CN114890779A - 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 - Google Patents
高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 Download PDFInfo
- Publication number
- CN114890779A CN114890779A CN202210292334.5A CN202210292334A CN114890779A CN 114890779 A CN114890779 A CN 114890779A CN 202210292334 A CN202210292334 A CN 202210292334A CN 114890779 A CN114890779 A CN 114890779A
- Authority
- CN
- China
- Prior art keywords
- ball milling
- equal
- line width
- product
- ferrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2675—Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/0302—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
- H01F1/0311—Compounds
- H01F1/0313—Oxidic compounds
- H01F1/0315—Ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明的目的在于提供一种高机械强度高功率低共振线宽石榴石铁氧体及其制备方法,属于铁氧体材料制备技术领域。本发明创新性地通过Gd、Dy快弛豫离子取代,减小弛豫时间,从而增大了材料的自旋波线宽;同时,在石榴石铁氧体制备中引入V2O5作为添加剂,利用其阻晶作用控制晶粒大小,调控了铁氧体材料的晶粒/晶界特性,从而提升了铁氧体的自旋波线宽ΔHk;除此之外,V2O5的加入有助于改善显微结构,进而降低铁磁共振线宽ΔH的同时提高机械强度,即增大了石榴石铁氧体材料的抗弯强度σ。
Description
技术领域
本发明属于铁氧体材料制备技术领域,具体涉及一种高机械强度高功率低共振线宽的石榴石铁氧体及其制备方法。
背景技术
随着科学技术的飞速进步,电子信息产业得到了不断发展,各种无线电通信设备和技术,如相控阵雷达、卫星和微波通信等发展也日趋成熟,这些领域的各类电子设备都对微波铁氧体材料的性能提出了更高要求。微波铁氧体材料可分为石榴石型、尖晶石型和磁铅石型。其中,石榴石铁氧体相较于其它两种铁氧体具有最低的铁磁共振线宽(ΔH)和介电损耗(tanδε),意味着石榴石材料拥有更低的损耗。由于石榴石较低的饱和磁化强度(4πMs),在X波段及以下应用时,将会被作为首选。目前对石榴石型铁氧体材料的研究方面主要集中在低损耗和大功率两个方向。微波器件低损耗化要求材料的铁磁共振线宽(ΔH)低;器件高功率化即器件承受功率大,即要求材料具有高的自旋波线宽(ΔHk)。但石榴石材料的自旋波线宽(ΔHk)与铁磁共振线宽(ΔH)是两个相互冲突并制约的技术指标,更是代表着微波器件高功率与低插损两个重要发展方向。
中国专利CN 110981461 A公开的石榴石铁氧体材料化学式组成为Y3-x-y- zGdxCayCuzFe5-a-b-cInaVbAlcO12,在1500℃烧结5小时,材料的自旋波线宽ΔHk只有10.2Oe。西安建筑科技大学洪向东通过普通陶瓷工艺预烧温度1100℃,烧结温度1350℃以下制得Y3-3x-aGd3xCaaS naFe5O12,x=0.5时获得ΔHk仅为15Oe左右。(洪向东,许启明.宽温度、大功率微波铁氧体材料研究[J].材料开发与应用,2008,023(002):24-26.)阿尔弗雷德大学纽约州立陶瓷学院的Cho Yong S使用缺铁配方Y3Fe4.85O12,加入0.6wt%SiO2和0.15wt%MnO2的添加剂,利用溶胶-凝胶法制备粉体,粉体在1500℃烧结3小时后,得到的材料饱和磁化强度4πMs为1576Gs,但铁磁共振线宽ΔH为142Oe自旋波线宽ΔHk从3.1Oe仅提高到了12.6Oe(Cho Y S,Burdick V L,Amarksoon R W.Enhanced microwave magnetic properties innonstoichiometric yttrium iron garnets for high power applications[J].IEEETransactions on Magnetics,1998,34(4):1387-1389),另外此方法也不适用于工业化的生产中。
另一方面,为避免材料在加工成基板的过程中容易出现裂纹以及提高器件的抗震性能,也需要材料具备良好的抗弯性能,然而当前研究还少有关注其机械强度。目前行业应用要求一般机械强度即抗弯强度σ指标应在50MPa以上。
综上所述,如何使微波器件中的关键核心材料—石榴石铁氧体具有高自旋波线宽(ΔHk)和低铁磁共振线宽(ΔH)的同时,还兼具高的抗弯强度(σ),就成为石榴石铁氧体领域的研究热点。
发明内容
针对背景技术所存在的问题,本发明的目的在于提供一种高机械强度高功率低共振线宽石榴石铁氧体及其制备方法。本发明创新性地通过Gd、Dy快弛豫离子取代,减小弛豫时间,从而增大了材料的自旋波线宽;同时,在石榴石铁氧体制备中引入V2O5作为添加剂,利用其阻晶作用控制晶粒大小,调控了铁氧体材料的晶粒/晶界特性,从而提升了铁氧体的自旋波线宽ΔHk;除此之外,V2O5的加入有助于改善显微结构,进而降低铁磁共振线宽ΔH的同时提高机械强度,即增大了石榴石铁氧体材料的抗弯强度σ。
为实现上述目的,本发明的技术方案如下:
一种高机械强度高功率低共振线宽的石榴石铁氧体,包括主料和掺杂剂;
所述主料的化学式组成为Y3-x-zGdxDyzInwFe5-w-δO12-1.5δ,其中0.05≤w≤1.00;0≤x≤2.0;0.01≤z≤0.30;δ为缺铁量,0≤δ≤0.5;
所述掺杂剂包括Bi2O3、BaTiO3和V2O5;掺杂量以预烧产物的质量百分比进行确定,Bi2O3为0.02wt%~0.30wt%,BaTiO3为0.02wt%~0.30wt%,V2O5为0.01wt%~0.40wt%。
进一步地,所述预烧产物按照以下步骤制备得到:
步骤1、配料:以Y2O3、Gd2O3、Dy2O3、In2O3和Fe2O3作为原料,按照化学式组成为Y3-x- zGdxDyzInwFe5-w-δO12-1.5δ的比例称取原料;
步骤2、一次球磨:将步骤1的配料进行球磨,球磨时间4~8小时;
步骤3、预烧:将步骤2球磨后的产物取出、烘干,在空气气氛中、900℃~1200℃的温度下预烧1~4h,得到预烧产物。
一种高机械强度高功率低共振线宽石榴石铁氧体的制备方法,包括以下步骤:
步骤1、配料:以Y2O3、Gd2O3、Dy2O3、In2O3和Fe2O3作为原料,按照化学式组成为Y3-x- zGdxDyzInwFe5-w-δO12-1.5δ的比例称取原料;
步骤2、一次球磨:将步骤1的配料进行球磨,球磨时间4~8小时;
步骤3、预烧:将步骤2球磨后的产物取出、烘干,在空气气氛中、900℃~1200℃的温度下预烧1~4h,得到预烧产物;
步骤4、掺杂:将步骤3预烧后的产物取出,按照预烧产物和掺杂物的质量比称取掺杂剂:0.02wt%~0.30wt%Bi2O3、0.02wt%~0.30wt%BaTiO3、0.01wt%~0.40wt%V2O5;
步骤5、二次球磨:将步骤4掺杂后得到的粉料进行二次球磨,球磨时间4~8小时;
步骤6、成型:将步骤5得到的二次球磨料按质量比加入10wt%~15wt%的PVA粘合剂,混匀、造粒后,压制得到生坯;
步骤7、烧结:将步骤6得到的生坯放置于烧结炉内,在空气气氛下烧结,烧结温度1250℃~1500℃,烧结时间为2~6h,烧结完成后,自然随炉冷却至室温,取出,即可得到所需的石榴石铁氧体。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明制备化学式组成为Y3-x-zGdxDyzInwFe5-w-δO12-1.5δ的石榴石铁氧体,同时在铁氧体中进行V2O5为主的掺杂处理,使得本发明得到的石榴石铁氧体的自旋波线宽ΔHk最高可达25.5Oe,远高于现有技术中的20.0Oe;并且在保持高自旋波线宽ΔHk的同时还具有134Oe较低的铁磁共振线宽ΔH,且整体材料的抗弯强度σ均能达到50MPa以上。
附图说明
图1为对比例1与3个实施例的铁磁共振线宽ΔH图。
图2为对比例1与3个实施例的自旋波线宽ΔHk图。
图3为对比例1与3个实施例的抗弯强度σ图。
图4为对比例1与3个实施例的SEM显微结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
一种高机械强度高功率低共振线宽石榴石铁氧体,包括主料和掺杂剂;
所述主料的化学式组成为Y3-x-zGdxDyzInwFe5-w-δO12-1.5δ,其中0.05≤w≤1.00;0≤x≤2.0;0.01≤z≤0.30;δ为缺铁量,0≤δ≤0.5;
所述掺杂剂包括Bi2O3、BaTiO3和V2O5;掺杂量以预烧产物的重量百分比进行确定,Bi2O3为0.02wt%~0.3 0wt%,BaTiO3为0.02wt%~0.30wt%,V2O5为0.01wt%~0.40wt%。
实施例1
一种高机械强度高功率低共振线宽石榴石铁氧体的制备方法,包括以下步骤:
步骤1、配料:以Y2O3、Gd2O3、Dy2O3、In2O3和Fe2O3作为原料,按照化学式组成为Y2.48Gd0.5Dy0.02In0.3Fe4.49O11.69的比例称取原料;
步骤2、一次球磨:将步骤1的配料进行球磨,球磨时间5小时;
步骤3、预烧:将步骤2球磨后的产物取出、烘干,在空气气氛下,1050℃的温度下预烧3h;
步骤4、掺杂:将步骤3预烧后的产物取出,按照预烧产物和掺杂物的重量比称取掺杂剂:0.1wt%Bi2O3、0.1wt%BaTiO3、0.05wt%V2O5;
步骤5、二次球磨:将步骤4掺杂后得到的粉料进行二次球磨,球磨时间5小时;
步骤6、成型:将步骤5得到的二次球磨料按质量比加入10wt%的PVA粘合剂,混匀、造粒后,压制得到生坯;
步骤7、烧结:将步骤6得到的生坯放置于烧结炉内,在空气气氛下烧结,烧结温度1400℃,烧结时间为3h,烧结完成后,自然冷却至室温,取出,即可得到所需的石榴石铁氧体。
实施例2
按照实施例1的步骤制备石榴石铁氧体,仅将步骤4中掺杂量调整为0.1wt%Bi2O3、0.1wt%BaTiO3、0.10wt%V2O5,其它步骤不变。
实施例3
按照实施例1的步骤制备石榴石铁氧体,仅将步骤4中掺杂量调整为0.1wt%Bi2O3、0.1wt%BaTiO3、0.15wt%V2O5,其它步骤不变。
对比例1
按照实施例1的步骤制备石榴石铁氧体,仅将步骤4中掺杂量调整为0.1wt%Bi2O3、0.1wt%BaTiO3,其它步骤不变。
图1为对比例1与3个实施例的铁磁共振线宽ΔH。由图可知,实施例中的ΔH小于比例,表明V2O5添加剂的加入,可以降低ΔH。图2为对比例1与3个实施例的自旋波线宽ΔHk,由图可知,所有实施例的ΔHk均大于对比例,说明V2O5添加剂的加入,可以提高ΔHk。图3为对比例1与3个实施例的抗弯强度σ,由图可知,实施例1的抗弯强度大于对比例,说明少量V2O5添加剂的加入,可以提高σ。
图4为对比例1与3个实施例的SEM显微结构图。由图可知,本申请石榴石铁氧体材料中,V2O5添加剂存在阻晶作用;这有利于提高ΔHk。另外,随着V2O5添加量的增加,实施例中晶界愈加明显并且晶粒生长更加均匀,这将降低ΔH且使机械强度保持在一定值以上。
对比例和3个实施例制备的石榴石铁氧体的基本性能数据如表1所示。
表1
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
Claims (3)
1.高机械强度高功率低共振线宽的石榴石铁氧体,其特征在于,包括主料和掺杂剂;
所述主料的化学式组成为Y3-x-zGdxDyzInwFe5-w-δO12-1.5δ,其中0.05≤w≤1.00;0≤x≤2.0;0.01≤z≤0.30;δ为缺铁量,0≤δ≤0.5;
所述掺杂剂包括Bi2O3、BaTiO3和V2O5;掺杂量以预烧产物的质量百分比进行确定,Bi2O3为0.02wt%~0.30wt%,BaTiO3为0.02wt%~0.30wt%,V2O5为0.01wt%~0.40wt%。
2.如权利要求1所述的石榴石铁氧体,其特征在于,所述预烧产物按照以下步骤制备得到:
步骤1、配料:以Y2O3、Gd2O3、Dy2O3、In2O3和Fe2O3作为原料,按照化学式组成为Y3-x- zGdxDyzInwFe5-w-δO12-1.5δ的比例称取原料;
步骤2、一次球磨:将步骤1的配料进行球磨,球磨时间4~8小时;
步骤3、预烧:将步骤2球磨后的产物取出、烘干,在空气气氛中、900℃~1200℃的温度下预烧1~4h,得到预烧产物。
3.高机械强度高功率低共振线宽的石榴石铁氧体的制备方法,其特征在于,包括以下步骤:
步骤1、配料:以Y2O3、Gd2O3、Dy2O3、In2O3和Fe2O3作为原料,按照化学式组成为Y3-x- zGdxDyzInwFe5-w-δO12-1.5δ的比例称取原料;
步骤2、一次球磨:将步骤1的配料进行球磨,球磨时间4~8小时;
步骤3、预烧:将步骤2球磨后的产物取出、烘干,在空气气氛中、900℃~1200℃的温度下预烧1~4h,得到预烧产物;
步骤4、掺杂:将步骤3预烧后的产物取出,按照预烧产物和掺杂物的质量比称取掺杂剂:0.02wt%~0.30wt%Bi2O3、0.02wt%~0.30wt%BaTiO3、0.01wt%~0.40wt%V2O5;
步骤5、二次球磨:将步骤4掺杂后得到的粉料进行二次球磨,球磨时间4~8小时;
步骤6、成型:将步骤5得到的二次球磨料按质量比加入10wt%~15wt%的PVA粘合剂,混匀、造粒后,压制得到生坯;
步骤7、烧结:将步骤6得到的生坯放置于烧结炉内,在空气气氛下烧结,烧结温度1250℃~1500℃,烧结时间为2~6h,烧结完成后,自然随炉冷却至室温,取出,即可得到所需的石榴石铁氧体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210292334.5A CN114890779B (zh) | 2022-03-23 | 2022-03-23 | 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210292334.5A CN114890779B (zh) | 2022-03-23 | 2022-03-23 | 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114890779A true CN114890779A (zh) | 2022-08-12 |
CN114890779B CN114890779B (zh) | 2023-05-05 |
Family
ID=82715833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210292334.5A Active CN114890779B (zh) | 2022-03-23 | 2022-03-23 | 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114890779B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105174931A (zh) * | 2015-08-29 | 2015-12-23 | 电子科技大学 | NiCuZn铁氧体材料的制备方法 |
CN106747397A (zh) * | 2017-03-09 | 2017-05-31 | 电子科技大学 | Yig铁氧体材料及制备方法 |
WO2017089575A1 (fr) * | 2015-11-27 | 2017-06-01 | Thales | Materiau ferrite de type grenat a tres faible aimantation a saturation et composant comprenant ledit materiau a tres faible aimantation a saturation |
CN109867518A (zh) * | 2019-03-27 | 2019-06-11 | 电子科技大学 | 一种高温度稳定性的石榴石铁氧体及其制备方法 |
CN112430080A (zh) * | 2020-10-27 | 2021-03-02 | 北京无线电测量研究所 | 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法 |
-
2022
- 2022-03-23 CN CN202210292334.5A patent/CN114890779B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105174931A (zh) * | 2015-08-29 | 2015-12-23 | 电子科技大学 | NiCuZn铁氧体材料的制备方法 |
WO2017089575A1 (fr) * | 2015-11-27 | 2017-06-01 | Thales | Materiau ferrite de type grenat a tres faible aimantation a saturation et composant comprenant ledit materiau a tres faible aimantation a saturation |
CN106747397A (zh) * | 2017-03-09 | 2017-05-31 | 电子科技大学 | Yig铁氧体材料及制备方法 |
CN109867518A (zh) * | 2019-03-27 | 2019-06-11 | 电子科技大学 | 一种高温度稳定性的石榴石铁氧体及其制备方法 |
CN112430080A (zh) * | 2020-10-27 | 2021-03-02 | 北京无线电测量研究所 | 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114890779B (zh) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107555984B (zh) | 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法 | |
CN111825441B (zh) | 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用 | |
CN108424137B (zh) | 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法 | |
CN109867518B (zh) | 一种高温度稳定性的石榴石铁氧体及其制备方法 | |
CN111499369B (zh) | 一种Ku波段用高功率旋矩铁氧体材料及其制备方法 | |
CN112430080A (zh) | 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法 | |
CN113072369B (zh) | 高剩磁比的u型六角铁氧体材料及制备方法 | |
CN114436637A (zh) | 一种高介电常数高功率微波铁氧体材料及其制备方法 | |
CN114573334B (zh) | 高功率高居里温度低线宽石榴石铁氧体及制备方法 | |
CN116396068B (zh) | K~Ka波段自偏置环行器铁氧体基板材料及制备方法 | |
CN108774057B (zh) | 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法 | |
CN114773047B (zh) | 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用 | |
CN114890779B (zh) | 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法 | |
CN113511889B (zh) | 一种软磁镍锌铁氧体材料及其制备方法和应用 | |
CN115180935A (zh) | 一种毫米波ltcf生瓷带制备方法 | |
CN112441828B (zh) | 一种铁氧体材料及其制备方法 | |
CN113845359A (zh) | 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 | |
CN114702310A (zh) | 低损耗尖晶石微波铁氧体材料及其制备方法 | |
CN112759379A (zh) | 一种降低高频MnZn铁氧体烧结磁心损耗的回火工艺 | |
JP4706837B2 (ja) | Li系フェライト焼結体の製造方法及びLi系フェライト焼結体 | |
CN116621571B (zh) | 微波铁氧体材料及制备方法和介电常数调节方法 | |
CN112552037B (zh) | 一种低损耗铁氧体材料及其制备方法 | |
CN117125972A (zh) | 高功率低损耗NiCuZn微波铁氧体材料及其制备方法 | |
CN118145979A (zh) | 一种高介中等饱和磁化强度钇铁石榴石铁氧体制备方法 | |
CN110981461A (zh) | 一种钇铁石榴石铁氧体材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |