CN114920222B - 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 - Google Patents
一种高熵金属磷化物FeCoNiCrMnPx的制备方法 Download PDFInfo
- Publication number
- CN114920222B CN114920222B CN202210373951.8A CN202210373951A CN114920222B CN 114920222 B CN114920222 B CN 114920222B CN 202210373951 A CN202210373951 A CN 202210373951A CN 114920222 B CN114920222 B CN 114920222B
- Authority
- CN
- China
- Prior art keywords
- salt
- feconicrmnp
- metal phosphide
- preparation
- entropy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 38
- 239000002184 metal Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 9
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 claims abstract description 8
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005496 eutectics Effects 0.000 claims abstract description 8
- 229940068041 phytic acid Drugs 0.000 claims abstract description 8
- 235000002949 phytic acid Nutrition 0.000 claims abstract description 8
- 239000000467 phytic acid Substances 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002105 nanoparticle Substances 0.000 claims abstract description 4
- 150000003839 salts Chemical class 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000004005 microsphere Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 claims description 2
- 229910001510 metal chloride Inorganic materials 0.000 claims description 2
- 238000013478 data encryption standard Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 9
- 238000005303 weighing Methods 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100001083 no cytotoxicity Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/08—Other phosphides
- C01B25/088—Other phosphides containing plural metal
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种高熵金属磷化物FeCoNiCrMnPx的制备方法,包括:称取相同摩尔质量的FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O、MnCl2·4H2O和植酸,在60℃油浴锅中形成低共熔溶剂(DESs);将形成的DESs转移至反应釜中,置于烘箱中反应。本发明所述制备方法操作简单,制备成本低,可大规模生产,所得FeCoNiCrMnPx材料纳米粒子尺寸可控,具有较好的晶型,具有优异的电催化析氢性能。
Description
技术领域
本发明属于电催化材料及其制备技术领域,具体涉及一种高熵金属磷化物FeCoNiCrMnPx的制备方法。
背景技术
金属合金由于其具有各种优点而引起了广泛的兴趣,例如强大的机械强度和出色的催化活性。迄今为止,金属合金通常基于一种或两种主要成分,有时还会以低浓度掺杂多种元素以改善其物理化学性质。最近,研究人员将接近等摩尔的五种或更多金属元素合成单一固溶体,即高熵合金(HEAs)。由于其定制的组成和无序构型,HEAs可以形成新的活性位点并为催化提供最佳的表面吸收能。迄今为止,只有有限的高熵材料(包括金属合金和金属氧化物)被很好地用于催化。将最先进的高熵材料扩展为高效催化剂是非常需要的。
过渡金属磷化物被认为是加氢脱硫、析氢反应、析氧反应和锂离子或钠离子电池等中很有前景的催化剂。通常,与单金属磷化物相比,双金属磷化物表现出高效的催化活性。直到最近,研究小组才开始合成具有更高性能的三金属磷化物。尽管已经取得了进展,但当前的合成方法仍存在一些缺点。例如,大多数金属磷化物通过两个或多个复杂的步骤制备,包括最初前驱体(例如过渡金属氧化物、过渡金属氢氧化物等)的合成和随后的磷化过程。通常,磷化过程是通过使用次磷酸钠来完成的,次磷酸钠在高温下会释放出有毒的膦。因此,迫切需要开发操作简单的策略用于合成高熵金属磷化物(HEMP)。
由于成本低、易处理、无细胞毒性和生物降解性,通过将氢键给体和氢键受体混合获得的低共熔溶剂(DESs),已经受到了广泛的研究关注。作为材料合成中的新兴介质,DESs最近已经被探索可以制备具有特定结构和特性的功能材料。然而DESs作为溶剂,采用离子热法合成高熵金属磷化物(HEMP)还未有报道。
发明内容
基于现有技术的不足,本发明的目的在于提供一种高熵金属磷化物FeCoNiCrMnPx的制备方法,制备工艺简单,条件温和,制备成本低,可工业化生产,且对环境无污染。得到的FeCoNiCrMnPx具有优异的电催化析氢性能。
本发明所提供的高熵金属磷化物FeCoNiCrMnPx的制备方法,包括以下步骤:
1)将Fe盐、Co盐、Ni盐、Cr盐和Mn盐与植酸混合,加热,形成低共熔溶剂(DESs);
2)将形成的DESs转移至反应釜中,反应,得到高熵金属磷化物FeCoNiCrMnPx。
上述方法步骤1)中,所述Fe盐、Co盐、Ni盐、Cr盐和Mn盐以等摩尔数加入(以各自所含金属的摩尔数计);
所述摩尔数具体可为0~0.1mol(端点0不可取),具体可为0.002mol;
所述金属盐总摩尔数与植酸的摩尔比可为1:1~1:10,具体可为1:2;
所述Fe盐、Co盐、Ni盐、Cr盐和Mn盐具体可为金属氯化物水合物,依次可为FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O和MnCl2·4H2O;
所述加热通过40-100℃(具体可为60℃)油浴锅实现;
上述方法步骤2)中转移至反应釜的DESs的体积可为5~100mL,具体可为15mL;
所述反应在烘箱中进行,所述反应的温度可为150~300℃,具体可为200-250℃,所述反应的时间可为2~48h,具体可为6-40h、6-20h,如6h、12h或18h,更具体可为240℃下反应12h、240℃下反应6h或240℃下反应18h。
上述方法步骤2)还可进一步包括如下操作:待反应结束后,自然冷却至室温,过滤,收集固体,分别用乙醇和去离子水洗涤,干燥。
由上述方法制得的高熵金属磷化物FeCoNiCrMnPx也属于本发明的保护范围。
所述高熵金属磷化物FeCoNiCrMnPx为由纳米粒子组装而成的微球。
上述高熵金属磷化物FeCoNiCrMnPx作为电催化析氢催化剂在水分解制氢的应用也属于本发明的保护范围。
本发明的制备方法操作简单,制备成本低,易工业化生产,所得高熵金属磷化物FeCoNiCrMnPx的料形貌规整,具有较好的晶型。
由于DESs均质性和可加工性,DESs同时作为前驱体通过一步原位磷酸化反应合成HEMP。此外,通过使用HEMP作为水分解的电催化剂,突出了高熵材料的独特性能。
附图说明
图1为本发明实施例1制备的高熵金属磷化物FeCoNiCrMnPx的SEM照片。
图2为本发明实施例1制备的高熵金属磷化物FeCoNiCrMnPx的XRD图谱。
图3为本发明实施例1~3制备的高熵金属磷化物FeCoNiCrMnPx的HER曲线。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
分别准确称取0.02mol的FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O、MnCl2·4H2O和0.2mol的植酸,在60℃油浴锅中形成低共熔溶剂(DESs);将形成的DESs转移至反应釜中,置于烘箱中240℃反应12h。待反应结束后,自然冷却至室温,过滤,收集固体,分别用乙醇和去离子水洗涤三次,干燥。
实施例2
分别准确称取0.02mol的FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O、MnCl2·4H2O和0.2mol的植酸,在60℃油浴锅中形成低共熔溶剂(DESs);将形成的DESs转移至反应釜中,置于烘箱中240℃反应6h。待反应结束后,自然冷却至室温,过滤,收集固体,分别用乙醇和去离子水洗涤三次,干燥。
实施例3
分别准确称取0.02mol的FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O、MnCl2·4H2O和0.2mol的植酸,在60℃油浴锅中形成低共熔溶剂(DESs);将形成的DESs转移至反应釜中,置于烘箱中240℃反应18h。待反应结束后,自然冷却至室温,过滤,收集固体,分别用乙醇和去离子水洗涤三次,干燥。
对实施例1所得的产品进行形貌表征。其中以SEM观察产品形貌,以XRD来鉴别产品组成和晶型。
图1为本发明实施例1制备的高熵金属磷化物FeCoNiCrMnPx的SEM照片,从图中可以看出,制备的材料是由纳米粒子组装而成的微球;
图2为本发明实施例1制备的高熵金属磷化物FeCoNiCrMnPx的XRD图谱,从图中可以看出FeCoNiCrMnPx为无定形结构,通过ICP-OES进一步证明了FeCoNiCrMnPx的存在。
表1为本发明实施例1制备的高熵金属磷化物FeCoNiCrMnPx的ICP-OES
从表格中可以看出合成的高熵金属磷化物FeCoNiCrMnPx中各元素Fe,Co,Ni,Cr,Mn摩尔分数为16%,22%,17%,15%,30%。
图3为本发明实施例1~3制备的高熵金属磷化物FeCoNiCrMnPx的HER性能图,从图中可以看出,所合成的高熵金属磷化物FeCoNiCrMnPx具有优异的析氢性能。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。
Claims (8)
1.一种高熵金属磷化物FeCoNiCrMnPx的制备方法,包括以下步骤:
1)将Fe盐、Co盐、Ni盐、Cr盐和Mn盐与植酸混合,加热,形成低共熔溶剂;
2)将形成的低共熔溶剂转移至反应釜中,反应,得到高熵金属磷化物FeCoNiCrMnPx;
所述Fe盐、Co盐、Ni盐、Cr盐和Mn盐为金属氯化物水合物,依次为FeCl3·6H2O、CoCl2·6H2O、NiCl2·6H2O、CrCl3·6H2O和MnCl2·4H2O;
步骤2)中,所述反应的温度为150~300 oC,所述反应的时间为2~48 h。
2.根据权利要求1所述的高熵金属磷化物FeCoNiCrMnPx的制备方法,其特征在于:步骤1)中,所述Fe盐、Co盐、Ni盐、Cr盐和Mn盐以等摩尔数加入;
所述摩尔数为0~0.1 mol,端点0不可取;
金属盐总摩尔数与植酸的摩尔比为1:1~1:10。
3.根据权利要求1或2所述的高熵金属磷化物FeCoNiCrMnPx的制备方法,其特征在于:
所述加热通过40-100oC油浴锅实现。
4.根据权利要求1所述的高熵金属磷化物FeCoNiCrMnPx的制备方法,其特征在于:步骤2)中,所述反应在烘箱中进行。
5.根据权利要求1所述的高熵金属磷化物FeCoNiCrMnPx的制备方法,其特征在于:步骤2)还进一步包括如下操作:待反应结束后,自然冷却至室温,过滤,收集固体,分别用乙醇和去离子水洗涤,干燥。
6.由权利要求1-5中任一项所述的高熵金属磷化物FeCoNiCrMnPx的制备方法制得的高熵金属磷化物FeCoNiCrMnPx。
7.权利要求6所述的高熵金属磷化物FeCoNiCrMnPx为由纳米粒子组装而成的微球。
8.权利要求6或7所述的高熵金属磷化物FeCoNiCrMnPx作为电催化析氢催化剂的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373951.8A CN114920222B (zh) | 2022-04-11 | 2022-04-11 | 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210373951.8A CN114920222B (zh) | 2022-04-11 | 2022-04-11 | 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114920222A CN114920222A (zh) | 2022-08-19 |
CN114920222B true CN114920222B (zh) | 2023-09-12 |
Family
ID=82805318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210373951.8A Active CN114920222B (zh) | 2022-04-11 | 2022-04-11 | 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114920222B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108360030A (zh) * | 2018-01-23 | 2018-08-03 | 昆明理工大学 | 低共熔型离子液体中电沉积制备自支撑型纳米钴基双金属磷化物催化析氢电极材料的方法 |
CN109516447A (zh) * | 2018-12-25 | 2019-03-26 | 中国人民大学 | 一种深度低共熔溶剂辅助合成石墨烯封装Ni2P材料 |
CN109772385A (zh) * | 2019-02-25 | 2019-05-21 | 浙江工业大学 | 一种碳自负载的金属磷化物催化剂及其制备方法和应用 |
WO2021104055A1 (zh) * | 2019-11-27 | 2021-06-03 | 深圳先进技术研究院 | 纳米材料及其制备方法、电极和二次电池 |
CN113151856A (zh) * | 2021-04-20 | 2021-07-23 | 中国矿业大学 | 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3034625A1 (fr) * | 2015-04-10 | 2016-10-14 | Naturex | Solvant eutectique d'extraction, procede d'extraction par eutectigenese utilisant ledit solvant, et extrait issu dudit procede d'extraction. |
-
2022
- 2022-04-11 CN CN202210373951.8A patent/CN114920222B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108360030A (zh) * | 2018-01-23 | 2018-08-03 | 昆明理工大学 | 低共熔型离子液体中电沉积制备自支撑型纳米钴基双金属磷化物催化析氢电极材料的方法 |
CN109516447A (zh) * | 2018-12-25 | 2019-03-26 | 中国人民大学 | 一种深度低共熔溶剂辅助合成石墨烯封装Ni2P材料 |
CN109772385A (zh) * | 2019-02-25 | 2019-05-21 | 浙江工业大学 | 一种碳自负载的金属磷化物催化剂及其制备方法和应用 |
WO2021104055A1 (zh) * | 2019-11-27 | 2021-06-03 | 深圳先进技术研究院 | 纳米材料及其制备方法、电极和二次电池 |
CN113151856A (zh) * | 2021-04-20 | 2021-07-23 | 中国矿业大学 | 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用 |
Non-Patent Citations (1)
Title |
---|
Xinhui Zhao et al.."Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting".《ChemSusChem》.2020,第13卷2038-2042. * |
Also Published As
Publication number | Publication date |
---|---|
CN114920222A (zh) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103785859B (zh) | 一种纳米介孔材料的制备方法 | |
JP2013091667A (ja) | 多孔性有機−無機ハイブリッド体の製造方法 | |
CN108559101B (zh) | 一种制备二维片状Cu-MOF材料的方法 | |
Mohili et al. | Emerging high entropy metal sulphides and phosphides for electrochemical water splitting | |
US20090214417A1 (en) | Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides | |
CN102275963B (zh) | 一种氧化铝材料的制备方法 | |
KR20110041381A (ko) | 탈수소화가능한 지지체에 전이금속을 도입한 지지체-전이금속하이드라이드 복합체의 개선된 제조방법 및 그의 중간체 | |
CN110586117B (zh) | 一种Co3O4/CuMoO4复合物及其制备方法和应用 | |
CN109647459B (zh) | 一种组成可控的镍基磷化物的制备方法 | |
CN109569604A (zh) | 一种铜基催化剂及其制备方法和在糠醛加氢催化中的用途 | |
CN113248346A (zh) | 一种1,4-环己烷二甲醇的制备方法 | |
Lu et al. | Mo-doped Cu0. 5Ni0. 5Co2O4 nanowires, a strong substitute for noble-metal-based catalysts towards the hydrolysis of ammonia borane for hydrogen production | |
CN114524466B (zh) | 一种高活性催化剂的合成方法 | |
CN114807998B (zh) | 一种高熵金属氧化物FeCoNiCrMnOx的制备方法 | |
CN106006588B (zh) | 一种调变Ni-P化合物结构晶型的方法 | |
CN114920222B (zh) | 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 | |
CN1290608C (zh) | 过渡金属硼化物催化剂在硼氢化物水解反应制氢中的用途 | |
Pant et al. | Brief review of the solid-state graphenothermal reduction for processing metal oxide-reduced graphene oxide nanocomposites for energy applications | |
JP4937584B2 (ja) | メタノール改質用の金属間化合物Ni3Al触媒とこれを用いたメタノール改質方法 | |
CN115999612B (zh) | 榔头珊瑚状Bi2S3/Ni/g-C3N4三元复合材料的制备方法及复合材料的应用 | |
CN114735667B (zh) | 一种高熵金属磷化物FeCoNiCrMnPx的制备方法 | |
CN103908968B (zh) | 由镨锆镍铁铜氧化物组成的制氢催化剂及其制备方法 | |
US20090280054A1 (en) | Composition and process for the displacement of hydrogen from water under standard temperature and pressure conditions | |
KR101310372B1 (ko) | 연료전지 전극 촉매용 백금-팔라듐합성 전구체 및 이를 이용한 저백금 촉매의 제조방법 | |
CN102266763A (zh) | 一种合成1-甲氧基-2-丙醇的固体碱催化剂及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20220819 Assignee: Dachen Heavy Industry (Shandong) Co.,Ltd. Assignor: QILU INSTITUTE OF TECHNOLOGY Contract record no.: X2024980011195 Denomination of invention: A preparation method of high entropy metal phosphide FeCoNiCrMnPx Granted publication date: 20230912 License type: Common License Record date: 20240809 |
|
EE01 | Entry into force of recordation of patent licensing contract |