔比为3:1。
步骤二,用去CO2的ddH2O(双蒸馏水)作为溶剂,配制0.016M的NaOH溶液40mL。
步骤三,在持续给予N2的同时,将步骤一制得的混合盐溶液60mL加入到剧烈搅拌(转速为400rpm)的步骤二制得的40mL 0.016M的NaOH溶液中,得到第一悬浮液。
步骤四,将第一悬浮液转移至水热合成釜,在100℃条件下加热18h,得到第二悬浮液。
步骤五,20000g离心15min收集产物并用去CO2的双蒸馏水洗涤两次后,将胶状材料置于4℃冰箱保存。
步骤六,将步骤五得到的胶状材料在真空干燥箱内干燥后得到纳米层状双氢氧化物,用透射电镜观察该纳米层状双氢氧化物。
图1是本发明的实施例中的纳米层状双氢氧化物的透射电镜形貌。由图1可知,纳米层状双氢氧化物具有较好的晶体结构,呈六边形,材料分布较均匀,粒径大小为100-120nm。
实施例2
与实施例1的区别在于,步骤(1)中硝酸镁替换为硝酸锌,硝酸铁替换为硝酸铝,配制的金属离子盐溶液中Zn2+与Al3+之间的摩尔比为0.1:1。其余操作同实施例1。最终成功获得LDH材料。
实施例3
与实施例1的区别在于,步骤(1)中硝酸镁替换为氯化镁,硝酸铁替换为氯化铁,配制的金属离子盐溶液中Mg2+与Fe3+之间的摩尔比为1:1。其余操作同实施例1。最终成功获得LDH材料。
实施例4
与实施例1的区别在于,步骤(1)中硝酸镁替换为硫酸钙,硝酸铁替换为硫酸铁,配制的金属离子盐溶液中Ca2+与Fe3+之间的摩尔比为5:1。其余操作同实施例1。最终成功获得LDH材料。
实施例5
1、细胞存活率检测(CCK-8法)
步骤一,培养人脐带间充质干细胞hUCMSC。
将hUCMSC接种在96孔板上,铺板密度8000个/孔,用培养基在37℃、5%CO2条件下培养18-24h,用于进行后续药物或材料的处理。hUCMSC培养基的原料组成为:DMEM/F12;FBS;双抗。在本实验中,培养时间为24h。
步骤二,配制六种浓度的溶液,浓度依次为1μg/mL、2.5μg/mL、5μg/mL、10μg/mL、20μg/mL以及40μg/mL。
步骤三,将步骤一中已培养好的hUCMSC细胞弃去上清,每个孔分别加入步骤二中制得的不同浓度的纳米层状双氢氧化物溶液,在培养24h及72h后,每孔中加入10μL的CCK-8溶液,浓度为5mg/mL,避光放置2h后,避光震荡10s,然后用酶标仪于455nm波长处测OD(光密度)值,检测结果见图2。
图2是本发明实施例1中的不同浓度的纳米层状双氢氧化物处理hUCMSC细胞24h及48h的细胞毒性结果(CCK-8法)。其中,横坐标表示纳米层状双氢氧化物的浓度,纵坐标表示hUCMSC的细胞存活率,空白对照组存活率设为100%。由图2可知,当材料浓度为1μg/mL、2.5μg/mL、5μg/mL、10μg/mL、20μg/mL及40μg/mL时,处理细胞后24h及48h后,与空白对照组相比,细胞存活率差异不大。
2、阿利辛蓝染色
将hUCMSC按照细胞密度2.5*104个/ml接种于24孔板中,在5%CO2、37℃的培养箱中培养24h使细胞融合密度达到70%,用hUCMSC培养基配制纳米层状双氢氧化物溶液,使得材料浓度为5μg/mL、10μg/mL、20μg/mL和40μg/mL,处理细胞10天、14天以及21天后,用4%PFA(多聚甲醛)室温固定细胞30min,吸走后用1×PBS洗两遍,再加入阿利辛蓝染液染30min后,吸走染液,用1×PBS洗两遍,将培养板置于显微镜下根据细胞形态和染色深浅观察成软骨染色效果。
图3是本发明实施例1中不同浓度的纳米层状双氢氧化物处理细胞10天、14天以及21天后的阿利幸蓝染色图。由图3可知,在纳米层状双氢氧化物处理细胞10天、14天以及21天后,与未加材料的细胞相比,加入材料的细胞的形态逐渐向软骨样细胞分化,并且蓝色染液随着处理时间的增长也在加深,说明人脐带间充质干细胞在材料的促分化作用下正在向软骨细胞分化。
3、实时定量PCR检测软骨分化基因的表达
将hUCMSC按照细胞密度5*104个/mL接种于6孔板中,在5%CO2、37℃的培养箱中培养24h使细胞融合密度达到70%,用hUCMSC培养基配制纳米层状双氢氧化物溶液,使得材料浓度为10μg/mL,处理10天和14天后,采用实时定量PCR检测各组处理后hUCMSC中软骨相关基因SOC9和COLX等基因的表达水平变化,其中Gapdh设置为内参基因。具体引物序列如下:Gapdh,上游引物:CTCCTCACAGTTGCCATGTA(SEQ ID NO.1),下游引物:GTTGAGCACAGGGTACTTTATTG(SEQ ID NO.2);SOX9,上游引物:ACCTTTGGGCTGCCTTATATT(SEQID NO.3),下游引物:TCCCTCACTCCAAGAGAAGAT(SEQ ID NO.4);COLX,上游引物:ACCCAAGGACTGGAATCTTTAC(SEQ ID NO.5),下游引物:GCCATTCTTATACAGGCCTAC(SEQ IDNO.6);COL2,上游引物:AGGAGGCTGGCAGCTGTGTGC(SEQ ID NO.7),下游引物:CACTGGCAGTGGCGAGGTCAG(SEQ ID NO.8);COMP,上游引物:AAGAACGACGACCAAAAGGAC(SEQ IDNO.9),下游引物:CATCCCCTATACCATCGCCA(SEQ ID NO.10);TNMD,上游引物:CCATGCTGGATGAGAGAGGTT(SEQ ID NO.11),下游引物:TTGGTAGCAGTATGGATATGGGT(SEQ IDNO.12);MKX,上游引物:CGAACACTACCATGATGGGAAA(SEQ ID NO.13),下游引物:TTCTGATGACGATGGAGACACTA(SEQ ID NO.14);ACAN,上游引物:AGTCCTCAAGCCTCCTGTACTCA(SEQ ID NO.15),下游引物:GCAGTTGATTCTGATTCACGTTTC(SEQ ID NO.16);
图4是本发明实施例1中加入5μg/mL和10μg/mL的LDH处理hUCMSC细胞14天时软骨分化基因SOX9、COLX、COL2、COMP、TNMD、MKX和ACAN的表达水平柱状图。其中,横坐标表示不同的软骨细胞标志性基因,纵坐标表示基因相对表达水平,对照组的相对表达水平设为1。由图4可知,加入一定浓度纳米层状双氢氧化物的共培养14天后,软骨细胞标志性基因SOX9、COLX、COL2、COMP、TNMD、MKX和ACAN均有不同程度的表达升高,表示人脐带间充质干细胞在材料的诱导下向软骨细胞分化。
4、X线和核磁共振检测大鼠针刺后椎间盘移植入LDH处理后的hUCMSC的恢复效果
将hUCMSC按照细胞密度2.5*104个/mL接种于10-cm培养皿中,在5%CO2、37℃的培养箱中培养24h使细胞融合密度达到70%,用hUCMSC培养基配制纳米层状双氢氧化物溶液,使得材料浓度为10μg/mL,处理细胞7天备用。选用8周雄鼠制备椎间盘退变模型,造模位置为大鼠的尾椎,将21G皮肤穿刺针从椎间盘纤维环一侧刺入5mm,旋转360°并维持30s后拔出。细胞移植及材料处理后的细胞在此时进行移植,细胞移植量为1×106/只,对照组注射等量的培养基。移植后4周和8周进行X线检测,移植后8周和12周进行核磁共振检测。
图5是X线和核磁共振检测大鼠针刺后椎间盘移植入LDH处理后的hUCMSC的恢复效果。结果显示随着时间的增加,X线结果表明LDH处理hUCMSC移植组能更好的恢复退变椎间盘的椎间高度,核磁共振结果表明LDH处理hUCMSC移植组能更好的恢复椎间盘的组织结构。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。
SEQUENCE LISTING
<110> 同济大学
<120> 一种纳米层状双氢氧化物在软骨再生中的应用及其制备
<130> CP122010283C
<160> 16
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213> 人工序列
<400> 1
ctcctcacag ttgccatgta 20
<210> 2
<211> 23
<212> DNA
<213> 人工序列
<400> 2
gttgagcaca gggtacttta ttg 23
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<400> 3
acctttgggc tgccttatat t 21
<210> 4
<211> 21
<212> DNA
<213> 人工序列
<400> 4
tccctcactc caagagaaga t 21
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<400> 5
acccaaggac tggaatcttt ac 22
<210> 6
<211> 21
<212> DNA
<213> 人工序列
<400> 6
gccattctta tacaggccta c 21
<210> 7
<211> 21
<212> DNA
<213> 人工序列
<400> 7
aggaggctgg cagctgtgtg c 21
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<400> 8
cactggcagt ggcgaggtca g 21
<210> 9
<211> 21
<212> DNA
<213> 人工序列
<400> 9
aagaacgacg accaaaagga c 21
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<400> 10
catcccctat accatcgcca 20
<210> 11
<211> 21
<212> DNA
<213> 人工序列
<400> 11
ccatgctgga tgagagaggt t 21
<210> 12
<211> 23
<212> DNA
<213> 人工序列
<400> 12
ttggtagcag tatggatatg ggt 23
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<400> 13
cgaacactac catgatggga aa 22
<210> 14
<211> 23
<212> DNA
<213> 人工序列
<400> 14
ttctgatgac gatggagaca cta 23
<210> 15
<211> 23
<212> DNA
<213> 人工序列
<400> 15
agtcctcaag cctcctgtac tca 23
<210> 16
<211> 24
<212> DNA
<213> 人工序列
<400> 16
gcagttgatt ctgattcacg tttc 24

Claims (4)

1.一种纳米层状双氢氧化物在促进人脐带来源的间充质干细胞成软骨分化中的应用,其特征在于,所述纳米层状双氢氧化物通过如下方法制备,具体步骤如下:
步骤一,用6mmol硝酸镁与2mmol硝酸铁配制60mL盐溶液,其中Mg2+与Fe3+之间的摩尔比为3:1;
步骤二,用去CO2的ddH2O作为溶剂,配制0.016M的NaOH溶液40mL;
步骤三,在持续给予N2的同时,将步骤一制得的混合盐溶液60mL加入到剧烈搅拌的步骤二制得的40mL 0.016M的NaOH溶液中,得到第一悬浮液;
步骤四,将第一悬浮液转移至水热合成釜,在100℃条件下加热18h,得到第二悬浮液;
步骤五,20000g离心15min收集产物并用去CO2的双蒸馏水洗涤两次后,将胶状材料置于4℃冰箱保存;
步骤六,将步骤五得到的胶状材料在真空干燥箱内干燥后得到纳米层状双氢氧化物。
2.一种纳米层状双氢氧化物在制备促进软骨再生的药物中的应用,其特征在于,所述纳米层状双氢氧化物通过如下方法制备,具体步骤如下:
步骤一,用6mmol硝酸镁与2mmol硝酸铁配制60mL盐溶液,其中Mg2+与Fe3+之间的摩尔比为3:1;
步骤二,用去CO2的ddH2O作为溶剂,配制0.016M的NaOH溶液40mL;
步骤三,在持续给予N2的同时,将步骤一制得的混合盐溶液60mL加入到剧烈搅拌的步骤二制得的40mL 0.016M的NaOH溶液中,得到第一悬浮液;
步骤四,将第一悬浮液转移至水热合成釜,在100℃条件下加热18h,得到第二悬浮液;
步骤五,20000g离心15min收集产物并用去CO2的双蒸馏水洗涤两次后,将胶状材料置于4℃冰箱保存;
步骤六,将步骤五得到的胶状材料在真空干燥箱内干燥后得到纳米层状双氢氧化物。
3.一种促进间充质干细胞成软骨分化或促进软骨再生的液体制剂,其特征在于,所述液体制剂包括人脐带来源的间充质干细胞和纳米层状双氢氧化物;
所述纳米层状双氢氧化物通过如下方法制备,具体步骤如下:
步骤一,用6mmol硝酸镁与2mmol硝酸铁配制60mL盐溶液,其中Mg2+与Fe3+之间的摩尔比为3:1;
步骤二,用去CO2的ddH2O作为溶剂,配制0.016M的NaOH溶液40mL;
步骤三,在持续给予N2的同时,将步骤一制得的混合盐溶液60mL加入到剧烈搅拌的步骤二制得的40mL 0.016M的NaOH溶液中,得到第一悬浮液;
步骤四,将第一悬浮液转移至水热合成釜,在100℃条件下加热18h,得到第二悬浮液;
步骤五,20000g离心15min收集产物并用去CO2的双蒸馏水洗涤两次后,将胶状材料置于4℃冰箱保存;
步骤六,将步骤五得到的胶状材料在真空干燥箱内干燥后得到纳米层状双氢氧化物。
4.根据权利要求3所述的液体制剂,其特征在于,所述液体制剂中纳米层状双氢氧化物的浓度为1μg/mL-40μg/mL。
CN202210528029.1A 2022-05-16 2022-05-16 一种纳米层状双氢氧化物在软骨再生中的应用及其制备 Active CN114934012B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210528029.1A CN114934012B (zh) 2022-05-16 2022-05-16 一种纳米层状双氢氧化物在软骨再生中的应用及其制备
PCT/CN2023/094575 WO2023221988A1 (zh) 2022-05-16 2023-05-16 一种纳米层状双氢氧化物在软骨再生中的应用及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210528029.1A CN114934012B (zh) 2022-05-16 2022-05-16 一种纳米层状双氢氧化物在软骨再生中的应用及其制备

Publications (2)

Publication Number Publication Date
CN114934012A CN114934012A (zh) 2022-08-23
CN114934012B true CN114934012B (zh) 2023-11-10

Family

ID=82863800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210528029.1A Active CN114934012B (zh) 2022-05-16 2022-05-16 一种纳米层状双氢氧化物在软骨再生中的应用及其制备

Country Status (2)

Country Link
CN (1) CN114934012B (zh)
WO (1) WO2023221988A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934012B (zh) * 2022-05-16 2023-11-10 同济大学 一种纳米层状双氢氧化物在软骨再生中的应用及其制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966160A (zh) * 2014-04-11 2014-08-06 同济大学 无机纳米材料层状双氢氧化物在小鼠胚胎干细胞培养中的应用
CN104099295A (zh) * 2014-07-07 2014-10-15 暨南大学 磁性纳米材料在促进间充质干细胞成骨分化中的应用
WO2015076754A1 (en) * 2013-11-22 2015-05-28 Nanyang Technological University Method of synthesizing a layered double hydroxide
CN113846060A (zh) * 2021-10-29 2021-12-28 上海市同济医院 一种纳米材料在促进胚胎干细胞向神经前体细胞分化中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008039530A2 (en) * 2006-09-27 2008-04-03 Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services Cell-nanofiber composite and cell-nanofiber-hydrogel composite amalgam based engineered intervertebral disc
GB201005931D0 (en) * 2010-04-09 2010-05-26 Isis Innovation Immune modulation
CN106635968A (zh) * 2016-10-14 2017-05-10 中卫华医(北京)生物科技有限公司 人脐带源间充质干细胞诱导分化成软骨细胞的方法
CN108339151B (zh) * 2018-02-08 2019-05-07 上海市同济医院 一种促进神经再生修复脊髓损伤的纳米层状双氢氧化物-多因子综合体系
WO2020104833A1 (en) * 2018-11-19 2020-05-28 4P-Pharma Composition and methods for regulating chondrocyte proliferation and increasing of cartilage matrix production
CN109758616B (zh) * 2019-03-05 2021-11-19 中国医学科学院北京协和医院 一种新型促进骨再生材料及其制备方法
CN114908045A (zh) * 2022-05-16 2022-08-16 同济大学 一种纳米层状双氢氧化物/石墨烯量子点复合材料在成骨分化中的应用及其制备
CN114934012B (zh) * 2022-05-16 2023-11-10 同济大学 一种纳米层状双氢氧化物在软骨再生中的应用及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076754A1 (en) * 2013-11-22 2015-05-28 Nanyang Technological University Method of synthesizing a layered double hydroxide
CN103966160A (zh) * 2014-04-11 2014-08-06 同济大学 无机纳米材料层状双氢氧化物在小鼠胚胎干细胞培养中的应用
CN104099295A (zh) * 2014-07-07 2014-10-15 暨南大学 磁性纳米材料在促进间充质干细胞成骨分化中的应用
CN113846060A (zh) * 2021-10-29 2021-12-28 上海市同济医院 一种纳米材料在促进胚胎干细胞向神经前体细胞分化中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway;Zhaojie Wang等;《Bioactive Materials》;全文 *
Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration via Multiple Osteogenic Signal Pathways;Yingjie Wang等;《ACS Nano》;全文 *
Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway;Youjun Wu等;《Nanoscale》;全文 *
Layered Double Hydroxide Nanoparticles with Osteogenic Effects as miRNA Carriers to Synergistically Promote Osteogenesis of MSCs;Li Yang等;《ACS Applied Materials & Interfaces》;第48386−48402页,试验方法、摘要、结果讨论部分 *
rBMSC osteogenic differentiation enhanced by graphene quantum dots loaded with immunomodulatory layered double hydroxide nanoparticles;Zhaojie Wang等;《Biomed. Mater. 》;第1-12页,摘要、试验方法、图2-3 *

Also Published As

Publication number Publication date
CN114934012A (zh) 2022-08-23
WO2023221988A1 (zh) 2023-11-23

Similar Documents

Publication Publication Date Title
Huang et al. Micro-/nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage
Li et al. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering
Kim et al. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model
CN107223153A (zh) 包含源于正分化成软骨细胞之干细胞的外排体的用于软骨细胞分化诱导或软骨组织再生的组合物
CN114934012B (zh) 一种纳米层状双氢氧化物在软骨再生中的应用及其制备
CN113307240B (zh) 一种具有抗肿瘤活性的纳米羟基磷灰石粒子及其制备方法
CN113827767B (zh) 一种用于骨瘤术后组织修复的新型微凝胶骨粉的制备方法
JP2024028920A (ja) hMPCの集団をゼノフリー生成するための方法
CN113274412B (zh) 通用型钙制剂在神经干细胞分化调节上的应用
CN107648667B (zh) 一种磁控蛋白复合细胞膜片的制备方法
JP5578613B2 (ja) 磁性ナノ粒子複合体及び当該磁性ナノ粒子複合体による細胞の標識方法
CN106421917A (zh) 制备用于软骨损伤修复的组合物的方法
KR100792185B1 (ko) 자성 나노입자를 이용한 세포의 고정 또는 이동방법
JP6325443B2 (ja) 磁化された幹細胞の凝集および分化方法
CN112760289B (zh) 一种乳腺癌类器官专用培养基及3d培养方法
CN115884799A (zh) 一种生物能量活性材料及其应用
CN109749964A (zh) 提高嗜酸乳杆菌发酵与冻干活菌数的培养基处理方法
CN114908045A (zh) 一种纳米层状双氢氧化物/石墨烯量子点复合材料在成骨分化中的应用及其制备
CN115636400B (zh) 二级结构一维多功能羟基磷灰石纳米带的制备方法及在组装功能干细胞球上的应用
CN113897300A (zh) 一株具有改善皮肤屏障功能损伤与皮肤敏感的动物双歧杆菌
CN1966080B (zh) 一种治疗老年痴呆症、帕金森病的神经干细胞注射液
CN115054616A (zh) 尿源干细胞外泌体在制备抗衰老制剂中的应用
CN106421918A (zh) 软骨细胞组合物
CN113106059A (zh) 一种高迁徙间充质干细胞及其制备方法和应用
CN106434538A (zh) 软骨细胞的三维培养方法、制得的软骨组织与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant