CN114875380B - 一种提升p型含氧金属化合物薄膜迁移率的方法 - Google Patents

一种提升p型含氧金属化合物薄膜迁移率的方法 Download PDF

Info

Publication number
CN114875380B
CN114875380B CN202210478170.5A CN202210478170A CN114875380B CN 114875380 B CN114875380 B CN 114875380B CN 202210478170 A CN202210478170 A CN 202210478170A CN 114875380 B CN114875380 B CN 114875380B
Authority
CN
China
Prior art keywords
doped
metal compound
containing metal
film
mobility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210478170.5A
Other languages
English (en)
Other versions
CN114875380A (zh
Inventor
连水养
许嘉巡
赵铭杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University of Technology
Original Assignee
Xiamen University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University of Technology filed Critical Xiamen University of Technology
Priority to CN202210478170.5A priority Critical patent/CN114875380B/zh
Publication of CN114875380A publication Critical patent/CN114875380A/zh
Application granted granted Critical
Publication of CN114875380B publication Critical patent/CN114875380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/408Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种提升p型含氧金属化合物薄膜迁移率的方法,通过在p型含氧金属化合物薄膜中掺杂原子,所掺杂的原子的最外围轨道能和氧2p轨道形成化学键,能提高价带顶部的散度和增加价带顶的斜率,故而能提高提升p型含氧金属化合物薄膜迁移率。可以是,所掺杂的原子的最外围轨道为2s或3s轨道,或者所掺杂的原子的最外围轨道具有3d10电子排布模型。通过掺杂成键,能降低空穴迁移的能量势垒,提升迁移率。

Description

一种提升p型含氧金属化合物薄膜迁移率的方法
技术领域
本发明涉及半导体导电技术领域,尤其涉及一种提升p型含氧金属化合物薄膜迁移率的方法。
背景技术
含氧金属化合物薄膜通过调整其金属和氧的组分,可以控制薄膜的光透射率、导电性,实现同时具有高导电性和高光透射率这两种矛盾的特性,这种透明导电薄膜正广泛应用在各式各样的半导体光电器件中,如太阳电池、TFT器件等。提高薄膜的导电性可以通过提高其载流子迁移率或是载流子浓度来达成,一般来说通过提升迁移率的方式更收到青睐,因为提升载流子浓度会造成散射效应,迁移率降低,而高浓度的载流子也会使薄膜在长波长光线的吸收量增加,不利于某些器件的应用,例如太阳电池。通过提高迁移率的方式,则可以避免这个问题,同时高的迁移率意味着电子可以进行高速移动,电响应速度快,应用于开关元件更具优势。
含氧金属化合物的能带结构,可以分为导带和价带,n型半导体的导电性是通过电子进行传输,所以是取决于导带的结构,而p型半导体则由共价带的空穴决定。不管是电子或是空穴都被视为是载流子,根据半导体物理,载流子的迁移率由有效质量所决定,对p型半导体的空穴,其有效质量与价带顶部的斜率有关,斜率越大的有效质量越低,则空穴迁移率越高。
然而,对p型金属半导体而言,提升迁移率并不如n型半导体般顺利,这是因为p型半导体对应的载流子是空穴,其吸引电子填充造成空穴在价带中移动。然而,含氧金属化合物的价带由氧2p轨域构成(n型由金属原子的轨道构成),由于氧具有高电负度,容易牢牢吸引电子而造成电子填充临近空穴的机会大大降低,这也代表空穴受到束缚,移动速度慢,迁移率小。
发明内容
为了解决p型含氧金属化合物薄膜的空穴受到氧的束缚,导致空穴移动速度慢、迁移率小的问题,发明人进行了深入研究,以提出一种能提升p型含氧金属化合物薄膜迁移率的方案。
具体的,本发明提出了一种提升p型含氧金属化合物薄膜迁移率的方法,通过在p型含氧金属化合物薄膜中掺杂原子,所掺杂的原子的最外围轨道能和氧2p轨道形成化学键,能提高价带顶部的散度和增加价带顶的斜率,故而能提高提升p型含氧金属化合物薄膜迁移率。本方法还具有以下进一步改进方案。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法的进一步改进,所掺杂的原子的最外围轨道为2s或3s轨道。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法的进一步改进,所掺杂的原子为Li。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法,以掺杂的原子为Li的基础上的第一种改进,设定所述p型含氧金属化合物薄膜是Cu2O薄膜。本方法使用原子层沉积系统,配备CH3LiO和C22H38CuO4前驱金属源,以及配备O2等离子源,调整CH3LiO和C22H38CuO4的流量比,以控制Li的掺杂量,沉积出掺杂Li的氧化亚铜薄膜。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法的进一步改进,在上述制备掺杂Li的氧化亚铜薄膜的方法中,设置CH3LiO和C22H38CuO4的流量比为1:6。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法,以掺杂的原子为Li的基础上的第二种改进,利用磁控溅射法,将Li掺入Cu2O,包括将重量比30wt.%Li2CO3粉末和70wt.%Cu2O粉末热压成一个靶材,通过Ar等离子轰击靶材来沉积出掺杂Li的氧化亚铜薄膜。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法的进一步改进,所掺杂的原子的最外围轨道具有3d10电子排布模型。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法的进一步改进,所掺杂的原子为Cu。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法,在掺杂的原子为Cu的基础上的进一步改进,在掺杂的原子为Cu的基础上,利用磁控溅射法得到Cu掺杂的Li2CO3薄膜。本改进方法所使用的靶材是重量比不大于1.65wt.%的Cu2O粉末和不小于98.35wt.%的Li2CO3粉末热压合成的,通过Ar等离子轰击靶材来沉积出掺杂Cu的Li2CO3薄膜。
作为本发明的提升p型含氧金属化合物薄膜迁移率的方法,在掺杂的原子为Li或Cu的基础上的进一步改进,均使用衬底来沉积薄膜,并且在沉积过程中,控制衬底温度为180~220℃,沉积后还进行退火,设置退火温度为330~370℃。
本发明的提升p型含氧金属化合物薄膜迁移率的方法,其有益效果是:在p型含氧金属化合物薄膜上,掺杂一个或多个种类的原子,所掺杂的原子的最外围轨道能和氧2p轨道形成化学键,能提高价带顶部的散度和增加价带顶的斜率,进而减小空穴有效质量,故而能提升空穴迁移率。
附图说明
图1为2p轨道通过和2s轨道结合来降低能量势垒的示意图。
图2为掺杂原子的最外围3d10电子排布模型与O 2p轨道结合成键,增加价电带顶的离散度的示意图。
具体实施方式
以下结合附图对本发明的提升p型含氧金属化合物薄膜迁移率的方法的几种实施方式进行具体说明。
一种提升p型含氧金属化合物薄膜迁移率的方法,通过在p型含氧金属化合物薄膜中掺杂原子,所掺杂的原子的最外围轨道能和氧2p轨道形成化学键,能提高价带顶部的散度和增加价带顶的斜率,故而能提高提升p型含氧金属化合物薄膜迁移率。
作为一种优选,所掺杂的原子的最外围轨道为2s或3s轨道,例如,所掺杂的原子为Li,Li的最外层具有2s轨道,将Li掺杂入p型含氧金属化合物薄膜中,Li的2s轨道和O的2p轨道能够结合成键。如图1所示,未掺杂的p型含氧金属化合物薄膜,其价带由氧2p轨域构成,原本狭长的2p轨道间空穴传输必须通过跳跃到临近的轨道(路径1),这之间涉及较高的能量势垒,有了球型的2s轨道的加入后,减少跳跃的能量势垒(路径2),起到减少空穴束缚的作用,增加迁移率。
实施例1:所掺杂的原子为Li,设定所述p型含氧金属化合物薄膜是Cu2O薄膜。本方法使用原子层沉积系统,配备CH3LiO和C22H38CuO4前驱金属源,以及配备O2等离子源,调整CH3LiO和C22H38CuO4的流量比,以控制Li的掺杂量,沉积出掺杂Li的氧化亚铜薄膜。优选设置CH3LiO和C22H38CuO4的流量比为1:6。本实施例中,使用衬底来沉积薄膜,并且在沉积过程中,控制衬底温度为180~220℃,沉积后还进行退火,设置退火温度为330~370℃,具体所使用的参数如表1。
具体实验步骤包括:首先以去离子水、异丙醇、酒精、去离子水的顺序清洗玻璃衬底,清洗后以氮气吹干,放入70摄氏度的烘箱烘干,之后取出衬底放入原子层沉积系统准备沉积薄膜。原子层沉积系统先进行抽真空,然后将氮气作为载气通入CH3LiO和C22H38CuO4金属源瓶里,进而把金属源的蒸汽分子带向沉积腔体,通气时间为3s,衬底因此暴露在金属源之中。然后,关闭金属源通道,以纯氮气冲洗腔体,此过程为对金属源清扫,时间为6s。通入氧气、氩气和RF电源产生氧等离子体,功率为2500W,衬底暴露在氧等离子体之中。之后再把氧气、氩气通道和RF电源关闭,以氮气冲洗腔体,此过程为对氧气清扫,时间为30s。以上为一个原子层沉积循环,可沉积一个含氧金属化合物单分子层,重复此循环直到所需的薄膜厚度。之后取出试片并放到一退火炉之中,在大气氛围下退火,退火温度350℃,退火时间可选择1~10min。相关的参数如表1。
表1实施例1原子层沉积参数表
Figure BDA0003626612350000051
Figure BDA0003626612350000061
试验例1:利用霍尔效应量测的电性如下表2,表2中“Cu2O(未掺杂)”是指在和实施例1同样实验条件下(但不通入CH3LiO前驱源)得到的Cu2O薄膜,“Li掺杂Cu2O”是指实施例1制备得到的掺杂Li的氧化亚铜薄膜。对比两者的迁移率数据,可知Li的掺入能提升氧化亚铜薄膜的空穴迁移率。
表2未掺杂Li和掺杂Li的氧化亚铜薄膜的迁移率对比
迁移率(cm2V-1s-1)
Cu2O(未掺杂) 22
Li掺杂Cu2O 80
实施例2:所掺杂的原子为Li,利用磁控溅射法,将Li掺入Cu2O,包括将重量比30wt.%Li2CO3粉末和70wt.%Cu2O粉末热压成一个靶材,通过Ar等离子轰击靶材来沉积出掺杂Li的氧化亚铜薄膜。本实施例中,使用衬底来沉积薄膜,并且在沉积过程中,控制衬底温度为180~220℃,沉积后还进行退火,设置退火温度为330~370℃,具体所使用的参数如表3。
具体实验过程为:将靶材放到磁控溅射系统的靶材座上,将经过去离子水、异丙醇、乙醇清洗并烘干后的玻璃衬底,放入溅射系统的沉积腔体的载台座上,抽真空到1e-6torr以下时,通入氩气并将压力设定为5e-3torr,待压力稳定后打开RF电源,这时候产生氩等离子体,其中的氩离子将撞击靶材,将靶材原子撞击出来,沉积在衬底,形成所需的含氧金属化合物薄膜。沉积结束后,关闭RF电源及气体。之后取出试片并放入退火炉,在大气氛围下退火,退火温度350℃,退火时间可选择1~10min。相关参数如表3。
表3实施例2磁控溅射沉积参数表
Figure BDA0003626612350000071
试验例2:利用霍尔效应量测的电性如下表2,表4中“Cu2O(未掺杂)”是指在和实施例2同样实验条件下(靶材是100%的Cu2O)得到的Cu2O薄膜,“Li掺杂Cu2O”是指实施例2制备得到的掺杂Li的氧化亚铜薄膜。对比两者的迁移率数据,可知Li的掺入能提升氧化亚铜薄膜的空穴迁移率。
表4未掺杂Li和掺杂Li的氧化亚铜薄膜的迁移率对比
迁移率(cm2V-1s-1)
Cu2O(未掺杂) 7
Li掺杂Cu2O 44
作为另一种优选,所掺杂的原子的最外围轨道具有3d10电子排布模型。例如,所掺杂的原子为Cu。如图2所示,掺杂最外层具有3d10电子排布的原子,其轨道能量与O 2p相近,因此容易结合成键,增加价电带顶的离散度,进而减小空穴有效质量,提升空穴迁移率。
实施例3:掺杂的原子为Cu,利用磁控溅射法得到Cu掺杂的Li2CO3薄膜。Cu最外围轨道具有3d10电子排布和O 2p轨道耦合,Cu作为供电子基团,O作为吸电子基团,通过相互作用形成化学键,提高价带顶的散度,因此增加了迁移率。本实施例所使用的靶材是重量比不大于1.65wt.%的Cu2O粉末和不小于98.35wt.%的Li2CO3粉末热压合成的,通过Ar等离子轰击靶材来沉积出掺杂Cu的Li2CO3薄膜。研究发现,如果薄膜中的Cu比例超过某一个值时,过多的Cu会以Cu 3d9的形式存在,达不到Cu 3d10的电子填充效果,Cu 3d10的含量有限制,不同的制备方式可能有不一样的Cu临界值。在本实施例中,靶材中Cu的比例不能超过1.65wt.%,如此沉积的薄膜的Cu大部分以3d10形式存在。
本实施例3中,使用衬底来沉积薄膜,并且在沉积过程中,控制衬底温度为180~220℃,沉积后还进行退火,设置退火温度为330~370℃,具体所使用的参数如表5。
具体实验过程为:将靶材放到磁控溅射系统的靶材座上,将经过去离子水、异丙醇、乙醇清洗并烘干后的玻璃衬底,放入溅射系统的沉积腔体的载台座上,抽真空到1e-6torr以下时,通入氩气并将压力设定为5e-3torr,待压力稳定后打开RF电源,这时候产生氩等离子体,其中的氩离子将撞击靶材,将靶材原子撞击出来,沉积在衬底,形成所需的含氧金属化合物薄膜。沉积结束后,关闭RF电源及气体。之后取出试片并放入退火炉,在大气氛围下退火,退火温度350℃,退火时间可选择1~10min。相关参数如表5。
表5实施例3磁控溅射沉积参数表
Figure BDA0003626612350000091
试验例3:利用霍尔效应量测的电性如下表6,表6中“Li2CO3(未掺杂)”是指在和实施例3同样实验条件下(但靶材是100%的Li2CO3)得到的Li2CO3薄膜,“Cu掺杂Li2CO3”是指实施例3制备得到的掺杂Cu的碳酸锂薄膜。对比两者的迁移率数据,可知Cu的掺入能提升碳酸锂薄膜的空穴迁移率。
表6未掺杂Cu和掺杂Cu的碳酸锂薄膜的迁移率对比
迁移率(cm2V-1s-1)
Li2CO3(未掺杂) 3
Cu掺杂Li2CO3 40
上述的具体实施方式只是示例性的,是为了更好的使本领域技术人员能够理解本发明,不能理解为是对本发明要求保护范围的限制;只要是根据本发明所揭示精神所作的任何等同变更或修饰,均落入本发明要求保护的范围。

Claims (3)

1.一种提升p型含氧金属化合物薄膜迁移率的方法,其特征在于:通过在p型含氧金属化合物薄膜中掺杂原子,所掺杂的原子的最外围轨道能和氧2p轨道形成化学键,能提高价带顶部的散度和增加价带顶的斜率;其中,所掺杂的原子为Li;所述p型含氧金属化合物薄膜是Cu2O薄膜;本方法使用原子层沉积系统,配备CH3LiO和C22H38CuO4前驱金属源,以及配备O2等离子源,调整CH3LiO和C22H38CuO4的流量比,以控制Li的掺杂量,沉积出掺杂Li的氧化亚铜薄膜;或者,
利用磁控溅射法,将Li掺入Cu2O,包括将重量比30 wt.% Li2CO3粉末和70 wt.% Cu2O粉末热压成一个靶材,通过Ar等离子轰击靶材来沉积出掺杂Li的氧化亚铜薄膜;或者,
所掺杂的原子为Cu;利用磁控溅射法得到Cu掺杂的 Li2CO3薄膜,其所使用的靶材是重量比不大于1.65 wt.%的Cu2O粉末和不小于98.35 wt.%的 Li2CO3粉末热压合成的,通过Ar等离子轰击靶材来沉积出掺杂Cu的 Li2CO3薄膜。
2.根据权利要求1所述的提升p型含氧金属化合物薄膜迁移率的方法,其特征在于:设置CH3LiO和C22H38CuO4的流量比为1:6。
3.根据权利要求1所述的提升p型含氧金属化合物薄膜迁移率的方法,其特征在于:使用衬底来沉积薄膜,并且在沉积过程中,控制衬底温度为180~220℃,沉积后还进行退火,设置退火温度为330~370℃。
CN202210478170.5A 2022-05-05 2022-05-05 一种提升p型含氧金属化合物薄膜迁移率的方法 Active CN114875380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210478170.5A CN114875380B (zh) 2022-05-05 2022-05-05 一种提升p型含氧金属化合物薄膜迁移率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210478170.5A CN114875380B (zh) 2022-05-05 2022-05-05 一种提升p型含氧金属化合物薄膜迁移率的方法

Publications (2)

Publication Number Publication Date
CN114875380A CN114875380A (zh) 2022-08-09
CN114875380B true CN114875380B (zh) 2023-05-23

Family

ID=82673550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210478170.5A Active CN114875380B (zh) 2022-05-05 2022-05-05 一种提升p型含氧金属化合物薄膜迁移率的方法

Country Status (1)

Country Link
CN (1) CN114875380B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772974A (zh) * 2005-10-26 2006-05-17 浙江大学 一种Li-N共掺杂生长p型ZnO晶体薄膜的方法
CN105779939A (zh) * 2016-03-24 2016-07-20 陕西师范大学 一种低电阻率、高载流子浓度的p型氧化铜薄膜的制备方法
CN107119258A (zh) * 2017-05-23 2017-09-01 鲁东大学 p型掺杂氧化镓薄膜及其制备方法
CN107834067A (zh) * 2017-07-18 2018-03-23 郑观情 一种Cu,Er共掺杂复合电极材料及其制备方法
CN111082039A (zh) * 2019-11-29 2020-04-28 湖北宇电能源科技股份有限公司 掺杂氧化亚铜锂离子电池负极材料及其制备方法、应用和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772974A (zh) * 2005-10-26 2006-05-17 浙江大学 一种Li-N共掺杂生长p型ZnO晶体薄膜的方法
CN105779939A (zh) * 2016-03-24 2016-07-20 陕西师范大学 一种低电阻率、高载流子浓度的p型氧化铜薄膜的制备方法
CN107119258A (zh) * 2017-05-23 2017-09-01 鲁东大学 p型掺杂氧化镓薄膜及其制备方法
CN107834067A (zh) * 2017-07-18 2018-03-23 郑观情 一种Cu,Er共掺杂复合电极材料及其制备方法
CN111082039A (zh) * 2019-11-29 2020-04-28 湖北宇电能源科技股份有限公司 掺杂氧化亚铜锂离子电池负极材料及其制备方法、应用和锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谢思思 ; 王真真 ; 千志科 ; .Cu_2O掺杂技术研究进展.时代农机.2017,(05),全文. *

Also Published As

Publication number Publication date
CN114875380A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
Vanalakar et al. A review on pulsed laser deposited CZTS thin films for solar cell applications
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
KR101869337B1 (ko) 황화주석 박막 및 그 형성 방법, 박막 태양전지 및 그 제조방법
CN110767745A (zh) 复合金属氧化物半导体及薄膜晶体管与应用
De et al. A study of the structural and electronic properties of magnetron sputtered tin oxide films
JP3897622B2 (ja) 化合物半導体薄膜の製造方法
CN109768165B (zh) 一种钙钛矿太阳能电池及其制备方法
WO2009114362A1 (en) Thin film metal oxynitride semiconductors
KR20120004352A (ko) Cigs박막의 제조방법
US20190245103A1 (en) Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
CN112582466A (zh) 一种金属氧化物半导体及薄膜晶体管与应用
CN112289863A (zh) 一种金属氧化物半导体及薄膜晶体管与应用
Pham et al. Effects of substrate temperature on characteristics of the p-type Ag-doped SnOx thin films prepared by reactive DC magnetron sputtering
CN109082631B (zh) 一种Ga2O3基透明导电薄膜及其制备方法
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
CN114875380B (zh) 一种提升p型含氧金属化合物薄膜迁移率的方法
JP3519543B2 (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN109616533B (zh) 一种晶硅异质结太阳电池及其制备方法
KR20090044027A (ko) Ci(g)s 태양전지 후면 전극의 제조방법
CN107910394A (zh) 一种碲化镉薄膜太阳能电池的吸收层掺硒工艺
CN111969067A (zh) 一种氧化铟薄膜晶体管及其制备方法
KR20150051151A (ko) Czts계 태양전지용 박막의 제조방법
Bayhan et al. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS= CdTe Heterojunction Devices
Naseem et al. The influence of deposition parameters on the optical and electrical properties of rf-sputter-deposited indium tin oxide films
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant