CN114883175A - 碳化硅外延层的缺陷阻障结构及方法 - Google Patents

碳化硅外延层的缺陷阻障结构及方法 Download PDF

Info

Publication number
CN114883175A
CN114883175A CN202210161021.6A CN202210161021A CN114883175A CN 114883175 A CN114883175 A CN 114883175A CN 202210161021 A CN202210161021 A CN 202210161021A CN 114883175 A CN114883175 A CN 114883175A
Authority
CN
China
Prior art keywords
silicon carbide
defect
layer
epitaxial layer
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210161021.6A
Other languages
English (en)
Other versions
CN114883175B (zh
Inventor
胡智威
蔡长祐
陈威佑
蔡清富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Baishi Electronic Technology Co ltd
Original Assignee
Nanjing Baishi Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Baishi Electronic Technology Co ltd filed Critical Nanjing Baishi Electronic Technology Co ltd
Priority to CN202310682017.9A priority Critical patent/CN116682846A/zh
Priority to CN202210161021.6A priority patent/CN114883175B/zh
Publication of CN114883175A publication Critical patent/CN114883175A/zh
Application granted granted Critical
Publication of CN114883175B publication Critical patent/CN114883175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种碳化硅外延层的缺陷阻障结构及方法,其中缺陷阻障结构包括至少一层设置于碳化硅衬底与碳化硅外延层之间的碳化硅缓冲层,以及至少一层生长于碳化硅衬底和碳化硅缓冲层的之间的碳化硅缺陷阻障层。碳化硅缺陷阻障层的掺杂浓度高于碳化硅衬底,碳化硅缺陷阻障层的掺杂浓度大于等于5E18/cm3且小于等于1E19/cm3。上述技术方案的缺陷阻障层能产生些微的晶格扭曲位移,改变了衬底垂直型位错的伯格向量,减低了垂直型位错往上延伸至外延层的驱动力,从而降低外延层的内部与表面的缺陷数量,可以使外延层缺陷密度低于1/cm2,提高器件性能及良率。

Description

碳化硅外延层的缺陷阻障结构及方法
技术领域
本发明属于碳化硅半导体器件领域,特别涉及一种碳化硅外延层的缺陷阻障结构及方法。
背景技术
碳化硅材料适用于高温、高频、高功率、抗辐射、抗腐蚀等电子器件制造,在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景,属于国际高端先进材料。为了实现碳化硅电子器件的研制必须在碳化硅衬底上进行同质外延,生长器件所需的外延结构。
现有技术所生产的碳化硅外延层,其结构都是在高浓度掺杂的碳化硅衬底上堆栈一层浓度缓冲层,根据耐压的设计,接着在缓冲层上根据耐压的设计接着生长不同厚度与参杂浓度的外延层。一般来说,缓冲层对外延层表面缺陷数量有直接影响。目前外延技术能有效控制表面尺寸较大的缺陷,如三角缺陷、胡萝卜缺陷,直线缺陷与彗星缺陷等,缓冲层的成长技术有利用不同的生长温度或是利用不同的成长速率的组合,来达到降低后续外延层的表面缺陷的目的。以上述技术所成长的外延层缺陷密度约在1/cm2。对于高耐压器件来说,此缺陷密度的数量仍然太高,容易影响器件性能与降低良率。
发明内容
发明目的:本发明的目的是提出一种碳化硅外延层的缺陷阻障结构,能同时降低外延层表面缺陷和外延层内的堆叠错位缺陷密度,生产出高质量的碳化硅外延层。
本发明的另一目的是提出一种碳化硅外延层的缺陷阻障方法,可以获得上述缺陷阻障结构,可以使外延层缺陷密度低于1/cm2,提高器件性能及良率。
技术方案:本发明所述的碳化硅外延层的缺陷阻障结构,包括至少一层设置于碳化硅衬底与碳化硅外延层之间的碳化硅缓冲层,还包括至少一层生长于所述碳化硅衬底和所述碳化硅缓冲层的之间的碳化硅缺陷阻障层,所述碳化硅缺陷阻障层的掺杂浓度高于所述碳化硅衬底,所述碳化硅缺陷阻障层的掺杂浓度大于等于5E18/cm3且小于等于1E19/cm3
进一步的,所述碳化硅缺陷阻障层的厚度大于0.1μm。
进一步的,所述碳化硅缺陷阻障层的掺杂浓度大于等于5E18/cm3,且小于等于7.5E18/cm3
进一步的,所述碳化硅缺陷阻障层的厚度大于等于4μm,且小于等于10μm。
进一步的,所述碳化硅缓冲层的掺杂浓度介于9E17/cm3~2E18/cm3之间。
进一步的,所述碳化硅缓冲层的厚度介于0.5~2μm之间。
本发明所述的碳化硅外延层的缺陷阻障方法,包括如下步骤:
S1:在温度高于1630℃且碳硅比介于1.2~1.0的条件下,在碳化硅衬底上生长碳化硅缺陷阻障层,控制碳化硅缺陷阻障层的掺杂浓度介于5E18/cm3~1E19/cm3之间,厚度大于0.1μm;
S2:在温度介于1620~1630℃之间且碳硅比介于1.0~0.9的条件下,在碳化硅缺陷阻障层上生长碳化硅缓冲层,碳化硅缓冲层的厚度介于0.5~2μm之间,并将生长速度拉高到1.3~1.5倍;
S3:在温度小于1620℃且碳硅比介于1.0~0.9的条件下,在碳化硅缓冲层上生长碳化硅外延层。
有益效果:与现有技术相比,本发明具有如下优点:不同条件生长的缺陷阻障层能产生些微的晶格扭曲位移,改变了衬底垂直型位错的伯格向量,减低了垂直型位错往上延伸至外延层的驱动力,从而降低外延层的内部与表面的缺陷数量。
附图说明
图1为本发明实施例的缺陷阻障结构的剖面示意图;
图2为有无阻障层的碳化硅外延结构的表面缺陷测试图;
图3为有无阻障层的碳化硅外延结构的内部缺陷测试图;
图4为在不同阻障层掺杂浓度下的六吋碳化硅外延层的表面缺陷数量图;
图5为在不同阻障层厚度下的六吋碳化硅外延层的表面缺陷数量图;
图6为在不同阻障层掺杂浓度下的六吋碳化硅外延层的内部缺陷数量图;
图7为在不同阻障层厚度下的六吋碳化硅外延层的内部缺陷数量图;
图8为本发明实施例的碳化硅外延片的SIMS氮掺杂含量分析图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
参照图1,根据本发明实施例的碳化硅外延层的缺陷阻障结构,包括设置在碳化硅衬底与碳化硅外延层之间的碳化硅缓冲层,以及生长在碳化硅衬底和碳化硅缓冲层之间的碳化硅缺陷阻障层,碳化硅缺陷阻障层的掺杂浓度高于碳化硅衬底,碳化硅缺陷阻障层的掺杂浓度介于5E18/cm3~1E19/cm3之间。
根据上述技术方案的碳化硅外延层的缺陷阻障结构,不同条件下生长的缺陷阻障层可以产生些微的晶格扭曲位移,改变了衬底垂直型位错的伯格向量,从而减低了垂直型位错往上延伸至外延层的驱动力,实现降低外延层的内部与表面的缺陷数量。
实际中,碳化硅缺陷阻障层的厚度宜大于0.1μm,碳化硅缓冲层的掺杂浓度优选介于9E17/cm3~2E18/cm3之间,厚度优选介于0.5~2μm之间。
在本实施例中,以6吋n型衬底为例,碳化硅外延层的缺陷阻障结构可以由如下方法制成:
1)将6吋n型(0001)晶面往<11-20>方向偏轴4°的碳化硅衬底衬底置入SiC外延反应室乘载内基座内;
2)通入氢气,控制反应腔生长压力范围在10-50kpa内,在氢气的环境下升温至1625℃,维持反应室温度10分钟,对衬底进行表面蚀刻;
3)在n型的碳化硅衬底上,在较高温度(>1630℃)和碳硅比介于1.2~1.0条件下,生长第一层氮掺杂的碳化硅缺陷阻障层,氮掺杂浓度为5.5E18/cm3,阻障层生长厚度为4um;
4)接着在第一层缺陷阻障层生长厚度为1um碳化硅缓冲层,且成长温度为1625℃,搭配碳硅比介于1.0~0.9,并将长速拉高到1.3~1.5倍;
5)在碳化硅外延层部分,在成长温度降至低于1620℃,碳硅比介于1.0~0.9的成长条件下所成长的外延层,能同时具备有高均匀性与低外延缺陷的优势。图8为本碳化硅外延结构实施例的氮原子浓度SIMS分析图;
6)维持在氢气环境下,停止通入碳硅气体和氮气,待降温至800℃以下,停止通入氢气,将反应室真空抽至1Kpa以下,再通入氩气至一大气压,循环5次后,打开反应室,取出外延片,采用Lasertec公司的SICA88表面缺陷检测仪对外延片表面进行检测,检测结果如图2和图3所示。通过图片可以看出,相较于相同方法获得的不设有缺陷阻障层的碳化硅外延片,该工艺将外延层表面缺陷密度从1/cm2降低到0.3/cm2,外延层内部缺陷密度从2.5/cm2降低到0.5/cm2,有效提高外延层质量。
实际中,可以通过调节缺陷阻障层外延过程中的氮掺杂浓度与厚度的比例,进一步终止位错的成长,降低外延层的内部与表面的缺陷数量。
图4及图6分别为6吋的n型碳化硅衬底,在碳化硅缺陷阻障层厚度为4μm时,碳化硅缺陷阻障层的氮掺杂浓度分别为1E18/cm3、2E18/cm3、4E18/cm3、5E18/cm3、7.5E18/cm3和1E19/cm3时的外延层表面缺陷数量和内部缺陷数量,由图可知,当碳化硅缺陷阻障层的氮掺杂浓度为5E18/cm3和7.5E18/cm3时,外延层表面及内部缺陷的数量均稳定少于其他掺杂浓度,所以碳化硅缺陷阻障层的氮掺杂浓度优选介于5E18/cm3~7.5E18/cm3之间。
图5和图7分别为6吋的n型碳化硅衬底,在碳化硅缺陷阻障层的氮掺杂浓度为5.1E18/cm3时,碳化硅缺陷阻障层的厚度分别为1μm、2μm、4μm、5μm、7μm和10μm时的外延层表面缺陷数量和内部缺陷数量,由图可知,当碳化硅缺陷阻障层的厚度增加至4μm后,再增加缺陷阻障层的厚度,外延层内部的缺陷数量并无明显减少,且当厚度增加至10μm时,外延层表面的缺陷数量有增长趋势,所以碳化硅缺陷阻障层的厚度优选介于4~10μm之间。

Claims (7)

1.一种碳化硅外延层的缺陷阻障结构,包括至少一层设置于碳化硅衬底与碳化硅外延层之间的碳化硅缓冲层,其特征在于,还包括至少一层生长于所述碳化硅衬底和所述碳化硅缓冲层的之间的碳化硅缺陷阻障层,所述碳化硅缺陷阻障层的掺杂浓度高于所述碳化硅衬底,所述碳化硅缺陷阻障层的掺杂浓度大于等于5E18/cm3且小于等于1E19/cm3
2.根据权利要求1所述的碳化硅外延层的缺陷阻障结构,其特征在于,所述碳化硅缺陷阻障层的厚度大于0.1μm。
3.根据权利要求1所述的碳化硅外延层的缺陷阻障结构,其特征在于,所述碳化硅缺陷阻障层的掺杂浓度大于等于5E18/cm3,且小于等于7.5E18/cm3
4.根据权利要求2所述的碳化硅外延层的缺陷阻障结构,其特征在于,所述碳化硅缺陷阻障层的厚度大于等于4μm,且小于等于10μm。
5.根据权利要求1所述的碳化硅外延层的缺陷阻障结构,其特征在于,所述碳化硅缓冲层的掺杂浓度介于9E17/cm3~2E18/cm3之间。
6.根据权利要求1所述的碳化硅外延层的缺陷阻障结构,其特征在于,所述碳化硅缓冲层的厚度介于0.5~2μm之间。
7.一种碳化硅外延层的缺陷阻障方法,其特征在于,包括如下步骤:
S1:在温度高于1630℃且碳硅比介于1.2~1.0的条件下,在碳化硅衬底上生长碳化硅缺陷阻障层,控制碳化硅缺陷阻障层的掺杂浓度介于5E18/cm3~1E19/cm3之间,厚度大于0.1μm;
S2:在温度介于1620~1630℃之间且碳硅比介于1.0~0.9的条件下,在碳化硅缺陷阻障层上生长碳化硅缓冲层,碳化硅缓冲层的厚度介于0.5~2μm之间,并将生长速度拉高到1.3~1.5倍;
S3:在温度小于1620℃且碳硅比介于1.0~0.9的条件下,在碳化硅缓冲层上生长碳化硅外延层。
CN202210161021.6A 2022-02-22 2022-02-22 碳化硅外延层的缺陷阻障结构及方法 Active CN114883175B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310682017.9A CN116682846A (zh) 2022-02-22 2022-02-22 一种碳化硅外延层的缺陷阻障结构及方法
CN202210161021.6A CN114883175B (zh) 2022-02-22 2022-02-22 碳化硅外延层的缺陷阻障结构及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210161021.6A CN114883175B (zh) 2022-02-22 2022-02-22 碳化硅外延层的缺陷阻障结构及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310682017.9A Division CN116682846A (zh) 2022-02-22 2022-02-22 一种碳化硅外延层的缺陷阻障结构及方法

Publications (2)

Publication Number Publication Date
CN114883175A true CN114883175A (zh) 2022-08-09
CN114883175B CN114883175B (zh) 2023-08-18

Family

ID=82667734

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210161021.6A Active CN114883175B (zh) 2022-02-22 2022-02-22 碳化硅外延层的缺陷阻障结构及方法
CN202310682017.9A Pending CN116682846A (zh) 2022-02-22 2022-02-22 一种碳化硅外延层的缺陷阻障结构及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310682017.9A Pending CN116682846A (zh) 2022-02-22 2022-02-22 一种碳化硅外延层的缺陷阻障结构及方法

Country Status (1)

Country Link
CN (2) CN114883175B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116805576A (zh) * 2023-03-31 2023-09-26 南京百识电子科技有限公司 一种降低碳化硅外延缺陷阻障层生长控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022292A1 (en) * 2004-07-15 2006-02-02 Shenoy Praveen M Schottky diode structure to reduce capacitance and switching losses and method of making same
US20100119849A1 (en) * 2007-07-26 2010-05-13 Nobuhiko Nakamura Sic epitaxial substrate and method for producing the same
WO2015170500A1 (ja) * 2014-05-08 2015-11-12 三菱電機株式会社 SiCエピタキシャルウエハおよび炭化珪素半導体装置の製造方法
CN105826186A (zh) * 2015-11-12 2016-08-03 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法
CN106711031A (zh) * 2016-12-15 2017-05-24 中国电子科技集团公司第五十五研究所 降低基平面位错对碳化硅外延层影响的方法
US20180323263A1 (en) * 2016-07-29 2018-11-08 Fuji Electric Co., Ltd. Silicon carbide semiconductor substrate, method of manufacturing silicon carbide semiconductor substrate, semiconductor device and method of manufacturing semiconductor device
CN112670165A (zh) * 2020-12-24 2021-04-16 南京百识电子科技有限公司 一种碳化硅外延底层的生长方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022292A1 (en) * 2004-07-15 2006-02-02 Shenoy Praveen M Schottky diode structure to reduce capacitance and switching losses and method of making same
US20100119849A1 (en) * 2007-07-26 2010-05-13 Nobuhiko Nakamura Sic epitaxial substrate and method for producing the same
WO2015170500A1 (ja) * 2014-05-08 2015-11-12 三菱電機株式会社 SiCエピタキシャルウエハおよび炭化珪素半導体装置の製造方法
CN105826186A (zh) * 2015-11-12 2016-08-03 中国电子科技集团公司第五十五研究所 高表面质量碳化硅外延层的生长方法
US20180323263A1 (en) * 2016-07-29 2018-11-08 Fuji Electric Co., Ltd. Silicon carbide semiconductor substrate, method of manufacturing silicon carbide semiconductor substrate, semiconductor device and method of manufacturing semiconductor device
CN106711031A (zh) * 2016-12-15 2017-05-24 中国电子科技集团公司第五十五研究所 降低基平面位错对碳化硅外延层影响的方法
CN112670165A (zh) * 2020-12-24 2021-04-16 南京百识电子科技有限公司 一种碳化硅外延底层的生长方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116805576A (zh) * 2023-03-31 2023-09-26 南京百识电子科技有限公司 一种降低碳化硅外延缺陷阻障层生长控制方法

Also Published As

Publication number Publication date
CN116682846A (zh) 2023-09-01
CN114883175B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
CN112670165B (zh) 一种碳化硅外延底层的生长方法
WO2018108006A1 (zh) 降低碳化硅外延基平面位错密度的方法
JP4964672B2 (ja) 低抵抗率炭化珪素単結晶基板
CN111029246B (zh) 一种降低SiC外延层中三角形缺陷的方法
CN100497760C (zh) 高掺杂浓度的碳化硅外延生长的方法
WO2015056714A1 (ja) n型窒化アルミニウム単結晶基板、および縦型窒化物半導体デバイス
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
JP2007230823A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
CN106711022A (zh) 一种生长掺杂界面清晰的碳化硅外延薄膜的制备方法
US20240183063A1 (en) Method for sic step flow growth by regulating growth monmoers using chemical potential under non-equilibrium condition
Salih et al. Extrinsic gettering via the controlled introduction of misfit dislocations
JP6758491B2 (ja) SiCエピタキシャルウエハおよびその製造方法
CN114883175B (zh) 碳化硅外延层的缺陷阻障结构及方法
KR20230169109A (ko) 고품질 단결정 탄화규소를 성장시키는 방법
JP2007250693A (ja) SiC基板の製造方法及びSiC基板並びに半導体装置
CN116613056B (zh) 一种降低碳化硅外延薄膜表面缺陷的方法
CN116825620A (zh) 一种降低碳化硅外延片表面缺陷的方法
JP2000001398A (ja) 炭化けい素半導体基板の製造方法
TW202340551A (zh) 氮化物半導體基板及其製造方法
CN113078205B (zh) 基于Al-N共掺的SiC外延结构及其制备方法
KR20230132455A (ko) 에피택셜 웨이퍼의 제조방법
CN113089091A (zh) 氮化硼模板及其制备方法
US10304989B2 (en) Fabrication and use of large-grain templates for epitaxial deposition of semiconductor materials
CN112750689A (zh) 镓极性面氮化镓材料及同质外延生长方法
CN114214723B (zh) 一种准本征半绝缘碳化硅单晶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant