CN114892143A - 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置 - Google Patents

一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置 Download PDF

Info

Publication number
CN114892143A
CN114892143A CN202210593441.1A CN202210593441A CN114892143A CN 114892143 A CN114892143 A CN 114892143A CN 202210593441 A CN202210593441 A CN 202210593441A CN 114892143 A CN114892143 A CN 114892143A
Authority
CN
China
Prior art keywords
stainless steel
steel pipe
vacuum chamber
sic coating
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210593441.1A
Other languages
English (en)
Inventor
金成刚
张湧颀
鄂鹏
刘满星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210593441.1A priority Critical patent/CN114892143A/zh
Publication of CN114892143A publication Critical patent/CN114892143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

一种细长不锈钢管内壁沉积纳米SiC涂层的方法,属于涂层制备技术领域。所述方法为:基于螺旋波等离子体源,先向真空室内通入Ar对细长不锈钢管进行离子轰击,清洗掉表面杂质,然后向真空室内充入Ar和Si(CH3)4的混合气体,该混合气体在螺旋波源作用下被激发电离,在不锈钢管内产生等离子体密度大于1019m‑3的高密度等离子体柱,然后在工件上施加脉冲负偏压,在其内表面沉积纳米SiC薄膜。本发明操作简单、方便、容易实现、易于工业化生产,可以在不需要加热的条件下或者保证不锈钢细长管基体在处理过程中不变形的前提下,制备与基体结合力强、硬度高、耐磨损的SiC涂层的方法,其提高了在恶劣环境下工作的不锈钢细长管的使用寿命。

Description

一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置
技术领域
本发明属于涂层制备技术领域,具体涉及一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置。
背景技术
纳米碳化硅(nano-SiC)涂层由于其具有高硬度、耐腐蚀、耐氧化等优异的性能,在保护涂层领域有着广泛的应用,如切削刀具、热敏打印头等,可以通过纳米SiC涂层增加其使用寿命。SiC涂层可以通过物理气相沉积法(PVD)、化学气相沉积法(CVD)以及等离子体增强化学气相沉积法(PECVD)合成。PECVD具有实验条件简单,制备的膜层纯度高、致密性好、附着力高等优点,是目前SiC涂层的主要制备方式。但是在早期PECVD制备SiC涂层时,使用的SiH4和C2H2混合气体极易爆炸造成危险。而有机硅烷具有良好的稳定性,目前通常采用Si(CH3)4作为PECVD合成SiC涂层的前驱体。然而,这种方法的问题在于处理过程中基板的温度相对较高,通常在500℃以上,这会引起基板组成和结构上的变化。另外,SiC涂层和基板材料也会由于不同的热膨胀系数在膜基结合处产生应力,最终引起缺陷。
对于大长径比的细长管来说,如核燃料包壳等,采用等离子体的手段对其内表面进行改性一直以来都是一项重大的挑战。细长管内表面等离子体沉积的SiC涂层通常性能较差,与基体结合力不强,所以在细长管内表面沉积SiC涂层的技术还有待改进。
发明内容
本发明的目的是为了解决细长管内SiC涂层与基体结合不牢固的问题,提供一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置。
为实现上述目的,本发明采取的技术方案如下:
一种细长不锈钢管内壁沉积纳米SiC涂层的方法,所述方法为:基于螺旋波等离子体源,先向真空室内通入Ar对细长不锈钢管进行离子轰击,清洗掉表面杂质,然后向真空室内充入Ar和Si(CH3)4的混合气体,该混合气体在螺旋波源作用下被激发电离,在不锈钢管内产生等离子体密度大于1019m-3的高密度等离子体柱,然后在工件上施加脉冲负偏压,在其内表面沉积纳米SiC薄膜。
进一步地,所述细长不锈钢管的长径比为50~100:1。
进一步地,所述离子轰击具体为:对其进行Ar+轰击处理,处理时真空室内的压力为1×10-2Pa,射频电源的功率为3.5kW,在不锈钢管上施加直流负偏压-Vc=200V,磁场强度为2000Gs,Ar的流量为50sccm,轰击处理时间为15min。
进一步地,所述混合气体中,Ar作为载体气体,流量为30sccm,Si(CH3)4的流量为50sccm。
进一步地,所述负偏压的范围为0V~-600V,可以在不同偏压幅值下实现细长不锈钢管内表面SiC涂层的沉积。
进一步地,所述负偏压的范围为-400V,沉积的SiC涂层的性能是最优异。
进一步地,沉积SiC涂层时,真空室内的真空度为0.1Pa,射频电源的功率为3.5Kw,磁场强度为2000Gs,沉积SiC涂层时采用脉冲偏压,幅值为-V=400V,频率10kHz,占空比20%,沉积时间10min。
一种上述细长不锈钢管内壁沉积纳米SiC涂层所使用的装置,所述装置包括螺旋波半波长水冷天线、磁体、不锈钢管、分子泵、真空室、OES诊断系统、朗缪尔探针和脉冲电压源;
所述磁体位于真空室外,用于产生稳态的轴向磁场;
所述螺旋波半波长水冷天线位于真空室的等离子体源区域,不锈钢管位于真空室的加工区,真空室的末端设有OES诊断系统和朗缪尔探针,用于诊断处理过程中的等离子体参数,所述分子泵用于为真空室提供真空环境,所述脉冲电压源为不锈钢管施加脉冲负偏压。
本发明相对于现有技术的有益效果为:本发明是一种基于螺旋波等离子体的增强化学气相沉积方法(HWP-PECVD),操作简单、方便、容易实现、易于工业化生产,可以在不需要加热的条件下或者保证不锈钢细长管基体在处理过程中不变形的前提下,制备与基体结合力强(约为14MPa)、硬度高(36.8GPa)、耐磨损的SiC涂层的方法,其提高了在恶劣环境(如核包壳和化工管道等)下工作的不锈钢细长管的使用寿命。
附图说明
图1为316L不锈钢细长管螺旋波等离子体PECVD沉积SiC装置示意图;
图2为脉冲偏压为-400V时316L不锈钢管内表面沉积SiC涂层横截面扫描电镜图;
图3为不同脉冲偏压幅值下316L不锈钢管内表面沉积SiC涂层的沉积速率;
图4为脉冲偏压为-400V时316L不锈钢管内表面沉积SiC涂层原子力显微镜图;
图5为不同脉冲偏压幅值下316L不锈钢管内表面SiC涂层的XRD图;
图6为不同脉冲偏压幅值下316L不锈钢管内表面SiC涂层的硬度。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修正或等同替换,而不脱离本发明技术方案的精神范围,均应涵盖在本发明的保护范围之中。
实施例1:
本实施例在内径10mm,长500mm的316L不锈钢管内表面沉积了28.2μm厚的SiC涂层,对其表面以及横截面的微观形貌采用SEM和AFM进行了表征,如图2和图4所示。其具体的实施方案如下:
本实施例所用的装置为发明人自研,其组成部分之间的位置及连接关系如图1所示,主要部分为真空室5内等离子体源区域的一个螺旋波半波长水冷天线1,模式为m=+1,以及放置在真空室外的磁体2。天线上施加有13.5MHz的射频电源。天线通过耦合外部电源的功率以激发螺旋波;真空室外的磁体用于产生稳态的轴向磁场。不锈钢管3通过支撑平台固定在真空室的加工区,等离子体诊断区用于诊断处理过程中的等离子体参数,包括一个朗缪尔探针7和OES诊断系统6。朗缪尔探针通过密封法兰固定在真空室腔体上,其工作部分位于不锈钢管端口处。在进行放电之前,需要通过分子泵4将真空室内的真空度抽至1.0×10-5Pa,通过脉冲电压源8在不锈钢管工件上施加不同幅值的脉冲负偏压实现SiC涂层的沉积。
在对316L不锈钢管进行处理之前,需要对其进行Ar+轰击处理,处理时真空室内的压力为1×10-2Pa,射频电源的功率为3.5kW,在不锈钢管上施加直流负偏压-Vc=200V,磁场强度为2000Gs,Ar的流量为50sccm,轰击处理时间为15min。
在进行管内沉积SiC涂层时,仍然以前述的Ar流量,即50sccm,向真空室内充气,以维持放电。同时通过质量流量计向真空室内通入Ar和Si(CH3)4的混合气体。此处的Ar作为载体气体,流量为30sccm,Si(CH3)4的流量为50sccm。真空室内的真空度为0.1Pa,射频电源的功率为3.5Kw,磁场强度为2000Gs。沉积SiC涂层时采用脉冲偏压,幅值为-V=400V,频率10kHz,占空比20%,沉积时间10min。
在整个处理过程中,细长不锈钢管的温度不会超过150℃,最大程度上避免了高温带来的形变和相变。
本发明基于不同的脉冲偏压幅值,在直径10mm,长500mm的316L不锈钢管内表面沉积了SiC涂层。在400V的脉冲偏压幅值下,试样的截面扫描电镜和表面扫描电镜结果(图2)显示涂层均匀且致密,与基体之间的界面没有缝隙和缺陷,不同脉冲偏压幅值对应的SiC涂层的沉积速率如图3所示。在400V的脉冲偏压幅值下沉积的SiC涂层的原子力显微镜结果(图4)显示,涂层表面具有良好的均匀性和表面平整度,这也与扫描电镜的结果相一致。由试样的XRD结果(图5)可以看出,在2θ为36.5°处显著的显示出3C-SiC(111)峰,表明涂层的成分确实为SiC。另外由Rietveld细化方法计算可以得到SiC涂层的纳米晶粒的平均尺寸为11.81nm,这也是涂层具有高硬度的主要原因之一。采用维氏压头的纳米压痕测试仪对SiC涂层的机械硬度进行测试,结果如图6所示,其中脉冲偏压幅值为400V时SiC涂层的硬度为36.8GPa,是316L不锈钢基体硬度的19倍,具有优良的机械性能。
实施例2:
本实施例与实施例1不同的是,沉积SiC涂层时脉冲偏压幅值为-V=200V,结果为在内径10mm,长500mm的316L不锈钢管内表面沉积了厚度为21.3μm的SiC涂层。相对实施例1,较小的脉冲偏压幅值时SiC涂层的沉积速率有所下降的根本原因。
实施例3:
本实施例与实施例1不同的是,沉积SiC涂层时脉冲偏压幅值为-V=600V,结果为在内径10mm,长500mm的316L不锈钢管内表面沉积了厚度为3.54μm的SiC涂层。相对实施例1和实施例2,SiC涂层的沉积速率在较大的脉冲偏压幅值条件下有所下降的原因是发生了刻蚀。

Claims (8)

1.一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述方法为:基于螺旋波等离子体源,先向真空室内通入Ar对细长不锈钢管进行离子轰击,清洗掉表面杂质,然后向真空室内充入Ar和Si(CH3)4的混合气体,该混合气体在螺旋波源作用下被激发电离,在不锈钢管内产生等离子体密度大于1019m-3的高密度等离子体柱,然后在工件上施加脉冲负偏压,在其内表面沉积纳米SiC薄膜。
2.根据权利要求1所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述细长不锈钢管的长径比为50~100:1。
3.根据权利要求1所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述离子轰击具体为:对其进行Ar+轰击处理,处理时真空室内的压力为1×10-2Pa,射频电源的功率为3.5kW,在不锈钢管上施加直流负偏压-Vc=200V,磁场强度为2000Gs,Ar的流量为50sccm,轰击处理时间为15min。
4.根据权利要求1所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述混合气体中,Ar作为载体气体,流量为30sccm,Si(CH3)4的流量为50sccm。
5.根据权利要求1所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述负偏压的范围为0V~-600V。
6.根据权利要求5所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:所述负偏压的范围为-400V。
7.根据权利要求1所述的一种细长不锈钢管内壁沉积纳米SiC涂层的方法,其特征在于:沉积SiC涂层时,真空室内的真空度为0.1Pa,射频电源的功率为3.5Kw,磁场强度为2000Gs,沉积SiC涂层时采用脉冲偏压,幅值为-V=400V,频率10kHz,占空比20%,沉积时间10min。
8.一种权利要求1~7任一项细长不锈钢管内壁沉积纳米SiC涂层所使用的装置,其特征在于:所述装置包括螺旋波半波长水冷天线、磁体、不锈钢管、分子泵、真空室、OES诊断系统、朗缪尔探针和脉冲电压源;
所述磁体位于真空室外,用于产生稳态的轴向磁场;
所述螺旋波半波长水冷天线位于真空室的等离子体源区域,不锈钢管位于真空室的加工区,真空室的末端设有OES诊断系统和朗缪尔探针,用于诊断处理过程中的等离子体参数,所述分子泵用于为真空室提供真空环境,所述脉冲电压源为不锈钢管施加脉冲负偏压。
CN202210593441.1A 2022-05-27 2022-05-27 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置 Pending CN114892143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210593441.1A CN114892143A (zh) 2022-05-27 2022-05-27 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210593441.1A CN114892143A (zh) 2022-05-27 2022-05-27 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置

Publications (1)

Publication Number Publication Date
CN114892143A true CN114892143A (zh) 2022-08-12

Family

ID=82727042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210593441.1A Pending CN114892143A (zh) 2022-05-27 2022-05-27 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置

Country Status (1)

Country Link
CN (1) CN114892143A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115821200A (zh) * 2022-12-05 2023-03-21 哈尔滨工业大学 一种细长不锈钢管内表面高密度等离子体渗氮的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153595A (ja) * 1993-11-26 1995-06-16 Canon Inc 有磁場誘導結合プラズマ処理装置
CN109989048A (zh) * 2019-05-05 2019-07-09 苏州大学 利用螺旋波等离子体技术制备碳化硅薄膜的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153595A (ja) * 1993-11-26 1995-06-16 Canon Inc 有磁場誘導結合プラズマ処理装置
CN109989048A (zh) * 2019-05-05 2019-07-09 苏州大学 利用螺旋波等离子体技术制备碳化硅薄膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘满星等: "包壳管内壁表面螺旋波等离子体渗氮处理研究", 《节能技术》, vol. 40, no. 2, pages 130 - 135 *
谭瑞轩;王洪磊;余金山;李怀林;刘艳红;樊哲琼;卢蕾文;周新贵;: "锆合金包壳管内壁SiC涂层的PECVD制备与性能", 粉末冶金材料科学与工程, no. 03, pages 25 - 32 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115821200A (zh) * 2022-12-05 2023-03-21 哈尔滨工业大学 一种细长不锈钢管内表面高密度等离子体渗氮的方法及装置

Similar Documents

Publication Publication Date Title
US7364798B2 (en) Internal member for plasma-treating vessel and method of producing the same
CN100467664C (zh) 一种类金刚石碳膜制造方法和用其制造的带包覆膜的部件
US7052736B2 (en) Method for depositing coatings on the interior surfaces of tubular structures
JP2008532255A (ja) 内面の各部分をコーティングするための方法及びシステム
WO2006060827A2 (en) Methods and apparatus for downstream dissociation of gases
JP2007251091A (ja) プラズマ処理装置およびプラズマ処理方法
CN1702193A (zh) 用于半导体处理设备的陶瓷件
JP2016089241A (ja) 皮膜付き基材、その製造方法、その皮膜付き基材を含む半導体製造装置部材
JP2010174310A (ja) ダイヤモンドライクカーボン膜の製造方法
JP5099693B2 (ja) 非晶質炭素膜及びその成膜方法
JP6005314B1 (ja) 皮膜付き基材、プラズマエッチング装置用部品およびそれらの製造方法
CN114892143A (zh) 一种细长不锈钢管内壁沉积纳米SiC涂层的方法及装置
TW201634727A (zh) 改善mocvd反應方法的裝置及改善方法
JP2011162857A (ja) コーティング前処理方法、ダイヤモンド被膜のコーティング方法、および脱膜処理方法
CN113621926A (zh) 一种低应力类金刚石耐磨涂层及其制备方法
JP2006052435A (ja) 半導体加工装置用部材及びその製造方法
US5662877A (en) Process for forming diamond-like thin film
CN113293357B (zh) 一种脉冲复合射频增强空心阴极长管内壁沉积类金刚石涂层方法
JP2978023B2 (ja) 合成ダイヤモンドフィルムの製造方法
TWI768367B (zh) 用於電漿腔室內部的部件的製作方法
CN112899617B (zh) 形成耐等离子体涂层的方法、装置、零部件和等离子体处理装置
Wilden et al. Synthesis of Si–C–N coatings by thermal Plasmajet chemical vapour deposition applying liquid precursors
JP4502116B2 (ja) 高密度プラズマ表面被覆処理方法および装置
Ling et al. A Recent Patent on Microwave Plasma Chemical Vapor-Deposited Diamond Film on Cutting Tools
WO2019044850A1 (ja) 部品および半導体製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination