CN114874960A - 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用 - Google Patents

一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用 Download PDF

Info

Publication number
CN114874960A
CN114874960A CN202210498491.1A CN202210498491A CN114874960A CN 114874960 A CN114874960 A CN 114874960A CN 202210498491 A CN202210498491 A CN 202210498491A CN 114874960 A CN114874960 A CN 114874960A
Authority
CN
China
Prior art keywords
bacillus licheniformis
gene
promoter
artificial sequence
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210498491.1A
Other languages
English (en)
Other versions
CN114874960B (zh
Inventor
陈守文
占杨杨
周飞
尹昊
许海霞
蔡冬波
马昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202210498491.1A priority Critical patent/CN114874960B/zh
Publication of CN114874960A publication Critical patent/CN114874960A/zh
Application granted granted Critical
Publication of CN114874960B publication Critical patent/CN114874960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01012Prephenate dehydrogenase (1.3.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01001Pyruvate decarboxylase (4.1.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明本发明属于微生物基因工程技术领域,具体涉及一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用。申请人在地衣芽胞杆菌中引入来源乳酸乳球菌的酮酸脱羧酶基因在此基础上缺失丙酮酸激酶基因酪氨酸/苯丙氨酸转氨酶基因醛脱氢酶基因;进一步敲除醇脱氢酶基因;再整合表达来源于大肠杆菌的预苯酸脱氢酶基因tyrA fbr ,最后以PbacA启动子置换莽草酸途径中莽草酸激酶基因aroK和3‑脱氧‑δ‑阿拉伯糖庚酮糖‑7‑磷酸合成酶基因aroA启动子,获得酪醇生产能力大幅度提高的重组地衣芽胞杆菌。本发明所构建的大肠杆菌基因工程菌利用葡萄糖或甘油等廉价原料可生产10 g/L的酪醇,具有良好的产业化前景。

Description

一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用
技术领域
本发明属于微生物基因工程技术领域,具体涉及一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用。
背景技术
酪醇又叫对羟基苯乙醇,是一种天然的抗氧化剂。酪醇天然存在于橄榄油中,也是羟基酪醇和红景天苷等物质的前体。酪醇具有抗氧化、抗疲劳、保护心血管等功能,在化妆品、食品、保健品和医疗行业有广泛的应用前景。
酪醇制备方法主要是天然材料提取法和化学法合成法。天然材料提取酪醇主要是通过橄榄或橄榄油制备过程中产生的废水中提取分离纯化获得,尽管材料价格低廉,但生产的酪醇回收率和纯度低,对环境污染大。化学合成法主要利用与酪醇结构相似的底物如对羟基苯乙烯、对羟基苯乙胺等合成酪醇,但生产原料价格昂贵,且在生产过程中会产生对环境有害物质,反应条件苛刻,纯化工艺复杂不适合大规模工业化生产。因此,生物法合成酪醇已经成为研究热点。
目前,多项专利及文章成功构建了生产酪醇的重组大肠杆菌或者重组酵母。强化前体PEP和E4P的供给是提高酪醇的很好策略:包括敲除丙酮酸激酶基因,过表达磷酸烯醇丙酮酸合酶基因(ppsA),强化表达转酮醇酶基因tkt可以提高进入莽草酸途径的PEP和E4P的供给(申请号:CN201711054680.5)。解除莽草酸途径反馈调控作用是非常重要的策略:大肠杆菌的酪氨酸合成途径中有两个关键限制酶。DAHP合酶作为其中之一,有3种DAHP合酶存在于大肠杆菌中,分别为AroH、AroG、AroF,受到色氨酸、酪氨酸、苯丙氨酸的反馈抑制(LiuS.,Zhang L.,Mao J.,Ding Z.,Shi G.Metabolic engineering of Escherichia colifor the production of phenylpyruvate derivatives.2016.Metabolic Engineering,32:55-65)。通过改造蛋白AroG,获得的突变体可以解除酪氨酸对AroG基因的反馈抑制,增强了莽草酸途径的碳通量,分支酸变位酶/预苯酸脱水酶(TyrA)是另一个关键酶,并受到酪氨酸的反馈抑制,过表达突变体基因tyrAfbr可以提高酪氨酸的积累,从而可以提高酪醇产量。莽草酸激酶的表达通常会收到酪氨酸,苯丙氨酸等的反馈阻遏,因此,提高莽草酸激酶的表达可以解除芳香族氨基酸的反馈阻遏作用(Kim,B.,Binkley,R.,Kim,H.U.and Lee,S.Y.,2018.Metabolic engineering of Escherichia coli for the enhancedproduction of L-tyrosine.Biotechnology and Bioengineering,115(10):2554-2564;申请号:CN201711054680.5)。大肠杆菌等微生物天然不能合成酪醇,需要异源引入关键酶才能合成酪醇,其中引入艾利希途径是实现酪醇合成的一种策略。在大肠杆菌中引入来源酵母菌的酮酸脱羧酶可实现酪醇的合成。酪醇合成存在竞争途径,包括酪氨酸合成途径和4-羟基苯乙酸合成途径,通过敲除酪氨酸转氨酶TyrB和醛脱氢酶FeaB可以提高酪醇的产量(Xu,W.,Yang,C.,Xia,Y.,Zhang,L.,Liu,C.,Yang,H.,Shen,W.and Chen,X.,2020.High-Level production of tyrosol with noninduced recombinant Escherichia coli bymetabolic engineering.Journal of Agricultural and Food Chemistry,68(16):4616-4623)。目前大肠杆菌酪醇耐受性低,大肠杆菌伴随着内毒素的积累,而酵母的发酵周期长,导致从头合成酪醇的产量低,因此利用大肠杆菌或者酵母作为生产菌株具有一定的局限性。研究一种高效,低成本的生物法合成酪醇的生产方法十分有必要的。
地衣芽胞杆菌是一种溶剂耐受菌株,被用于合成乙偶姻,2,3-丁二醇等有机溶剂,然而目前尚未见报道利用地衣芽胞杆菌作为细胞工厂合成酪醇。
本发明首次发现敲除醛脱氢酶编码基因dhaS和醇脱氢酶编码基因adhA是可以有效提高酪醇的产量。上述基因功能对酪醇合成的影响是本发明中首次发现的,未见文献报道。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于提供一株发酵法生产酪醇的地衣芽胞杆菌,该菌株为基因工程菌,在地衣芽胞杆菌中引入来源乳酸乳球菌的酮酸脱羧酶基因kivD;在此基础上缺失地衣芽胞杆菌的丙酮酸激酶基因pyk,酪氨酸/苯丙氨酸转氨酶基因hisC和醛脱氢酶基因dhaS,进一步敲除醇脱氢酶基因adhA;再整合表达来源于大肠杆菌的预苯酸脱氢酶基因tyrAfbr,最后以PbacA启动子置换了地衣芽胞杆菌莽草酸途径中莽草酸激酶基因aroK和3-脱氧-δ-阿拉伯糖庚酮糖-7-磷酸合成酶基因的aroA启动子,最终获得异源高效合成酪醇的地衣芽胞杆菌重组菌株。
本发明的另一个目的在于提供了发酵法生产酪醇的地衣芽胞杆菌的制备方法。
本发明的最后的目的是提供发酵法生产酪醇的地衣芽胞杆菌在生产酪醇中的应用。
为了解决上述问题,本发明的技术方案为:
发酵法生产酪醇的地衣芽胞杆菌的获得:
在地衣芽胞杆菌中引入来源乳酸乳球菌的酮酸脱羧酶基因kivD;在此基础上缺失丙酮酸激酶基因pyk,酪氨酸/苯丙氨酸转氨酶基因hisC和醛脱氢酶基因dhaS,进一步敲除醇脱氢酶基因adhA;再整合表达来源于大肠杆菌的预苯酸脱氢酶基因tyrAfbr,最后以PbacA启动子置换了莽草酸途径中莽草酸激酶基因aroK和3-脱氧-δ-阿拉伯糖庚酮糖-7-磷酸合成酶基因的aroA启动子,最终获得异源高效合成酪醇的地衣芽胞杆菌重组菌株,所述的酮酸脱羧酶KivD的DNA序列为SEQ ID NO.1,翻译的蛋白质为SEQ ID NO.2所示,所述PbacA启动子的序列为SEQ ID NO.5所示,所述的预苯酸脱氢酶TyrAfbr的DNA序列为SEQ ID NO.3,翻译的蛋白质为SEQ ID NO.4所示,
以上所述的菌株,优选的,所述的地衣芽胞杆菌为地衣芽胞杆菌DW2(或称为地衣芽孢杆菌DW2,CN112226437A);
生产酪醇的地衣芽胞杆菌构建方法,包括下述步骤:
(1)kivD基因整合至地衣芽胞杆菌yvmC位点:以地衣芽胞杆菌DW2基因组DNA为模板,利用引物分别扩增yvmC的上下游同源臂和PbacA启动子;根据乳酸乳球菌基因组DNA为模板,扩增kivD基因;将yvmC上下游同源臂,PbacA启动子和kivD基因片段融合构建kivD表达盒;将其插入质粒T2中,构建kivD整合表达质粒T2-yvmC-kivD,导入地衣芽胞杆菌DW2中,通过同源重组获得kivD整合表达菌株DW-3;酮酸脱羧酶KivD编码的氨基酸序列为SEQ IDNO:2所示,所述PbacA启动子的序列为SEQ ID NO.5所示。
(2)敲除pyk、hisC和dhaS:以地衣芽胞杆菌DW2的基因组为模板,利用引物分别扩增丙酮酸激酶基因pyk片段的上下游同源臂,将上下游同源臂片段融合得到pyk敲除盒,将其插入质粒T2中,构建pyk敲除质粒T2-△-pyk,导入地衣芽胞杆菌DW-3中,通过同源重组获得pyk敲除菌株DW-4;酪氨酸/苯丙氨酸转氨酶基因hisC和醛脱氢酶基因dhaS敲除载体构建方法同pyk,并通过迭代敲除获得pyk,hisC和dhaS基因同时敲除的菌株DW-6;
(3)敲除醇脱氢酶基因adhA:以地衣芽胞杆菌DW2的基因组为模板,利用引物分别扩增adhA片段的上下游同源臂,将上下游同源臂片段融合得到ahdA敲除盒,将其插入质粒T2中,构建adhA敲除质粒T2-△-adhA,导入地衣芽胞杆菌DW-6中,通过同源重组获得adhA敲除菌株DW-7;
(4)tyrAfbr整合至ldh位点:以大肠杆菌BL21(DE3)基因组为模板,通过引物扩增获得含tyrA基因突变的片段,融合得到含突变的tyrA基因序列tyrAfbr;以地衣芽胞杆菌DW2基因组为模板,利用引物扩增基因ldh上下游同源臂,利用引物扩增PbacA启动子,利用引物扩增tyrAfbr片段,将ldh上下游同源臂,PbacA启动子和tyrAfbr片段融合构建tyrAfbr表达盒;将其插入质粒T2中,构建tyrAfbr整合表达质粒T2-ldh-tyrAfbr,导入地衣芽胞杆菌DW-7中,通过同源重组获得tyrAfbr整合表达菌株DW-8;所述的预苯酸脱氢酶TyrAfbr编码的氨基酸序列为SEQ ID NO.4所示.
(5)aroK和aroA启动子替换为PbacA:以地衣芽胞杆菌DW2基因组为模板,利用引物扩增基因aroK启动子上下游同源臂,利用引物扩增PbacA启动子;将所述上下游同源臂片段,和PbacA启动子融合得到aroK启动子置换融合片段,插入T2质粒中,得到的载体T2-PbacA-aroK质粒,导入到DW-8中,得到重组aroK启动子置换菌株DW-9。aroA强化表达载体菌株构建方法同aroK启动子置换菌株,最终获得DW-10菌株。
现有技术中的已报道的地衣芽胞杆菌均可用于本发明。
本发明的保护内容还包括:发酵法生产酪醇的地衣芽胞杆菌在生产酪醇中的应用。
以上所述的应用中,优选的,是将本发明获得的重组地衣芽胞杆菌接种至酪醇发酵培养基中发酵制备酪醇,所述的酪醇发酵培养基为:30-100g/L的葡萄糖,1-20g/L蛋白胨,1-10g/L酵母粉,10-20g/LK2HPO4·3H2O,1-10g/L KH2PO,自然ph,其余为水。
与现有技术相比,本发明具有以下优点:
1.首次发现醛脱氢酶基因dhaS和adhA的功能,上述基因的敲除可以显著增加菌株发酵生产酪醇的产量。
2.本发明在地衣芽胞杆菌DW2中敲除了pyk,hisC,dhaS和adhA,提高了中心碳代谢,阻断了溢流代谢物的合成和酪醇的降解。
3.本发明在地衣芽胞杆菌中引入了异源的tyrAfbr,解除莽草酸途径的反馈抑制,提高了酪醇的产量。
4.本发明在地衣芽胞杆菌中强化表达内源aroK和aroA基因,在地衣芽胞杆菌中实现了酪醇的高效从头合成。
5.本发明结合现有技术及申请人自身探索,提供了一种新型且环境友好型酪醇生物制备方法,提高酪醇的产量。和大肠杆菌相比,地衣芽胞杆菌具有安全性好,产量稳定,抗染菌能力强等优点,适合大规模的工业生产;
附图说明
图1为地衣芽胞杆菌DW2,DW-8,DW-10发酵产物和酪醇标准品的HPLC检测结果;
其中A为地衣芽胞杆菌DW2的发酵产物中酪醇HPLC检测结果,B为地衣芽胞杆菌DW-8的发酵产物中酪醇HPLC检测结果,C为地衣芽胞杆菌DW-10的发酵产物中酪醇HPLC检测结果,D为酪醇标准品的HPLC检测结果。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
酪醇测定方法如下:
发酵液前处理:利用去离子水将发酵液稀释,离心除菌体,再经0.22μm水相滤膜过滤后采用高效液相色谱(HPLC)检测酪醇。测定条件具体为:使用Agilent 1260高效液相色谱仪,色谱柱为C18柱(4.6mm ID×250mm,5μm),流动相为甲醇:0.1%甲酸=2:8,流速0.6mL/min,柱温30℃,进样量10.0μL,检测波长为224nm,洗脱25min。根据酪醇标准品制作的标准曲线计算出发酵液中酪醇的含量。
本发明使用的地衣芽胞杆菌为地衣芽胞杆菌DW2(或称为地衣芽孢杆菌DW2,CN112226437A)。
下面结合实施例对本发明进一步说明:
实施例1:kivD整合表达菌株DW-3的构建:
步骤1:根据地衣芽胞杆菌DW2基因组DNA序列中yvmC的序列,设计引物(yvmC-AF、yvmC-AR、yvmC-BF、和yvmC-BR)扩增yvmC的上下游同源臂A(521bp)和B(553bp);根据地衣芽胞杆菌DW2的DNA序列中PbacA的序列,设计引物(PbacA-F和PbacA-R)扩增启动子PbacA(335bp);根据乳酸乳球菌DNA序列中kivD的序列(SEQ ID NO.1所示),设计引物(kivD-F和kivD-R)扩增kivD(1647bp);根据地衣芽胞杆菌DNA序列中TamyL的序列,设计引物(TamyL-F和TamyL-R)扩增TamyL(501bp);
其中,yvmC-AF、yvmC-AR、PbacA-F、PbacA-R、kivD-F、kivD-R、TamyL-F、TamyL-R、yvmC-BF和yvmC-BR的引物为:
yvmC-AF:ctgcagcccgggggatcccgcctgccttgtttttgt
yvmC-AR:tctcgccgaaatcgcaggtgatttcctccttaacgg
PbacA-F:ccgttaaggaggaaatcacctgcgatttcggcgaga
PbacA-kivD-R:atctcctactgtatacatataaaaattctccttttt
PbacA-kivD-F:aaaaaggagaatttttatatgtatacagtaggagat
KivD-TamyL-R:gaacaaaataaatcataaaagagcagagaggacgga
KivD-TamyL-F:tccgtcctctctgctcttttatgatttattttgttc
TamyL-R:tgattcatactcgttcctcgcaataatgccgtcgca
yvmC-BF:tgcgacggcattattgcgaggaacgagtatgaatca
yvmC-BR:gatcttttctacgagctctcaggcgcctgattcaaa
步骤2:通过重叠延伸PCR将yvmC上同源臂、PbacA、kivD、TamyL和yvmC下同源臂连接到一起(所用引物为yvmC-AF和yvmC-BR),构成目的基因片段(3557bp);
步骤3:设计引物(T2-T5-F和T2-T5-R),以质粒T2(2)-ori为模板扩增骨架;
步骤4:使用一步克隆试剂盒将步骤(2)和(3)得到的基因片段和线性质粒片段进行连接,通过氯化钙转化法将该连接产物转入大肠杆菌DH5α,在37℃的条件下经含有卡那抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证(所用引物为:T2-F和T2-R)。若在3757bp处出现电泳条带,说明敲除载体构建成功,上述转化子为阳性转化子,命名为整合载体T2::yvmC-kivD;
步骤5:将整合载体T2::yvmC-kivD转入地衣芽胞杆菌DW2中,在37℃的条件下、含有卡那青霉素抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证(所用引物为:T2-F和T2-R)。
步骤6:将步骤1得到的阳性转化子在45℃条件下、含有卡那青霉素抗性的培养基上转接培养3次,每次培养12h,并以T2-F与yvmC-YR为引物进行菌落PCR检测单交换菌株,扩增出3734bp长度的条带,即证明为单交换菌株;
其中yvmC-YF和yvmC-YR的序列为:
yvmC-YF:caacgatgcgaaaaaggc
yvmC-YR:ttaaatcatggccggggt
步骤7:将步骤2得到的单交换菌株接种培养,在37℃、不含有卡那青霉素的培养基中经过数次转接培养,挑转化子进行菌落PCR验证(引物为yvmC-YF和yvmC-YR)。若在3698bp处出现电泳条带时,说明kivD基因成功整合。随后针对阳性转化子进行DNA测序进一步验证,得到双交换成功的kivD整合菌株,即地衣芽胞杆菌DW-3。
实施例2:
pyk,hisC,dhaS基因敲除菌株DW-6的构建
(1)pyk敲除菌株的构建
步骤1:根据地衣芽胞杆菌基因组DNA序列中pyk的序列,设计引物(pyk-AF、pyk-AR、pyk-BF和pyk-BR)扩增pyk的上下游同源臂A(560bp)和B(541bp);
其中,pyk-AF、pyk-AR、pyk-BF、和pyk-BR的序列为:
pyk-AF:ctgcagcccgggggatccgggatacagctacatccc
pyk-AR:ttaaagtacgcttgcacgcggcccaattgtacaaact
pyk-BF:agtttgtacaattgggccgcgtgcaagcgtactttaa
pyk-BR:gatcttttctacgagctcgcggcagcctgctttttc
步骤2:通过重叠延伸PCR将A和B连接到一起(所用引物为pyk-AF和pyk-BR),构成目的基因片段(1101bp);
步骤3:设计引物(T2-T5-F和T2-T5-R),以质粒T2(2)-ori为模板扩增骨架;
其中,T2-T5-F和T2-T5-R的序列为:
T2-T5-F:ggatcccccgggctgcaggaattc
T2-T5-R:gagctcgtagaaaagatcaaagga
步骤4:使用一步克隆试剂盒将步骤(2)和(3)得到的基因片段和线性质粒片段进行连接,通过氯化钙转化法将该连接产物转入大肠杆菌DH5α,在37℃的条件下经含有卡那抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证(所用引物为:T2-F和T2-R)。若在1301bp处出现电泳条带,说明敲除载体构建成功,上述转化子为阳性转化子,命名为敲除载体T2△pyk;
其中,一步克隆试剂盒公司为诺唯赞;T2-F和T2-R的序列为:
T2-F:atgtgataactcggcgta
T2-R:gcaagcagcagattacgc
步骤5:将敲除载体T2△pyk转入地衣芽胞杆菌DW2中,在37℃的条件下、含有卡那青霉素抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证(所用引物为:T2-F和T2-R)。
步骤6:将步骤1得到的阳性转化子在45℃条件下、含有卡那青霉素抗性的培养基上转接培养3次,每次培养12h,并以T2-F与pyk-YR为引物进行菌落PCR检测单交换菌株,扩增出1308bp长度的条带,即证明为单交换菌株;
其中,pyk-YF和pyk-YR的序列为:
pyk-YF:ttctcggattgatcatgg
pyk-YR:aacggcttgacgactttc
步骤7:将步骤2得到的单交换菌株接种培养,在37℃、不含有卡那青霉素的培养基中经过数次转接培养,挑转化子进行菌落PCR验证(引物为pyk-YF和pyk-YR)。若在1345bp处出现电泳条带时,说明pyk基因成功敲除。随后针对阳性转化子进行DNA测序进一步验证,得到双交换成功的pyk敲除菌株,即地衣芽胞杆菌DW-4。
(2)利用上述(1)中的方法敲除地衣芽胞杆菌DW-4菌株中的hisC基因,获得地衣芽胞杆菌DW-5。
敲除hisC的引物
hisC-AF:ctgcagcccgggggatccaacggcgtcgtgttcagc
hisC-AR:gtaaaatgaggtgacagagaggtgatgattcagtca
hisC-BF:tgactgaatcatcacctctctgtcacctcattttac
hisC-BR:gatcttttctacgagctccttggcggtgaaatgaaa
hisC-YF:gtgcggaaagtggctgat
hisC-YR:acatgaacatcgtaaaagc
(3)利用上述(1)中的方法敲除地衣芽胞杆菌DW-5菌株中的dhaS基因,获得地衣芽胞杆菌DW-6。
敲除hisC的引物
dhaS-AF:ctgcagcccgggggatccgtgcgggtgtatgttcaa
dhaS-AR:atttcacgtccgagtccctcgggtgagttgtcttgg
dhaS-BF:ccaagacaactcacccgagggactcggacgtgaaat
dhaS-BR:gatcttttctacgagctcaataccaggaaccgacaa
dhaS-YF:accgcagcaggatgttct
dhaS-YR:cgcatttgctaaaccttc
实施例3:
adhA基因敲除菌株DW-7的构建
利用实施案例2中pyk基因敲除方法构建醇脱氢酶AdhA编码基因adhA敲除载体T2△adhA,adhA敲除载体T2△adhA电转化至地衣芽胞杆菌DW-6,通过单双交换获得adhA基因敲除菌株DW-7。
adhA敲除所用引物如下:
adhA-AF:ctgcagcccgggggatccagcagtgtagcacgataa
adhA-AR:gggaggcggaatctttccaatcatatgtaatacagagag
adhA-BF:ctctctgtattacatatgattggaaagattccgcctccc
adhA-BR:gatcttttctacgagctcccttaatggagggcggtcaa
adhA-YF:tcatgagtcctccgattc
adhA-YR:ttttatacgagcggtgac
实施例4:
tyrAfbr整合表达菌株DW-8的构建
(1)tyrAfbr整合表达菌株的构建
步骤1:根据地衣芽胞杆菌基因组DNA序列中ldh的序列,设计引物(ldh-AF、ldh-AR、ldh-BF、和ldh-BR)扩增ldh的上下游同源臂A(541bp)和B(533bp);根据枯草芽胞杆菌DNA序列中Pylb的序列,设计引物(Pylb-F和Pylb-R)扩增启动子Pylb(601bp);根据大肠杆菌DNA序列中tyrA的序列及tyrA的突变位点序列(SEQ ID NO.2所示),设计引物(TyrA-F和TyrA-R)扩增tyrAfbr(1122bp);根据地衣芽胞杆菌DNA序列中TamyL的序列,设计引物(TamyL-F和TamyL-R)扩增TamyL(501bp);
其中,ldh-AF、ldh-AR、Pylb-F、Pylb-R、TyrA-F、TyrA-R、TamyL-F、TamyL-R、ldh-BF和ldh-BR的序列为:
ldh-AF:ctgcagcccgggggatccccgacctgtgatggagat
ldh-AR:ggagcgcgttcgacgatgcatattgtgcaatacttc
Pylb-F:gaagtattgcacaatatgcatcgtcgaacgcgctcc
Pylb-R:ggtcaattcagcaaccatacaaatctccccctttgt
TyrA-F:acaaagggggagatttgtatggttgctgaattgacc
TyrA-R:tccgtcctctctgctcttaatgaaggtattgggctg
TamyL-F:cagcccaataccttcattaagagcagagaggacgga
TamyL-R:aacagattcccaaacggacgcaataatgccgtcgca
ldh-BF:tgcgacggcattattgcgtccgtttgggaatctgtt
ldh-BR:gatcttttctacgagctctcaagcctcccatctgtg
ldh-YF:catatcagcggaatcatc
ldh-YR:ccgcttaatacaaggaga。
步骤2:通过重叠延伸PCR将A、Pylb、tyrAfbr、TamyL和B连接到一起(所用引物为ldh-AF和ldh-BR),构成目的基因片段(3298bp);
步骤3:设计引物(T2-T5-F和T2-T5-R),以质粒T2(2)-ori为模板扩增骨架;
步骤4:使用一步克隆试剂盒将步骤(2)和(3)得到的基因片段和线性质粒片段进行连接,通过氯化钙转化法将该连接产物转入大肠杆菌DH5α,在37℃的条件下经含有卡那抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证(所用引物为:T2-F和T2-R)。若在3498bp处出现电泳条带,说明敲除载体构建成功,上述转化子为阳性转化子,命名为整合载体T2::ldh-tyrAfbr
步骤5:将整合载体T2::ldh-tyrAfbr转入地衣芽胞杆菌DW-7中;将得到的阳性转化子在45℃条件下进行单双交换,获得tyrAfbr整合菌株,即地衣芽胞杆菌DW-8。
实施例5:
aroK和aroA强化表达菌株的构建
(1)aroK启动子置换菌株的构建
利用引物扩增aroK启动子上下游500bp序列,分别作为上下同源臂,以地衣芽胞杆菌DW2基因组DNA为模板扩增PbacA启动子序列,将上同源臂,启动子和下同源臂进行融合,设计引物(T2-T5-F和T2-T5-R),以质粒T2(2)-ori为模板扩增骨架;使用一步克隆试剂盒将融合片段和线性质粒片段进行连接,转化大肠杆菌DH5α感受态细胞中,通过PCR验证,测序分析,分别获得重组质粒T2(2)-PbacA-aroK。将重组质粒电转至地衣芽胞杆菌DW-8中,进行同源重组交换,筛选验证,获得启动子置换aroK启动子菌株DW-9。
ParoK-AF:ctgcagcccgggggatccgtaggctcatttgctgat
PbacA(aroK)-AR:aatctcgccgaaatcgcaggctatttccaccagtcgtcaa
PbacA(aroK)-F:ttgacgactggtggaaatagcctgcgatttcggcgagatt
PbacA(aroK)-R:tctcattgcggcattcatataaaaattctcctttttgat
PbacA(aroK)-BF:atcaaaaaggagaatttttatatgaatgccgcaatgaga
ParoK-BR:gatcttttctacgagctcctttcaagttgtggaatg
ParoK-YF:aggcgttcaggcggaatt
ParoK-YR:gacacagcgatagaaaca。
(2)AroA启动子置换菌株构建
利用引物扩增aroA启动子上下游500bp序列,分别作为上下同源臂,以地衣芽胞杆菌DW2基因组DNA为模板扩增PbacA启动子序列,将上同源臂,启动子和下同源臂进行融合,设计引物(T2-T5-F和T2-T5-R),以质粒T2(2)-ori为模板扩增骨架;使用一步克隆试剂盒将融合片段和线性质粒片段进行连接,转化大肠杆菌DH5α感受态细胞中,通过PCR验证,测序分析,分别获得重组质粒T2(2)-PbacA-aroA。将重组质粒电转至地衣芽胞杆菌DW-9中,进行同源重组交换,筛选验证,获得启动子置换aroA启动子菌株DW-10。
ParoA-AF:ctgcagcccgggggatccgaagtggacgcacatttc
PbacA(aroA)-AR:tctcgccgaaatcgcagggttatccatcctttcttt
PbacA(aroA)-F:aaagaaaggatggataaccctgcgatttcggcgaga
PbacA(aroA)-R:aagttcagtgttgctcatataaaaattctccttttt
PbacA(aroA)-BF:aaaaaggagaatttttatatgagcaacactgaactt
ParoA-BR:gatcttttctacgagctccaacacgctttaagattt
ParoA-YF:gttgacgcacgcttcgtt
ParoA-YR:attgatgaattccttcag
实施例6:
重组地衣芽胞杆菌酪醇发酵
种子发酵:平板上活化地衣芽胞杆菌DW2、DW-3、DW4、DW5、DW-6、DW-7、DW-8和DW-10,挑菌接至分别接种至含有50mL液体LB的250mL三角瓶中,37℃,230rpm培养13h。然后随后以2%(体积比)的接种量接种至不同发酵培养基中(如表1所示);
酪醇发酵培养基为:30-100g/L的葡萄糖,1-20g/L蛋白胨,1-10g/L酵母粉,10-20g/LK2HPO4·3H2O,1-10g/L KH2PO4,自然ph,其余为水。
37℃,230rpm培养24-72h,发酵结束后测定酪醇产量,培养基的具体配方请见表1。
结果表明,对照菌株DW2不能合成酪醇,引入乳酸乳球来源的酮酸脱羧酶基因kivD后实现酪醇的合成;通过敲除丙酮酸激酶基因pyk和酪氨酸/苯丙氨酸转氨酶基因hisC,酪醇产量大幅度提升;首次发现敲除醛脱氢酶基因dhaS和醇脱氢酶基因adhA可以显著提高酪醇的积累。引入来源于大肠杆菌的预苯酸脱氢酶基因tyrAfbr大幅度提高酪醇的产量;最后以强启动子PbacA置换莽草酸途径中莽草酸激酶基因aroK和3-脱氧-δ-阿拉伯糖庚酮糖-7-磷酸合成酶基因aroA启动子获得重组菌株DW-10,酪醇产量最高,可达10.5g/L(表2)。
表1不同培养基配方
葡萄糖g/L 蔗糖g/L 淀粉g/L 蛋白胨g/L 酵母粉g/L
培养基1 30 0 0 10 1
培养基2 40 0 0 10 5
培养基3 50 0 0 10 1
培养基4 0 30 0 10 2
培养基5 0 40 0 10 3
培养基6 0 50 0 10 5
培养基7 0 0 30 10 1
培养基8 0 0 40 10 3
培养基9 0 0 50 10 5
表2不同菌株在不同培养基中酪醇的产量
Figure BDA0003633804500000111
Figure BDA0003633804500000121
序列表
<110> 湖北大学
<120> 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用
<160> 73
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1647
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtatacag taggagatta cctattagac cgattacacg agttaggaat tgaagaaatt 60
tttggagtcc ctggagacta taacttacaa tttttagatc aaattatttc ccgcaaggat 120
atgaaatggg tcggaaatgc taatgaatta aatgcttcat atatggctga tggctatgct 180
cgtactaaaa aagctgccgc atttcttaca acctttggag taggtgaatt gagtgcagtt 240
aatggattag caggaagtta cgccgaaaat ttaccagtag tagaaatagt gggatcacct 300
acatcaaaag ttcaaaatga aggaaaattt gttcatcata cgctggctga cggtgatttt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagctc gaactttact gacagcagaa 420
aatgcaaccg ttgaaattga ccgagtactt tctgcactat taaaagaaag aaaacctgtc 480
tatatcaact taccagttga tgttgctgct gcaaaagcag agaaaccctc actccctttg 540
aaaaaagaaa actcaacttc aaatacaagt gaccaagaga tcttgaacaa aattcaagaa 600
agcttgaaaa atgccaaaaa accaatcgtg attacaggac atgaaataat tagttttggc 660
ttagaaaaaa cagtctctca atttatttca aagacaaaac tacctattac gacattaaac 720
tttggaaaaa gttcagttga tgaagctctc ccttcatttt taggaatcta taatggtaaa 780
ctctcagagc ctaatcttaa agaattcgtg gaatcagccg acttcatcct gatgcttgga 840
gttaaactca cagactcttc aacaggagcc ttcactcatc atttaaatga aaataaaatg 900
atttcactga atatagatga aggaaaaata tttaacgaaa gcatccaaaa ttttgatttt 960
gaatccctca tctcctctct cttagaccta agcgaaatag aatacaaagg aaaatatatc 1020
gataaaaagc aagaagactt tgttccatca aatgcgcttt tatcacaaga ccgcctatgg 1080
caagcagttg aaaacctaac tcaaagcaat gaaacaatcg ttgctgaaca agggacatca 1140
ttctttggcg cttcatcaat tttcttaaaa ccaaagagtc attttattgg tcaaccctta 1200
tggggatcaa ttggatatac attcccagca gcattaggaa gccaaattgc agataaagaa 1260
agcagacacc ttttatttat tggtgatggt tcacttcaac ttacggtgca agaattagga 1320
ttagcaatca gagaaaaaat taatccaatt tgctttatta tcaataatga tggttataca 1380
gtcgaaagag aaattcatgg accaaatcaa agctacaatg atattccaat gtggaattac 1440
tcaaaattac cagaatcatt tggagcaaca gaagaacgag tagtctcgaa aatcgttaga 1500
actgaaaatg aatttgtgtc tgtcatgaaa gaagctcaag cagatccaaa tagaatgtac 1560
tggattgagt tagttttggc aaaagaagat gcaccaaaag tactgaaaaa aatgggcaaa 1620
ctatttgctg aacaaaataa atcataa 1647
<210> 2
<211> 548
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly
1 5 10 15
Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu
20 25 30
Asp Gln Ile Ile Ser Arg Lys Asp Met Lys Trp Val Gly Asn Ala Asn
35 40 45
Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys
50 55 60
Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val
65 70 75 80
Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile
85 90 95
Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His
100 105 110
His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu
115 120 125
Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val
130 135 140
Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val
145 150 155 160
Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro
165 170 175
Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln
180 185 190
Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro
195 200 205
Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr
210 215 220
Val Ser Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn
225 230 235 240
Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile
245 250 255
Tyr Asn Gly Lys Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser
260 265 270
Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr
275 280 285
Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn
290 295 300
Ile Asp Glu Gly Lys Ile Phe Asn Glu Ser Ile Gln Asn Phe Asp Phe
305 310 315 320
Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys
325 330 335
Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala
340 345 350
Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln
355 360 365
Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala
370 375 380
Ser Ser Ile Phe Leu Lys Pro Lys Ser His Phe Ile Gly Gln Pro Leu
385 390 395 400
Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile
405 410 415
Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu
420 425 430
Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn
435 440 445
Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu
450 455 460
Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr
465 470 475 480
Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Glu Arg Val Val Ser
485 490 495
Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala
500 505 510
Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Val Leu Ala Lys
515 520 525
Glu Asp Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu
530 535 540
Gln Asn Lys Ser
545
<210> 3
<211> 1122
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggttgctg aattgaccgc attacgcgat caaattgatg aagtcgataa agcgctgctg 60
aatttattag cgaagcgtct ggaactggtt gctgaagtgg gcgaggtgaa aagccgcttt 120
ggactgccta tttatgttcc ggagcgcgag gcatctatct tggcctcgcg tcgtgcagag 180
gcggaagctc tgggtgtacc gccagatctg attgaggatg ttttgcgtcg ggtgatgcgt 240
gaatcttact ccagtgaaaa cgacaaagga tttaaaacac tttgtccgtc actgcgtccg 300
gtggttatcg tcggcggtgg cggtcagatg ggacgcctgt tcgagaagat gctgaccctc 360
tcgggttatc aggtgcggat tctggagcaa catgactggg atcgagcggc tgatattgtt 420
gccgatgccg gaatggtgat tgttagtgtg ccaatccacg ttactgagca agttattggc 480
aaattaccgc ctttaccgaa agattgtatt ctggtcgatc tggcatcagt gaaaaatggg 540
ccattacagg ccatgctggt ggcgcatgat ggtccggtgc tggggctaca cccgatgttc 600
ggtccggaca gcggtagcct ggcaaagcaa gttgtggtct ggtgtgatgg acgtaaaccg 660
gaagcatacc aatggtttct ggagcaaatt caggtctggg gcgctcggct gcatcgtatt 720
agcgccgtcg agcacgatca gaatatggcg tttattcagg cactgcgcca ctttgctact 780
tttgcttacg ggctgcacct ggcagaagaa aatgttcagc ttgagcaact tctggcgctc 840
tcttcgccga tttaccgcct tgagctggcg atggtcgggc gactgtttgc tcaggatccg 900
cagctttatg ccgacatcat tatgtcgtca gagcgtaatc tggcgttaat caaacgttac 960
tataagcgtt tcggcgaggc gattgagttg ctggagcagg gcgataagca ggcgtttatt 1020
gacagtttcc gcaaggtgga gcactggttc ggcgattacg tacagcgttt tcagagtgaa 1080
agccgcgtgt tattgcgtca ggcgaatgac aatcgccagt aa 1122
<210> 4
<211> 373
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Val Ala Glu Leu Thr Ala Leu Arg Asp Gln Ile Asp Glu Val Asp
1 5 10 15
Lys Ala Leu Leu Asn Leu Leu Ala Lys Arg Leu Glu Leu Val Ala Glu
20 25 30
Val Gly Glu Val Lys Ser Arg Phe Gly Leu Pro Ile Tyr Val Pro Glu
35 40 45
Arg Glu Ala Ser Ile Leu Ala Ser Arg Arg Ala Glu Ala Glu Ala Leu
50 55 60
Gly Val Pro Pro Asp Leu Ile Glu Asp Val Leu Arg Arg Val Met Arg
65 70 75 80
Glu Ser Tyr Ser Ser Glu Asn Asp Lys Gly Phe Lys Thr Leu Cys Pro
85 90 95
Ser Leu Arg Pro Val Val Ile Val Gly Gly Gly Gly Gln Met Gly Arg
100 105 110
Leu Phe Glu Lys Met Leu Thr Leu Ser Gly Tyr Gln Val Arg Ile Leu
115 120 125
Glu Gln His Asp Trp Asp Arg Ala Ala Asp Ile Val Ala Asp Ala Gly
130 135 140
Met Val Ile Val Ser Val Pro Ile His Val Thr Glu Gln Val Ile Gly
145 150 155 160
Lys Leu Pro Pro Leu Pro Lys Asp Cys Ile Leu Val Asp Leu Ala Ser
165 170 175
Val Lys Asn Gly Pro Leu Gln Ala Met Leu Val Ala His Asp Gly Pro
180 185 190
Val Leu Gly Leu His Pro Met Phe Gly Pro Asp Ser Gly Ser Leu Ala
195 200 205
Lys Gln Val Val Val Trp Cys Asp Gly Arg Lys Pro Glu Ala Tyr Gln
210 215 220
Trp Phe Leu Glu Gln Ile Gln Val Trp Gly Ala Arg Leu His Arg Ile
225 230 235 240
Ser Ala Val Glu His Asp Gln Asn Met Ala Phe Ile Gln Ala Leu Arg
245 250 255
His Phe Ala Thr Phe Ala Tyr Gly Leu His Leu Ala Glu Glu Asn Val
260 265 270
Gln Leu Glu Gln Leu Leu Ala Leu Ser Ser Pro Ile Tyr Arg Leu Glu
275 280 285
Leu Ala Met Val Gly Arg Leu Phe Ala Gln Asp Pro Gln Leu Tyr Ala
290 295 300
Asp Ile Ile Met Ser Ser Glu Arg Asn Leu Ala Leu Ile Lys Arg Tyr
305 310 315 320
Tyr Lys Arg Phe Gly Glu Ala Ile Glu Leu Leu Glu Gln Gly Asp Lys
325 330 335
Gln Ala Phe Ile Asp Ser Phe Arg Lys Val Glu His Trp Phe Gly Asp
340 345 350
Tyr Val Gln Arg Phe Gln Ser Glu Ser Arg Val Leu Leu Arg Gln Ala
355 360 365
Asn Asp Asn Arg Gln
370
<210> 5
<211> 335
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
cctgcgattt cggcgagatt caagcccggg tctaatctat ttttccttct tcggacgctt 60
caaaaattac ttttattata atcggaacag tgttttttag atcttttgat ctatttggtg 120
tttatcttgt ctcataaata catgtttaaa caatgtaaaa tataaaatat ccaattcata 180
aaaaattaac cattattaaa caatattcct atggaaaata atgattattt ttgataatct 240
gttttcacaa gacggaggtt caataaaaaa tcggtaaaag agcaactaca gaccaatatt 300
atggtgaata ttttatcaaa aaggagaatt tttat 335
<210> 6
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ctgcagcccg ggggatcccg cctgccttgt ttttgt 36
<210> 7
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tctcgccgaa atcgcaggtg atttcctcct taacgg 36
<210> 8
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ccgttaagga ggaaatcacc tgcgatttcg gcgaga 36
<210> 9
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atctcctact gtatacatat aaaaattctc cttttt 36
<210> 10
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aaaaaggaga atttttatat gtatacagta ggagat 36
<210> 11
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gaacaaaata aatcataaaa gagcagagag gacgga 36
<210> 12
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tccgtcctct ctgctctttt atgatttatt ttgttc 36
<210> 13
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgattcatac tcgttcctcg caataatgcc gtcgca 36
<210> 14
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
tgcgacggca ttattgcgag gaacgagtat gaatca 36
<210> 15
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
gatcttttct acgagctctc aggcgcctga ttcaaa 36
<210> 16
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
caacgatgcg aaaaaggc 18
<210> 17
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
ttaaatcatg gccggggt 18
<210> 18
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ctgcagcccg ggggatccgg gatacagcta catccc 36
<210> 19
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
ttaaagtacg cttgcacgcg gcccaattgt acaaact 37
<210> 20
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
agtttgtaca attgggccgc gtgcaagcgt actttaa 37
<210> 21
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
gatcttttct acgagctcgc ggcagcctgc tttttc 36
<210> 22
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
ggatcccccg ggctgcagga attc 24
<210> 23
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
gagctcgtag aaaagatcaa agga 24
<210> 24
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
atgtgataac tcggcgta 18
<210> 25
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
gcaagcagca gattacgc 18
<210> 26
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
ttctcggatt gatcatgg 18
<210> 27
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
aacggcttga cgactttc 18
<210> 28
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
ctgcagcccg ggggatccaa cggcgtcgtg ttcagc 36
<210> 29
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
gtaaaatgag gtgacagaga ggtgatgatt cagtca 36
<210> 30
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
tgactgaatc atcacctctc tgtcacctca ttttac 36
<210> 31
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
gatcttttct acgagctcct tggcggtgaa atgaaa 36
<210> 32
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
gtgcggaaag tggctgat 18
<210> 33
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
acatgaacat cgtaaaagc 19
<210> 34
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
ctgcagcccg ggggatccgt gcgggtgtat gttcaa 36
<210> 35
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
atttcacgtc cgagtccctc gggtgagttg tcttgg 36
<210> 36
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 36
ccaagacaac tcacccgagg gactcggacg tgaaat 36
<210> 37
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 37
gatcttttct acgagctcaa taccaggaac cgacaa 36
<210> 38
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 38
accgcagcag gatgttct 18
<210> 39
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 39
cgcatttgct aaaccttc 18
<210> 40
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 40
ctgcagcccg ggggatccag cagtgtagca cgataa 36
<210> 41
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 41
gggaggcgga atctttccaa tcatatgtaa tacagagag 39
<210> 42
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 42
ctctctgtat tacatatgat tggaaagatt ccgcctccc 39
<210> 43
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 43
gatcttttct acgagctccc ttaatggagg gcggtcaa 38
<210> 44
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 44
tcatgagtcc tccgattc 18
<210> 45
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 45
ttttatacga gcggtgac 18
<210> 46
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 46
ctgcagcccg ggggatcccc gacctgtgat ggagat 36
<210> 47
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
ggagcgcgtt cgacgatgca tattgtgcaa tacttc 36
<210> 48
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 48
gaagtattgc acaatatgca tcgtcgaacg cgctcc 36
<210> 49
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 49
ggtcaattca gcaaccatac aaatctcccc ctttgt 36
<210> 50
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 50
acaaaggggg agatttgtat ggttgctgaa ttgacc 36
<210> 51
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 51
tccgtcctct ctgctcttaa tgaaggtatt gggctg 36
<210> 52
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 52
cagcccaata ccttcattaa gagcagagag gacgga 36
<210> 53
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 53
aacagattcc caaacggacg caataatgcc gtcgca 36
<210> 54
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 54
tgcgacggca ttattgcgtc cgtttgggaa tctgtt 36
<210> 55
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 55
gatcttttct acgagctctc aagcctccca tctgtg 36
<210> 56
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 56
catatcagcg gaatcatc 18
<210> 57
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 57
ccgcttaata caaggaga 18
<210> 58
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 58
ctgcagcccg ggggatccgt aggctcattt gctgat 36
<210> 59
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 59
aatctcgccg aaatcgcagg ctatttccac cagtcgtcaa 40
<210> 60
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 60
ttgacgactg gtggaaatag cctgcgattt cggcgagatt 40
<210> 61
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 61
tctcattgcg gcattcatat aaaaattctc ctttttgat 39
<210> 62
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 62
atcaaaaagg agaattttta tatgaatgcc gcaatgaga 39
<210> 63
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 63
gatcttttct acgagctcct ttcaagttgt ggaatg 36
<210> 64
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 64
aggcgttcag gcggaatt 18
<210> 65
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 65
gacacagcga tagaaaca 18
<210> 66
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 66
ctgcagcccg ggggatccga agtggacgca catttc 36
<210> 67
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 67
tctcgccgaa atcgcagggt tatccatcct ttcttt 36
<210> 68
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 68
aaagaaagga tggataaccc tgcgatttcg gcgaga 36
<210> 69
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 69
aagttcagtg ttgctcatat aaaaattctc cttttt 36
<210> 70
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 70
aaaaaggaga atttttatat gagcaacact gaactt 36
<210> 71
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 71
gatcttttct acgagctcca acacgcttta agattt 36
<210> 72
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 72
gttgacgcac gcttcgtt 18
<210> 73
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 73
attgatgaat tccttcag 18

Claims (5)

1.一株生产酪醇的重组地衣芽胞杆菌,是在地衣芽胞杆菌中引入来源乳酸乳球菌的酮酸脱羧酶基因kivD;在此基础上缺失地衣芽胞杆菌的丙酮酸激酶基因pyk,酪氨酸/苯丙氨酸转氨酶基因hisC和醛脱氢酶基因dhaS,进一步敲除醇脱氢酶基因adhA;再整合表达来源于大肠杆菌的预苯酸脱氢酶基因tyrA fbr ,最后以PbacA启动子置换了地衣芽胞杆菌莽草酸途径中莽草酸激酶基因aroK和3-脱氧-δ-阿拉伯糖庚酮糖-7-磷酸合成酶基因的aroA启动子,最终获得重组地衣芽胞杆菌,所述的酮酸脱羧酶KivD编码的蛋白质为SEQ ID NO .2所示,所述PbacA启动子的为SEQ ID NO.5所示,所述的预苯酸脱氢酶TyrA fbr 编码的蛋白质为SEQ ID NO.4所示。
2.根据权利要求1所述的地衣芽胞杆菌,所述的地衣芽胞杆菌的起始菌株为地衣芽胞杆菌DW2。
3.权利要求1所述的重组地衣芽胞杆菌的构建方法,包括下述步骤:
(1)kivD基因整合至地衣芽胞杆菌yvmC位点:以地衣芽胞杆菌DW2基因组DNA为模板,利用引物分别扩增yvmC的上下游同源臂和PbacA启动子;根据乳酸乳球菌基因组DNA为模板,扩增kivD基因;将yvmC上下游同源臂,PbacA启动子和kivD基因片段融合构建kivD表达盒;将其插入质粒T2中,构建kivD整合表达质粒T2-yvmC-kivD,导入地衣芽胞杆菌DW2中,通过同源重组获得kivD整合表达菌株DW-3;酮酸脱羧酶KivD编码的氨基酸序列为SEQ ID NO :2所示,所述PbacA启动子的序列为SEQ ID NO.5所示;
(2)敲除pykhisCdhaS:以地衣芽胞杆菌DW2的基因组为模板,利用引物分别扩增丙酮酸激酶基因pyk片段的上下游同源臂,将上下游同源臂片段融合得到pyk敲除盒,将其插入质粒T2中,构建pyk敲除质粒T2-△-pyk,导入地衣芽胞杆菌DW-3中,通过同源重组获得pyk敲除菌株DW-4;酪氨酸/苯丙氨酸转氨酶基因hisC和醛脱氢酶基因dhaS敲除载体构建方法同pyk,并通过迭代敲除获得pykhisCdhaS基因同时敲除的菌株DW-6;
(3)敲除醇脱氢酶基因adhA:以地衣芽胞杆菌DW2的基因组为模板,利用引物分别扩增adhA片段的上下游同源臂,将上下游同源臂片段融合得到ahdA敲除盒,将其插入质粒T2中,构建adhA敲除质粒T2-△-adhA,导入地衣芽胞杆菌DW-6中,通过同源重组获得adhA敲除菌株DW-7;
(4)tyrA fbr整合至ldh位点:以大肠杆菌BL21(DE3)基因组为模板,通过引物扩增获得含tyrA基因突变的片段,融合得到含突变的tyrA基因序列tyrA fbr;以地衣芽胞杆菌DW2基因组为模板,利用引物扩增基因ldh上下游同源臂,利用引物扩增PbacA启动子,利用引物扩增tyrA fbr片段,将ldh上下游同源臂,PbacA启动子和tyrA fbr片段融合构建tyrA fbr表达盒;将其插入质粒T2中,构建tyrA fbr整合表达质粒T2-ldh-tyrA fbr,导入地衣芽胞杆菌DW-7中,通过同源重组获得tyrA fbr整合表达菌株DW-8; 所述的预苯酸脱氢酶TyrA fbr 编码的氨基酸序列为SEQ ID NO.4所示.
(5)aroK aroA启动子替换为PbacA:以地衣芽胞杆菌DW2基因组为模板,利用引物扩增基因aroK启动子上下游同源臂,利用引物扩增PbacA启动子;将所述上下游同源臂片段,和PbacA启动子融合得到aroK启动子置换融合片段,插入T2质粒中,得到的载体T2-PbacA-aroK质粒,导入到DW-8中,得到重组aroK启动子置换菌株DW-9;aroA强化表达载体菌株构建方法同aroK启动子置换菌株,最终获得DW-10菌株。
4.权利要求1所述的重组地衣芽胞杆菌在生产酪醇中的应用。
5.根据权利要求3所述的应用,所述重组地衣芽胞杆菌在生产酪醇的过程中,使用的培养基为:30-100 g/L的葡萄糖,1-20 g/L蛋白胨,1-10 g/L酵母粉,10-20 g/LK2HPO4 ·3H2O,1-10 g/L KH2PO,自然ph,其余为水。
CN202210498491.1A 2022-05-09 2022-05-09 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用 Active CN114874960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498491.1A CN114874960B (zh) 2022-05-09 2022-05-09 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498491.1A CN114874960B (zh) 2022-05-09 2022-05-09 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN114874960A true CN114874960A (zh) 2022-08-09
CN114874960B CN114874960B (zh) 2023-05-16

Family

ID=82673716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498491.1A Active CN114874960B (zh) 2022-05-09 2022-05-09 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN114874960B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240267A1 (en) * 2012-09-21 2015-08-27 Butamax(Tm) Advanced Biofuels Llc Production of renewable hydrocarbon compositions
CN107460203A (zh) * 2016-06-03 2017-12-12 天津大学 一种产红景天苷及其类似物的重组菌及构建方法及用途
CN107460152A (zh) * 2016-06-03 2017-12-12 天津大学 产红景天苷及其类似物的重组菌、构建方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240267A1 (en) * 2012-09-21 2015-08-27 Butamax(Tm) Advanced Biofuels Llc Production of renewable hydrocarbon compositions
CN107460203A (zh) * 2016-06-03 2017-12-12 天津大学 一种产红景天苷及其类似物的重组菌及构建方法及用途
CN107460152A (zh) * 2016-06-03 2017-12-12 天津大学 产红景天苷及其类似物的重组菌、构建方法及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAMLA HUCCETOGULLARI等: "Metabolic engineering of microorganisms for production of aromatic compounds" *
肖源等: "重组地衣芽胞杆菌全细胞催化合成淫羊藿次苷D2" *

Also Published As

Publication number Publication date
CN114874960B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN111269900B (zh) 一种l-氨基酸脱氨酶突变体的制备及其应用
CN111254129B (zh) 一种多聚磷酸激酶突变体及其应用
CN109777763B (zh) 一株用于l-茶氨酸生产的基因工程菌及其构建与应用
CN109468291B (zh) 一种羰基还原酶EbSDR8突变体及其构建方法和应用
CN112522223B (zh) 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用
CN109777788B (zh) 一种亮氨酸脱氢酶突变体及其应用
CN110373370B (zh) 一种耦合atp再生系统的催化体系及其在生产谷胱甘肽过程中的应用
CN111808829B (zh) 一种γ-谷氨酰甲胺合成酶突变体及其应用
CN110872593B (zh) 一种丝氨酸羟甲基转移酶突变体及其应用
CN112746067A (zh) 用于制备d-鸟氨酸的赖氨酸脱羧酶突变体
CN114874960B (zh) 一株发酵法生产酪醇的地衣芽胞杆菌、及其构建方法和应用
CN107201375B (zh) 生产(r,r)-2,3-丁二醇基因工程菌株的构建方法及其应用
CN113493758B (zh) 一株缩短发酵周期的产酪醇重组大肠杆菌及其应用
AU2022422808A1 (en) Recombinant corynebacterium glutamicum for producing high-purity isomaltulose at high yield, and application thereof
CN114891820B (zh) 一种高效合成羟基酪醇的地衣芽胞杆菌、构建方法及应用
CN110804618B (zh) 定向进化构建高效转化白藜芦醇生产松芪的romt突变体
CN114134186A (zh) 以葡萄糖为底物生物法合成5-羟基β-吲哚基丙氨酸的方法
CN113699087A (zh) 一种转化乳糖生成乳果糖的植物乳杆菌工程菌株及其构建方法与应用
CN114672525A (zh) N-乙酰基-5-甲氧基色胺的生物合成方法及其应用
CN113061593A (zh) 一种l-苹果酸脱氢酶突变体及其应用
CN106148432B (zh) 一种α-酮基丁酸的发酵生产工艺
CN110747190B (zh) 一种马来酸水合酶突变体及其应用
CN112877305B (zh) 对辅酶亲和力提高的葡萄糖脱氢酶突变体
WO2022166843A1 (zh) 一种高立体选择性r转酮酶突变体及其编码基因和应用
CN115960805A (zh) 一种生产迷迭香酸的重组大肠杆菌及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant