CN114891226A - 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法 - Google Patents

一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法 Download PDF

Info

Publication number
CN114891226A
CN114891226A CN202210511717.7A CN202210511717A CN114891226A CN 114891226 A CN114891226 A CN 114891226A CN 202210511717 A CN202210511717 A CN 202210511717A CN 114891226 A CN114891226 A CN 114891226A
Authority
CN
China
Prior art keywords
printing
ceramic precursor
photocuring
ceramic
precursor slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210511717.7A
Other languages
English (en)
Other versions
CN114891226B (zh
Inventor
伍尚华
孟晓燕
邹发传
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202210511717.7A priority Critical patent/CN114891226B/zh
Publication of CN114891226A publication Critical patent/CN114891226A/zh
Application granted granted Critical
Publication of CN114891226B publication Critical patent/CN114891226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种光固化3D打印陶瓷前驱体浆料、其制备及陶瓷化方法,涉及陶瓷增材制造技术领域。所述前驱体浆料包含以下质量分数的组份:光引发剂0.5~5%,多官能巯基化合物5~50%,功能化聚倍半硅氧烷47~94%。制备方法包括:(1)将多官能巯基化合物和功能化聚倍半硅氧烷按比例混合均匀,置于均质机混合均匀得到预混料;(2)向步骤(1)制备的预混料中加入光引发剂,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。所述前驱体浆料制备方法简单,所制备的浆料具有良好的3D打印适用性;所述陶瓷化方法结合真空脱脂和惰性气氛低温热解工艺,可获取高致密度和机械强度的陶瓷材料,拓宽了陶瓷3D打印技术的应用范围。

Description

一种光固化3D打印的陶瓷前驱体浆料、其制备方法及陶瓷化 方法
技术领域
本发明涉及增材制造技术领域,尤其涉及一种光固化3D打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法。
背景技术
3D打印技术是近年来广受关注的一种新兴成型制造技术,该技术在高性能陶瓷材料的成型制造领域具有巨大的发展潜力,可满足高端产品快速制造的需求。基于光固化原理的3D打印极大提高了打印精度和打印速率,已成为制备复杂结构、高精度陶瓷零部件的有效手段。
目前采用光固化3D打印的陶瓷浆料主要有两种,一种是含光敏粘结剂和陶瓷粉体的混合浆料,另一种是采用光敏陶瓷前驱体预聚物。使用混合浆料进行打印,成型后的生坯需经脱脂步骤除去粘结剂,最终经高温烧结形成部件,因此制备完全致密、无裂纹且具有高几何保真度的陶瓷部件的难度较大。陶瓷前驱体可在分子层面对材料结构进行设计,具有流动性好、陶瓷化温度低、坯体性能均匀等诸多优势,是3D打印陶瓷技术中极具应用前景的研究方向。通常采用的含有(甲基)丙烯酸酯基团的光敏陶瓷前驱体在光聚合过程中遵循自由基链式聚合机理,存在官能团转化率低、聚合收缩率大及交联密度小等不足,易导致光固化生坯在热裂解过程中发生体积收缩、开裂及陶瓷材料强度下降等问题。因此,针对3D打印技术开发一种具有低体积收缩和高交联密度的前驱体浆料,进而获取高致密度和机械强度的陶瓷材料,具有积极意义。
发明内容
基于此,本发明开发了一种光固化3D打印陶瓷前驱体浆料、其制备及陶瓷化方法。所述前驱体浆料的固化机理基于巯-烯光聚合机理,具有固化收缩率低、官能团转化率高、交联网络均一等优势,以解决现有技术中存在的陶瓷前驱体热裂解过程中发生体积收缩、开裂及陶瓷材料强度下降等问题。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:光引发剂0.5~5%,多官能巯基化合物5~50%,功能化聚倍半硅氧烷47~94%;所述功能化聚倍半硅氧烷为乙烯基笼型聚倍半硅氧烷、丙烯酰氧丙基笼型聚倍半硅氧烷、甲基丙烯酰氧丙基笼型聚倍半硅氧烷中的一种或多种。
需要说明的是,本发明陶瓷浆料中使用的笼型聚倍半硅氧烷是具有典型正八面体结构的一种低聚倍半硅氧烷,它本身具有优良的介电性、光学特性和耐热性等优异特性。本发明使用的笼型聚倍半硅氧烷带有光敏基团,如乙烯基、丙烯酰氧基或甲基丙烯酰氧基,可以与多官能巯基化合物发生巯烯光聚合反应。基于巯烯光聚合反应机理,本发明的陶瓷浆料采用光固化3D打印成型制备的陶瓷前驱体聚合物有较高的交联密度。
优选的,所述光引发剂为自由基光引发剂,包括2,4,6-三甲基苯甲酰基-二苯基氧化磷、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、双(2,4,6-三甲基苯甲酰)苯基氧化膦、2,2-二甲氧基-苯基苯乙酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、2-苄基-2-二甲基氨基-1-(4-吗啉苯基)-1-丁酮中的一种或多种。
优选的,所述多官能巯基化合物为1,6-己二硫醇、1,4-丁二醇二(3-巯基丁酸)酯、三(3-巯基丁酸乙酯)异氰脲酸酯、四(3-巯基丙酸)季戊四醇酯和四(3-巯基丁酸)季戊四醇酯中的一种或多种。
优选的,所述光固化3D打印陶瓷前驱体浆料还包括0.01%~0.05%光稳定剂,所述光稳定剂选自对苯二酚、对羟基苯甲醚和对苯醌中的任一种。
优选的,所述的光固化3D打印陶瓷前驱体浆料,所述浆料的粘度低于6Pa·s。
本发明还提供了所述的光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将多官能巯基化合物和功能化聚倍半硅氧烷按比例混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入光引发剂,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。
优选的,所述步骤(1)中,还包括向预混料中再加入0.01%~0.05%光稳定剂混合均匀,所述光稳定剂选自对苯二酚、对羟基苯甲醚和对苯醌中的任一种。
本发明还提供了所述的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯;
(2)将步骤(1)制备的打印生坯,置于60℃~100℃真空烘箱进行热处理3~8小时;
(3)将步骤(2)得到的打印生坯进行真空脱脂处理后,置于管式炉在氩气或氮气气氛进行热解,得到陶瓷烧结件。
优选的,所述光固化打印机是面曝光光固化打印机。
优选的,所述步骤(3)中,真空脱脂的工艺是在真空脱脂炉中以0.5~2℃/min的升温速率从30℃升高至500~550℃,保温1~3小时;所述热解的工艺是在管式炉中以5℃/min的升温速率从50℃升高至700℃,再以0.5~2℃/min的升温速率升高至900~1200℃,保温1~3小时。
与现有技术相比,本发明的有益效果是:
本发明提供了一种光固化3D打印陶瓷前驱体浆料、其制备及陶瓷化方法,本发明所提供的陶瓷前驱体浆料是基于巯-烯光聚合机理,其独特的自由基逐步聚合机理可实现体系凝胶点延迟,应力能得到充分释放,具有固化收缩率低、官能团转化率高、交联网络均一等优势。本发明所提供的陶瓷前驱体浆料的制备方法简单,所制备的浆料粘度低,具有良好的3D打印适用性。本发明所提供的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,结合真空脱脂和惰性气氛低温热解工艺,可获取高致密度和机械强度的陶瓷材料,拓宽了陶瓷3D打印技术的应用范围。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述的光固化3D打印陶瓷前驱体浆料的制备及陶瓷化方法的工艺流程图;
图2为对比例8-10打印的陶瓷生坯脱脂后的照片;
图3为本实施例3制得的陶瓷烧结件的截面SEM照片。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参见图1,本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:2,4,6-三甲基苯甲酰基-二苯基氧化磷1%,1,6-己二硫醇5%,丙烯酰氧丙基笼型聚倍半硅氧烷94%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将5%的1,6-己二硫醇和94%丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入1%的2,4,6-三甲基苯甲酰基-二苯基氧化磷,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是1.04Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于60℃真空烘箱进行热处理8小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以1℃/min的升温速率从30℃升高至500℃,保温3小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以1℃/min的升温速率升高至1000℃,保温2小时,最终得到陶瓷烧结件。
实施例2
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:2,4,6-三甲基苯甲酰基苯基膦酸乙酯3%,1,4-丁二醇二(3-巯基丁酸)酯10%,丙烯酰氧丙基笼型聚倍半硅氧烷87%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将10%的1,4-丁二醇二(3-巯基丁酸)酯和87%丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入3%的2,4,6-三甲基苯甲酰基苯基膦酸乙酯,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是1.32Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于100℃真空烘箱进行热处理3小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以1℃/min的升温速率从30℃升高至500℃,保温3小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以0.5℃/min的升温速率升高至900℃,保温3小时,最终得到陶瓷烧结件。
实施例3
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:双(2,4,6-三甲基苯甲酰)苯基氧化膦3%,四(3-巯基丁酸)季戊四醇酯0.5%,丙烯酰氧丙基笼型聚倍半硅氧烷96.5%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将0.5%的四(3-巯基丁酸)季戊四醇酯和96.5%丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入3%的双(2,4,6-三甲基苯甲酰)苯基氧化膦,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是1.91Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于100℃真空烘箱进行热处理3小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以0.5℃/min的升温速率从30℃升高至550℃,保温2小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以1℃/min的升温速率升高至1200℃,保温2小时,最终得到陶瓷烧结件。
实施例4
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:2,4,6-三甲基苯甲酰基苯基膦酸乙酯3%,四(3-巯基丁酸)季戊四醇酯50%,丙烯酰氧丙基笼型聚倍半硅氧烷23.5%和甲基丙烯酰氧丙基笼型聚倍半硅氧烷23.5%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将50%的四(3-巯基丁酸)季戊四醇酯,23.5%丙烯酰氧丙基笼型聚倍半硅氧烷和23.5%甲基丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入3%的2,4,6-三甲基苯甲酰基苯基膦酸乙酯,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是5.25Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于100℃真空烘箱进行热处理5小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以0.5℃/min的升温速率从30℃升高至550℃,保温2小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以1℃/min的升温速率升高至1200℃,保温2小时,最终得到陶瓷烧结件。
实施例5
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:双(2,4,7-三甲基苯甲酰)苯基氧化膦5%,1,4-丁二醇二(3-巯基丁酸)酯10%,甲基丙烯酰氧丙基笼型聚倍半硅氧烷85%,对苯二酚0.05%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将10%的1,4-丁二醇二(3-巯基丁酸)酯,0.05%对苯二酚和85%甲基丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入5%的双(2,4,7-三甲基苯甲酰)苯基氧化膦,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是3.96Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于100℃真空烘箱进行热处理5小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以0.5℃/min的升温速率从30℃升高至550℃,保温2小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以1℃/min的升温速率升高至1200℃,保温2小时,最终得到陶瓷烧结件。
实施例6
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:双(2,4,7-三甲基苯甲酰)苯基氧化膦5%,四(3-巯基丁酸)季戊四醇酯10%,甲基丙烯酰氧丙基笼型聚倍半硅氧烷85%,对苯二酚0.05%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将10%的四(3-巯基丁酸)季戊四醇酯,0.05%对苯二酚和85%甲基丙烯酰氧丙基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入5%的双(2,4,7-三甲基苯甲酰)苯基氧化膦,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是4.53Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于100℃真空烘箱进行热处理5小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以0.5℃/min的升温速率从30℃升高至550℃,保温2小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以1℃/min的升温速率升高至1200℃,保温2小时,最终得到陶瓷烧结件。
实施例7
本实施例提供一种光固化3D打印陶瓷前驱体浆料,包含以下质量分数的组份:双(2,4,7-三甲基苯甲酰)苯基氧化膦2%,1,6-己二硫醇30%,乙烯基笼型聚倍半硅氧烷68%,对苯醌0.01%。
本实施例所述光固化3D打印陶瓷前驱体浆料的制备方法,包括以下步骤:
(1)将30%的1,6-己二硫醇,0.01%对苯醌和68%乙烯基笼型聚倍半硅氧烷混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入2%的双(2,4,7-三甲基苯甲酰)苯基氧化膦,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。采用旋转流变仪测得浆料在1s-1剪切速率的粘度是1.97Pa·s。
本实施例所述光固化3D打印陶瓷前驱体浆料的陶瓷化方法,包括以下步骤:
(1)采用面曝光光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯,模型切片厚度是50微米,每层曝光时间是2s;
(2)将步骤(1)制备的打印生坯,置于60℃真空烘箱进行热处理5小时;
(3)将步骤(2)得到的打印生坯放在真空脱脂炉中以2℃/min的升温速率从30℃升高至550℃,保温1小时后,再置于管式炉在氮气气氛进行热解,热解的工艺是以5℃/min的升温速率从50℃升高至700℃,再以2℃/min的升温速率升高至1100℃,保温1小时,最终得到陶瓷烧结件。
对比例8-10
采用乙烯基硅氧烷代替丙烯酰氧丙基笼型聚倍半硅氧烷,其他配方同实施例1-3。采用相同的方法制备光固化3D打印陶瓷前驱体浆料。
采用相同的陶瓷化方法进行处理,当所述陶瓷生坯经过步骤(3)脱脂后,陶瓷生坯样品发生鼓泡和崩裂,内部有很多空隙,无法进行后续烧结步骤。对比例8-10打印的陶瓷生坯脱脂后的照片见图2。
测试例11
采用阿基米德排水法测试实施例1-7的陶瓷烧结件的体积密度,并根据SiOC陶瓷的理论密度是2.25g/cm3,计算陶瓷烧结件的致密度,测试结果如表1所示。
表1实施例1-7的陶瓷烧结件的体积密度和致密度
Figure BDA0003638251400000111
按照实施例3制备的陶瓷长方形样条,用游标卡尺测得打印生坯的尺寸为26cm*5cm*3.1cm(长*宽*高),烧结后样品尺寸17.08cm*3.22cm*1.9cm(长*宽*高),计算陶瓷烧结件的收缩率在长、宽和高方向分别为34.3%、35.6%和38.7%,在三个方向收缩率差别较小,平均收缩率为36.2%;打印生坯的质量为0.3962g,烧结样品的质量为0.1799g,陶瓷化产率是45.4%;采用阿基米德排水法测得陶瓷烧结件的密度为2.17g/cm3,致密度达到96.4%(SiOC陶瓷的理论密度是2.25g/cm3)。采用纳米压痕法测得陶瓷烧结件的硬度和弹性模量分别是15GPa和113GPa。将烧结样品的横截面置于扫描电子显微镜下观察,其放大3000倍的显微结构照片如图3所示。从图3可知,烧结后的陶瓷样品无裂纹和孔隙,显微结构致密。
综上所述,本发明所提供的陶瓷前驱体浆料是基于巯-烯光聚合机理,其独特的自由基逐步聚合机理可实现体系凝胶点延迟,应力能得到充分释放,具有固化收缩率低、官能团转化率高、交联网络均一等优势。本发明所提供的陶瓷前驱体浆料的制备方法简单,所制备的浆料粘度低,具有良好的3D打印适用性。本发明所提供的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,结合真空脱脂和惰性气氛低温热解工艺,可获取高致密度和机械强度的陶瓷材料,拓宽了陶瓷3D打印技术的应用范围。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种光固化3D打印陶瓷前驱体浆料,其特征在于,包含以下质量分数的组份:光引发剂0.5~5%,多官能巯基化合物5~50%,功能化聚倍半硅氧烷47~94%;所述功能化聚倍半硅氧烷为乙烯基笼型聚倍半硅氧烷、丙烯酰氧丙基笼型聚倍半硅氧烷、甲基丙烯酰氧丙基笼型聚倍半硅氧烷中的一种或多种。
2.根据权利要求1所述的光固化3D打印陶瓷前驱体浆料,其特征在于,所述光引发剂为自由基光引发剂,包括2,4,6-三甲基苯甲酰基-二苯基氧化磷、2,4,6-三甲基苯甲酰基苯基膦酸乙酯、双(2,4,6-三甲基苯甲酰)苯基氧化膦、2,2-二甲氧基-苯基苯乙酮、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、2-苄基-2-二甲基氨基-1-(4-吗啉苯基)-1-丁酮中的一种或多种。
3.根据权利要求1所述的光固化3D打印陶瓷前驱体浆料,其特征在于,所述多官能巯基化合物选自1,6-己二硫醇、1,4-丁二醇二(3-巯基丁酸)酯、三(3-巯基丁酸乙酯)异氰脲酸酯、四(3-巯基丙酸)季戊四醇酯和四(3-巯基丁酸)季戊四醇酯中的一种或多种。
4.根据权利要求1所述的光固化3D打印陶瓷前驱体浆料,其特征在于,还包括0.01%~0.05%光稳定剂,所述光稳定剂选自对苯二酚、对羟基苯甲醚和对苯醌中的任一种。
5.一种如权利要求1-4任一项所述的光固化3D打印陶瓷前驱体浆料的制备方法,其特征在于,包括以下步骤:
(1)将多官能巯基化合物和功能化聚倍半硅氧烷按比例混合均匀,置于均质机混合均匀得到预混料;
(2)向步骤(1)制备的预混料中加入光引发剂,混合均匀后进行真空脱泡处理,得到光固化3D打印陶瓷前驱体浆料。
6.根据权利要求5所述的光固化3D打印陶瓷前驱体浆料的制备方法,其特征在于,所述步骤(1)中,还包括向预混料中加入0.01%~0.05%光稳定剂混合均匀,所述光稳定剂选自对苯二酚、对羟基苯甲醚和对苯醌中的任一种。
7.一种如权利要求1-4任一项所述的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,其特征在于,包括以下步骤:
(1)采用光固化打印机打印所述的光固化3D打印陶瓷前驱体浆料,制备打印生坯;
(2)将步骤(1)制备的打印生坯,置于60℃~100℃真空烘箱进行热处理3~8小时;
(3)将步骤(2)得到的打印生坯进行真空脱脂处理后,置于管式炉在氩气或氮气气氛进行热解,得到陶瓷烧结件。
8.根据权利要求7所述的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,其特征在于,所述光固化打印机是面曝光光固化打印机。
9.根据权利要求7所述的光固化3D打印陶瓷前驱体浆料的陶瓷化方法,其特征在于,所述步骤(3)中,真空脱脂的工艺是在真空脱脂炉中以0.5~2℃/min的升温速率从30℃升高至500~550℃,保温1~3小时;所述热解的工艺是在管式炉中以5℃/min的升温速率从50℃升高至700℃,再以0.5~2℃/min的升温速率升高至900~1200℃,保温1~3小时。
10.根据权利要求1-4任一项所述的光固化3D打印陶瓷前驱体浆料,其特征在于,所述浆料的粘度低于6Pa·s。
CN202210511717.7A 2022-05-11 2022-05-11 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法 Active CN114891226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210511717.7A CN114891226B (zh) 2022-05-11 2022-05-11 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210511717.7A CN114891226B (zh) 2022-05-11 2022-05-11 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法

Publications (2)

Publication Number Publication Date
CN114891226A true CN114891226A (zh) 2022-08-12
CN114891226B CN114891226B (zh) 2023-08-15

Family

ID=82720855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210511717.7A Active CN114891226B (zh) 2022-05-11 2022-05-11 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法

Country Status (1)

Country Link
CN (1) CN114891226B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219598A (ja) * 2010-04-08 2011-11-04 Mitsubishi Rayon Co Ltd 活性エネルギー線硬化性組成物、これを用いた硬化物、積層体、及び硬化物の製造方法
CN104946127A (zh) * 2014-03-31 2015-09-30 株式会社大赛璐 固化性组合物及成型体
CN105017966A (zh) * 2015-08-04 2015-11-04 天津大学 Ovposs交联含氟硅嵌段共聚物紫外光固化涂层及制备和应用
CN105504331A (zh) * 2014-09-23 2016-04-20 中国科学院大连化学物理研究所 一种多孔整体材料的制备方法
CN105694045A (zh) * 2016-03-16 2016-06-22 烟台大学 一种二乙烯基双夹板型低聚倍半硅氧烷的官能化方法
CN107500732A (zh) * 2017-08-10 2017-12-22 浙江大学 一种制备三维无机陶瓷的方法
CN107599661A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种可直接印刷的图像记录材料、制备方法
CN109705349A (zh) * 2019-01-04 2019-05-03 北京理工大学 一种poss改性含巯基季戊醇酯交联网状聚合物及其制备方法和用途
CN110627501A (zh) * 2019-11-05 2019-12-31 中南大学深圳研究院 一种用于光固化3d打印的陶瓷浆料及其制备方法和应用
CN111892819A (zh) * 2020-02-17 2020-11-06 杭州师范大学 一种uv固化透明材料的制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219598A (ja) * 2010-04-08 2011-11-04 Mitsubishi Rayon Co Ltd 活性エネルギー線硬化性組成物、これを用いた硬化物、積層体、及び硬化物の製造方法
CN104946127A (zh) * 2014-03-31 2015-09-30 株式会社大赛璐 固化性组合物及成型体
CN105504331A (zh) * 2014-09-23 2016-04-20 中国科学院大连化学物理研究所 一种多孔整体材料的制备方法
CN105017966A (zh) * 2015-08-04 2015-11-04 天津大学 Ovposs交联含氟硅嵌段共聚物紫外光固化涂层及制备和应用
CN105694045A (zh) * 2016-03-16 2016-06-22 烟台大学 一种二乙烯基双夹板型低聚倍半硅氧烷的官能化方法
CN107500732A (zh) * 2017-08-10 2017-12-22 浙江大学 一种制备三维无机陶瓷的方法
CN107599661A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种可直接印刷的图像记录材料、制备方法
CN109705349A (zh) * 2019-01-04 2019-05-03 北京理工大学 一种poss改性含巯基季戊醇酯交联网状聚合物及其制备方法和用途
CN110627501A (zh) * 2019-11-05 2019-12-31 中南大学深圳研究院 一种用于光固化3d打印的陶瓷浆料及其制备方法和应用
CN111892819A (zh) * 2020-02-17 2020-11-06 杭州师范大学 一种uv固化透明材料的制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FILIPA ALVES ET AL.: ""Tailor-Made Hybrid Organic–Inorganic Porous Materials Based on Polyhedral Oligomeric Silsesquioxanes (POSS) by the Step-Growth Mechanism of Thiol-Ene "Click" Chemistry"" *
MAGDALENA HASIK ET AL.: ""Polysiloxane-POSS systems as precursors to SiCO ceramics"" *

Also Published As

Publication number Publication date
CN114891226B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
CN110591369B (zh) 用于光固化3d打印的聚硅氧烷前驱体及其制备和成形方法
CN108676166B (zh) 用于增材制造技术制造陶瓷产品的光敏陶瓷前驱体制备方法
JP2015218107A (ja) セラミック物品を形成するための方法及び組成物
CN116813315A (zh) 用于增材制造技术的陶瓷浆料
US5545687A (en) Preparation of high density boron carbide ceramics with preceramic polymer binders
CN114891226B (zh) 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法
JPWO2003040059A1 (ja) 半導体製造用に用いられる炭化ケイ素焼結体治具の製造方法及び前記製造方法により得られる炭化ケイ素焼結体治具
CN116283299A (zh) 一种增材制造陶瓷微球增强先驱体陶瓷的方法
JP4897263B2 (ja) 黒色低抵抗セラミックス及び半導体製造装置用部材
US20080053153A1 (en) Method of producing inorganic molded item, and inorganic molded item obtained using the method
CN117586022A (zh) 一种MgAlON透明陶瓷、光固化陶瓷浆料及相应的制备方法
JPS63123868A (ja) 窒化珪素質焼結体の製造方法
CN112573928A (zh) 一种含硼聚合物先驱体陶瓷的制备方法
CN118026692B (zh) 光固化3d打印用碳化硅陶瓷浆料的制备方法与应用
JP3020796B2 (ja) セラミックス組成物およびこれを用いるセラミックス製品の製造方法
RU2794673C1 (ru) Фотоотверждаемая смесь для изготовления керамических изделий методом стереолитографии с высокотемпературной постобработкой
JP3998259B2 (ja) トリジマイトの製造方法
JP5006490B2 (ja) 低熱膨張セラミックス及びその製造方法
He et al. Digital light processing fabrication of porous cordierite ceramics from polysilxoane-based slurries
JP3001941B2 (ja) 窒化アルミニウム焼結体の製造方法
CN118108513A (zh) 一种基于立体光固化成型的氮化铝陶瓷浆料、氮化铝陶瓷的制备方法
JP2004284846A (ja) 低熱膨張セラミックス及びその製造方法
KR100355350B1 (ko) 실형상 반응결합 탄화규소 제조방법
Yang et al. DLP-printed SiBOC ceramic components from preceramic polymers based on boric acid
JP3396116B2 (ja) Si含有ガラス状カーボン材の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant