CN112750689A - 镓极性面氮化镓材料及同质外延生长方法 - Google Patents

镓极性面氮化镓材料及同质外延生长方法 Download PDF

Info

Publication number
CN112750689A
CN112750689A CN202110060189.3A CN202110060189A CN112750689A CN 112750689 A CN112750689 A CN 112750689A CN 202110060189 A CN202110060189 A CN 202110060189A CN 112750689 A CN112750689 A CN 112750689A
Authority
CN
China
Prior art keywords
gallium nitride
gallium
substrate
transition layer
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110060189.3A
Other languages
English (en)
Inventor
薛军帅
杨雪妍
李蓝星
姚佳佳
孙志鹏
张赫朋
刘芳
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110060189.3A priority Critical patent/CN112750689A/zh
Publication of CN112750689A publication Critical patent/CN112750689A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种镓极性面氮化镓材料及同质外延生长方法,主要解决现有镓极性面氮化镓材料位错密度高、表面形貌差、背景载流子浓度高、生长工艺控制难度大和一致性差的问题。其材料结构,自下而上包括衬底(1)、过渡层(2)、氮化镓外延层(3),其中过渡层采用InAlN或ScAlN或YAlN,衬底采用镓极性c面氮化镓单晶衬底。其制作步骤为:在衬底基片上,利用分子束外延方法生长厚度为1nm~10nm的过渡层;保持反应室温度、氮气流量和氮气射频源功率不变,在过渡层上生长氮化镓外延层。本发明材料结晶质量高、表面形貌光滑、背景载流子浓度低、生长工艺简单且一致性高,可用于制作高频微波功率器件和高速电力电子开关器件。

Description

镓极性面氮化镓材料及同质外延生长方法
技术领域
本发明属于半导体材料生长领域,特别涉及一种镓极性面氮化镓半导体材料,可用于制作高频微波功率器件和高速电力电子开关器件。
背景技术
作为第三代宽禁带半导体材料的典型代表,氮化镓材料具有宽禁带、高饱和电子速度、高击穿场强、高热导率、抗辐照等优越性能,在高频微波功率器件和高速电力电子开关器件中具有应用潜力。氮化镓材料和更宽禁带的InAlGaN材料形成的异质结,在其界面具有高载流子密度和高迁移率的二维电子气,是高电子迁移率晶体管的基本材料结构。经过三十年的发展,氮化镓材料无论在材料生长技术还是器件工艺方面都取得了非常大的进展,在5G通信和新能源汽车中得到了商业化应用。
目前,试验研究和市场商用的氮化镓材料基本上基于镓极性面氮化镓材料,这是由于镓极性面氮化镓材料生长技术成熟,工艺简单。但这些镓极性面氮化镓材料都是在碳化硅等衬底上采用金属有机物化学气相淀积技术或分子束外延技术异质外延生长获得的。氮化镓材料可通过异质外延生长或同质外延生长,异质外延生长的氮化镓材料中存在由晶格失配和热膨胀系数失配导致的高密度位错缺陷,这些缺陷常作为陷阱中心俘获电子引起器件电流崩塌,同时位错作为漏电通道降低器件击穿电压。常规异质外延生长的镓极性面氮化镓材料结构,如图1所示。其自下而上包括衬底、成核层、镓极性面氮化镓材料。该材料存在以下缺点:
1.异质外延镓极性面氮化镓材料需要采用成核层结构,但成核层结构容易形成横向漏电通道,降低器件击穿电压,且其生长条件需要精准调控,生长重复性差,工艺控制难度高;
2.异质外延镓极性面氮化镓材料中存在高密度位错缺陷,会使材料表面形貌粗糙,形成坑状缺陷和表面漏电通道,降低器件击穿电压;
3.异质外延镓极性面氮化镓材料中的位错易俘获电子,导致器件电流崩塌现象;
4.异质外延镓极性面氮化镓材料中,成核层和镓极性面氮化镓材料生长参数不同,需要改变生长温度和切换气流,生长过程需要短暂停顿和间隔。
发明内容
本发明目的在于针对上述已有技术的缺点,提出一种镓极性面氮化镓材料及同质外延生长方法,以提高镓极性面氮化镓材料晶体质量和表面形貌,降低材料生长工艺控制难度,提高工艺一致性和重复性,降低同质外延镓极性面氮化镓材料中非故意掺杂背景载流子浓度。
为实现上述目的,本发明的技术方案如下:
1、一种镓极性面氮化镓材料,包括衬底(1)和氮化镓外延层(3),其特征在于:
所述氮化镓外延层(3)与衬底(1)之间设有过渡层(2),该过渡层采用InAlN或ScAlN或YAlN,其厚度为1nm~10nm;
所述衬底(1)采用镓极性c面氮化镓单晶。
2、一种同质外延生长镓极性面氮化镓材料的方法,其特征在于,包括如下步骤:
1)选用镓极性c面氮化镓单晶作为衬底;
2)将衬底基片置于反应室中,在衬底基片上利用分子束外延法,在温度为660℃~700℃,氮气流量为2.3sccm,金属束流的平衡蒸汽压为1.5×10-8Torr~1.8×10-7Torr,氮气射频源功率为375W的工艺条件下,生长1nm~10nm的过渡层;
3)保持反应室温度、氮气流量和氮气射频源功率不变,设置镓束流平衡蒸气压为6.2×10-7Torr~7.6×10-7Torr,采用分子束外延法,在过渡层上生长氮化镓外延层,完成镓极性面氮化镓材料的制备。
进一步,所述金属束流平衡蒸汽压,包括铟束流平衡蒸气压、钪束流平衡蒸气压、钇束流平衡蒸气压和铝束流平衡蒸气压。
本发明与现有技术相比具有如下优点:
1.本发明由于采用镓极性c面氮化镓衬底,该衬底制备工艺成熟,可实现大尺寸单晶生长;
2.本发明由于采用InAlN或ScAlN或YAlN过渡层,可实现镓极性c面氮化镓衬底、过渡层与镓极性面氮化镓外延层这三者的面内晶格匹配,降低材料位错密度。
3.本发明采用InAlN或ScAlN或YAlN过渡层,由于其禁带宽度大于氮化镓材料,可以提高导带能带,起背势垒作用,阻止镓极性c面氮化镓衬底表面吸附的杂质向镓极性面氮化镓材料中扩散,降低镓极性面氮化镓材料非故意掺杂背景载流子浓度。
4.本发明采用分子束外延技术生长镓极性面氮化镓外延层,在富镓生长条件下易增强金属原子在薄膜生长表面的迁移能力和扩散长度,提高镓极性面氮化镓表面形貌。
5.本发明由于衬底与外延层均为氮化镓材料,因此生长类型属于同质外延,可避免异质外延中晶格失配带来的高密度位错缺陷,有利于提高器件击穿电压。
6.本发明由于过渡层和氮化镓外延层生长温度、氮气流量和氮气射频源功率一致,不需要生长间隔和停顿,减小了生长工艺控制难度。
附图说明
图1是传统生长镓极性面氮化镓材料的结构示意图;
图2是本发明的镓极性面氮化镓材料的结构示意图;
图3是本发明制作镓极性面氮化镓材料的流程示意图。
具体实施方式
以下结合附图对本发明的实施例进行进一步详细描述。
参照图2,本发明的镓极性面氮化镓材料,自下而上包括衬底1、过渡层2、氮化镓外延层3。其中过渡层采用的InAlN或ScAlN或YAlN,厚度为1nm~10nm;衬底采用镓极性c面氮化镓单晶;镓极性面氮化镓外延层的厚度根据实际需求确定。
参照图3,本发明制作镓极性面氮化镓材料给出如下三种实施例。
实施例1,制作衬底为镓极性c面氮化镓单晶,过渡层为厚度10nm的In0.17Al0.83N,外延层为氮化镓的镓极性面氮化镓材料。
步骤一,选用镓极性c面氮化镓单晶作为衬底,如图3(a)。
步骤二,外延In0.17Al0.83N过渡层,如图3(b)。
将衬底基片置于反应室中,设定温度为660℃,氮气流量为2.3sccm,铟束流平衡蒸气压为1.4×10-7Torr,铝束流平衡蒸气压为1.5×10-7Torr,氮气射频源功率为375W的工艺条件,使用分子束外延技术,在镓极性c面氮化镓单晶衬底上淀积厚度为10nm的In0.17Al0.83N过渡层。
步骤三,外延镓极性面氮化镓外延层,如图3(c)。
保持反应室温度、氮气流量和氮气射频源功率不变,设置镓束流平衡蒸气压为6.2×10-7Torr,使用分子束外延技术,在In0.17Al0.83N过渡层上淀积镓极性面氮化镓外延层,完成镓极性面氮化镓材料的制作。
实施例2,制作衬底为镓极性c面氮化镓单晶,过渡层为厚度5nm的Sc0.18Al0.82N,外延层为氮化镓的镓极性面氮化镓材料。
步骤1,选用镓极性c面氮化镓单晶作为衬底,如图3(a)。
步骤2,外延Sc0.18Al0.82N过渡层,如图3(b)。
将衬底基片置于反应室中,设定温度为680℃,氮气流量为2.3sccm,钪束流平衡蒸气压为1.8×10-8Torr,铝束流平衡蒸气压为1.4×10-7Torr,氮气射频源功率为375W的工艺条件,使用分子束外延技术,在镓极性c面氮化镓单晶衬底上淀积厚度为5nm的Sc0.18Al0.82N过渡层。
步骤3,使用分子束外延技术淀积氮化镓外延层,如图3(c)。
保持反应室温度、氮气流量和氮气射频源功率不变,设置镓束流平衡蒸气压为6.8×10-7Torr,使用分子束外延技术,在Sc0.18Al0.82N过渡层上淀积镓极性面氮化镓外延层,完成镓极性面氮化镓材料的制作。
实施例3,制作衬底为镓极性c面氮化镓单晶,过渡层为厚度1nm的Y0.11Al0.89N,外延层为氮化镓的镓极性面氮化镓材料。
步骤A,选用镓极性c面氮化镓单晶作为衬底,如图3(a)。
步骤B,外延Y0.11Al0.89N过渡层,如图3(b)。
将衬底基片置于反应室中,使用分子束外延技术,在温度为700℃,氮气流量为2.3sccm,钇束流平衡蒸气压为1.5×10-8Torr,铝束流平衡蒸气压为1.8×10-7Torr,氮气射频源功率为375W的工艺条件下,在镓极性c面氮化镓单晶衬底上生长厚度为1nm的Y0.11Al0.89N过渡层。
步骤C,生长镓极性面氮化镓外延层,如图3(c)。
保持反应室温度、氮气流量和氮气射频源功率不变,设置镓束流平衡蒸气压为7.6×10-7Torr,使用分子束外延技术,在Y0.11Al0.89N过渡层上淀积镓极性面氮化镓外延层,完成镓极性面氮化镓材料的制作。
上述三个实例中的氮化镓外延层厚度根据实际需求确定。
以上描述仅是本发明的三个具体事例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明的内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求范围之内。

Claims (4)

1.一种镓极性面氮化镓材料,包括衬底(1)和氮化镓外延层(3),其特征在于:
所述氮化镓外延层(3)与衬底(1)之间设有过渡层(2),该过渡层采用InAlN或ScAlN或YAlN,其厚度为1nm~10nm;
所述衬底(1)采用镓极性c面氮化镓单晶。
2.如权利要求1所述的材料,其特征在于:所述氮化镓外延层的厚度根据使用要求确定。
3.一种同质外延生长镓极性面氮化镓材料的方法,其特征在于,包括如下步骤:
1)选用镓极性c面氮化镓单晶作为衬底;
2)将衬底基片置于反应室中,在衬底基片上利用分子束外延法,在温度为660℃~700℃,氮气流量为2.3sccm,金属束流的平衡蒸汽压为1.5×10-8Torr~1.8×10-7Torr,氮气射频源功率为375W的工艺条件下,生长1nm~10nm的过渡层;
3)保持反应室温度、氮气流量和氮气射频源功率不变,设置镓束流平衡蒸气压为6.2×10-7Torr~7.6×10-7Torr,采用分子束外延法,在过渡层上生长氮化镓外延层,完成镓极性面氮化镓材料的制备。
4.如权利要求3所述方法,其特征在于:所述金属束流平衡蒸汽压,包括铟束流平衡蒸气压、钪束流平衡蒸气压、钇束流平衡蒸气压和铝束流平衡蒸气压。
CN202110060189.3A 2021-01-18 2021-01-18 镓极性面氮化镓材料及同质外延生长方法 Pending CN112750689A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110060189.3A CN112750689A (zh) 2021-01-18 2021-01-18 镓极性面氮化镓材料及同质外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110060189.3A CN112750689A (zh) 2021-01-18 2021-01-18 镓极性面氮化镓材料及同质外延生长方法

Publications (1)

Publication Number Publication Date
CN112750689A true CN112750689A (zh) 2021-05-04

Family

ID=75652250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110060189.3A Pending CN112750689A (zh) 2021-01-18 2021-01-18 镓极性面氮化镓材料及同质外延生长方法

Country Status (1)

Country Link
CN (1) CN112750689A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070428A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 集成电路、其制备方法、功率放大器及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780876A (en) * 1995-04-24 1998-07-14 Sharp Kabushiki Kaisha Compound semiconductor light emitting device and manufacturing method thereof
US20010020700A1 (en) * 2000-01-13 2001-09-13 Kaoru Inoue Semiconductor device
US20060255341A1 (en) * 2005-04-21 2006-11-16 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
CN101345192A (zh) * 2008-07-07 2009-01-14 中国电子科技集团公司第十三研究所 InAlN缓冲层生长AlN和AlGaN的方法
US20100252835A1 (en) * 2007-11-21 2010-10-07 Mitsubishi Chemical Corporation Nitride semiconductor and nitride semiconductor crystal growth method
US20130075753A1 (en) * 2011-09-27 2013-03-28 Sumitomo Electric Industries, Ltd. Semiconductor device
US20140191241A1 (en) * 2013-01-07 2014-07-10 Avogy, Inc. Gallium nitride vertical jfet with hexagonal cell structure
CN104269469A (zh) * 2014-09-19 2015-01-07 西安电子科技大学 一种降低宽禁带半导体器件欧姆接触电阻的方法
US20170125557A1 (en) * 2013-03-20 2017-05-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method of making a graphene base transistor with reduced collector area

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780876A (en) * 1995-04-24 1998-07-14 Sharp Kabushiki Kaisha Compound semiconductor light emitting device and manufacturing method thereof
US20010020700A1 (en) * 2000-01-13 2001-09-13 Kaoru Inoue Semiconductor device
US20060255341A1 (en) * 2005-04-21 2006-11-16 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
US20100252835A1 (en) * 2007-11-21 2010-10-07 Mitsubishi Chemical Corporation Nitride semiconductor and nitride semiconductor crystal growth method
CN101345192A (zh) * 2008-07-07 2009-01-14 中国电子科技集团公司第十三研究所 InAlN缓冲层生长AlN和AlGaN的方法
US20130075753A1 (en) * 2011-09-27 2013-03-28 Sumitomo Electric Industries, Ltd. Semiconductor device
US20140191241A1 (en) * 2013-01-07 2014-07-10 Avogy, Inc. Gallium nitride vertical jfet with hexagonal cell structure
US20170125557A1 (en) * 2013-03-20 2017-05-04 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method of making a graphene base transistor with reduced collector area
CN104269469A (zh) * 2014-09-19 2015-01-07 西安电子科技大学 一种降低宽禁带半导体器件欧姆接触电阻的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070428A1 (zh) * 2021-10-28 2023-05-04 华为技术有限公司 集成电路、其制备方法、功率放大器及电子设备

Similar Documents

Publication Publication Date Title
KR102452739B1 (ko) 갈륨 질화물 고전자이동도 전계효과 트랜지스터의 계면 열저항 감소를 위한 에피택셜 성장 방법
CN100555660C (zh) 宽带隙氮化镓基异质结场效应晶体管结构及制作方法
US11637197B2 (en) Epitaxial structure of GaN-based radio frequency device based on Si substrate and its manufacturing method
CN112670161B (zh) 一种低热阻氮化镓高电子迁移率晶体管外延材料制备方法
CA1297390C (en) Method of epitaxially growing gallium arsenide on silicon
CN105655238A (zh) 基于石墨烯与磁控溅射氮化铝的硅基氮化镓生长方法
US20240183063A1 (en) Method for sic step flow growth by regulating growth monmoers using chemical potential under non-equilibrium condition
US20020106842A1 (en) Methods for growth of relatively large step-free sic crystal surfaces
CN112687525B (zh) 一种提高超薄氮化镓场效应管晶体质量的外延方法
CN114899099A (zh) 一种金刚石衬底上生长氮化镓高电子迁移率晶体管的外延方法
CN112760611B (zh) 一种提高mocvd外延薄膜质量的优化生长方法
CN112750689A (zh) 镓极性面氮化镓材料及同质外延生长方法
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN116666196A (zh) 无旋转畴的κ-Ga2O3薄膜及κ-(AlxGa1-x)2O3/κ-Ga2O3异质结的制备方法
CN114613847B (zh) 硅基AlGaN/GaN HEMT外延薄膜及其生长方法
CN110791805A (zh) 一种衬底、外延片及其生长方法
CN112750691A (zh) 氮极性面GaN材料及同质外延生长方法
WO2023070428A1 (zh) 集成电路、其制备方法、功率放大器及电子设备
CN111009579A (zh) 半导体异质结构及半导体器件
CN100558947C (zh) 生长氮化铟单晶薄膜的方法
CN110739207A (zh) 一种在导电SiC衬底上生长GaN外延材料的方法及器件
CN112735944A (zh) 氮极性面GaN材料及其制作方法
CN219203165U (zh) 一种氮化镓外延结构
CN113471064B (zh) 基于斜切角衬底的ⅲ族氧化物薄膜制备方法及其外延片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210504

WD01 Invention patent application deemed withdrawn after publication