CN114870880A - 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用 - Google Patents

一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用 Download PDF

Info

Publication number
CN114870880A
CN114870880A CN202210578366.1A CN202210578366A CN114870880A CN 114870880 A CN114870880 A CN 114870880A CN 202210578366 A CN202210578366 A CN 202210578366A CN 114870880 A CN114870880 A CN 114870880A
Authority
CN
China
Prior art keywords
adsorption
phosphorus
antibiotics
calcination
catalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210578366.1A
Other languages
English (en)
Other versions
CN114870880B (zh
Inventor
何世颖
印学杰
丁陈蔓
成家辉
冯彦房
段婧婧
薛利红
杨林章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Academy of Agricultural Sciences
Original Assignee
Jiangsu Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Academy of Agricultural Sciences filed Critical Jiangsu Academy of Agricultural Sciences
Priority to CN202210578366.1A priority Critical patent/CN114870880B/zh
Publication of CN114870880A publication Critical patent/CN114870880A/zh
Application granted granted Critical
Publication of CN114870880B publication Critical patent/CN114870880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明提出了一种可同步去除养殖污水中的COD、抗生素和磷的吸附‑催化双功能材料的制备与应用,包括以下步骤:(1)氮化碳纳米片制备:以三聚氰胺为前驱体,在马弗炉中高温煅烧获得淡黄色固体;将固体研磨成粉末后再次送入马弗炉煅烧,获得氮化碳纳米片(g‑C3N4);(2)双功能材料制备:将步骤(1)中的g‑C3N4、La(NO3)3•6H2O和柠檬酸在乙醇溶液中充分混匀后,加入KOH溶液继续搅拌,转移至水热反应釜中,180~200℃下保持10~12 h,冷却后清洗,烘干,获得La(OH)3‑C3N4。该材料具有出色的吸附性能和光催化活性,在同步去除污水中的COD、抗生素和磷的应用中具有稳定的效果。

Description

一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化 双功能材料的制备与应用
技术领域
本发明属于双功能材料制备和水处理技术领域,涉及一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备与应用。
背景技术
养殖废水是典型的难处理废水之一,其中有机物浓度高COD高达3000~12000 mg/L,并含有大量氮磷,此外由于养殖业中出现抗生素应用不合理、消耗过量等情况,造成养殖污水中抗生素残留的问题,因此研发一种能够有效、低成本、可持续、环保地处理养殖废水中的有机物、磷和抗生素非常重要。由于纳米材料所具有小尺寸效应、量子尺寸效应和表面界面效应等特性,在催化与吸附方面都明显表现出与传统材料不同的特性,在水处理领域已经体现了良好的应用前景,但用于同步削减养殖污水中多种污染物的工作甚少。
发明内容
本发明的目的是提供一种以超薄g-C3N4纳米片为载体,La(NO3)3·6H2O为镧源,合成吸附-催化双功能La(OH)3-C3N4材料的制备方法以及去除污水中COD、抗生素和磷的应用,以提供一种绿色高效的污水处理材料和处理方法。
La(OH)3与g-C3N4是两种吸附、催化性能优异的材料,将二者结合,形成p-n异质结构半导体,可有效提高电子-空穴对的分离效率,显著增强材料的光催化活性,同时形成的异质结材料颗粒的分散性也可以明显提升,因此具有协同增强吸附和光催化性能的特征,这种“增强型吸附-降解”双功能的新型环境净化材料应用于养殖污水的处理,可利用太阳光高效降解COD和抗生素,并可有效的吸附回收污水中的P元素。
为了实现上述发明目的,本发明所采用的技术方案为:
一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,主要包括以下步骤:
(1)氮化碳纳米片(即超薄氮化碳纳米片)制备:以三聚氰胺为前驱体,在马弗炉中高温煅烧获得淡黄色固体;将固体研磨成粉末后再次送入马弗炉煅烧,获得氮化碳纳米片,所述氮化碳纳米片即g-C3N4纳米片(也称作超薄氮化碳纳米片g-C3N4);
(2) 双功能材料制备:将步骤(1)制得的g-C3N4纳米片、La(NO3)3·6H2O和柠檬酸(作为保护剂)在乙醇溶液中充分混匀后,迅速加入KOH溶液继续搅拌一段时间,然后转移至水热反应釜中,180~200 ℃下保持10~12 h,冷却后用无水乙醇和去离子水清洗,烘干,获得La(OH)3-C3N4吸附-催化双功能材料。
步骤(1)具体为:以三聚氰胺为前驱体,在马弗炉中第一次高温煅烧制得g-C3N4固体,再将g-C3N4固体研磨成粉末(该粉末即g-C3N4粉末);将g-C3N4粉末放入马弗炉中二次煅烧制得g-C3N4纳米片(g-C3N4纳米片又称作超薄g-C3N4纳米片)。
步骤(2)具体为:将超薄g-C3N4纳米片、La(NO3)3·6H2O和柠檬酸(作为保护剂)在乙醇溶液中充分混匀后,迅速加入KOH溶液继续搅拌一段时间,然后转移至水热反应釜中,180~200 ℃下保持10~12 h,冷却后用无水乙醇和去离子水清洗,烘干,获得La(OH)3-C3N4吸附-催化双功能材料。
步骤(1)中第一次煅烧(简称为一次煅烧)必须将三聚氰胺装入带盖的氧化铝坩埚中,第二次煅烧(简称为二次煅烧)将g-C3N4粉末装入不带盖的氧化铝坩埚。第一次煅烧带盖是确保三聚氰胺在坩埚中受热均匀,同时能提高氮化碳产量;第二次煅烧不带盖是需要氮化碳在空气中进行高温氧化作用,将氮化碳剥离成超薄纳米片结构。
步骤(1)中第一次煅烧温度为550~600℃,第二次煅烧温度为500~550℃。
步骤(1)中第一次煅烧时马弗炉升温速率为1~2 ℃/min,第二次煅烧时马弗炉升温速率为5~8 ℃/min。在现有的研究中,煅烧氮化碳的升温速率从5~15 ℃/min不等,氮化碳的产量也有显著差异,本发明中马弗炉升温速率为1~2 ℃/min,氮化碳的产量能提高5%以上;第二次煅烧过程,马弗炉升温速率不再影响氮化碳产量,设置升温速率为5~8 ℃/min是为了充分进行二次热缩聚过程,将氮化碳剥离成超薄纳米片结构。
步骤(1)中第一次煅烧时,升温至到550~600℃后保温4~5 h;第二次煅烧时,升温至到500~550℃后保温2~3 h。
步骤(2)中的g-C3N4纳米片与La(NO3)3·6H2O的质量比为2:1~4:1;柠檬酸和La(NO3)3·6H2O物质的量比为1:1~2:1。
步骤(2)中的乙醇溶液体积分数为40%~60%。乙醇溶液由乙醇和去离子水混合而成,其中乙醇的体积分数为40%~60%。g-C3N4纳米片与40%~60%乙醇溶液的质量体积比为(2-4)g/(100-200)mL。
步骤(2)中KOH溶液的浓度为0.2~0.4 mol·L-1,g-C3N4纳米片与KOH溶液的质量体积比为(2-3)g/(10-20)mL。例如,当g-C3N4纳米片添加量为2-3g时,KOH溶液添加量为10-20mL。
步骤(2)中产物需要先后用无水乙醇和去离子水各清洗4遍(即先用无水乙醇清洗4次,再用去离子水清洗4次),烘干温度为60~80 ℃,烘干时间为5~7 h。
本发明的又一个目的是提供所述的制备方法制得的吸附-催化双功能La(OH)3-C3N4材料。
本发明的另一个目的是提供前述的吸附-催化双功能La(OH)3-C3N4材料在同步去除养殖污水中的COD、抗生素和磷中的应用。具体步骤为:向养殖污水中加入La(OH)3-C3N4材料,La(OH)3-C3N4材料的施加量为0.1-5 g·L-1,更优选地,La(OH)3-C3N4材料的施加量为0.2-1.2g·L-1
经过稀释,待处理的养殖废水中,COD初始浓度优选为10-200mg/L,盐酸四环素初始浓度优选为10-60mg/L,磷酸盐浓度优选为10-150mg/L。
本发明与现有技术相比,其显著优点是:
本发明提供了一种吸附与光催化技术耦合联用的方法,g-C3N4具有易制备、可见光响应效果好和稳定无毒无污染的优点;La(OH)3材料可使吸附剂表现出优良的尺寸化效应,对磷具有极强的吸附能力,与水体中的磷酸盐反应生成不易溶于水的沉淀物。二者结合,La(OH)3颗粒均匀的分散在g-C3N4表面,有效防止了La离子团聚,使得磷酸盐与镧离子充分接触,显著提高了La的利用效率和吸附性能;此外,La(OH)3颗粒属于p型半导体材料,g-C3N4属于n型半导体材料,二者结合构建出p-n型异质结构半导体,能够有效提高电子-空穴对的分离效率,光催化活性显著增强;
第一次煅烧确保三聚氰胺在坩埚中受热均匀,同时能提高氮化碳产量;第二次煅烧确保氮化碳在空气中进行高温氧化作用,将氮化碳剥离成超薄纳米片结构。通过两次煅烧,提高了La(OH)3-C3N4吸附-催化双功能材料的催化性能,有助于实现养殖污水中的COD、抗生素和磷的同步高效去除。
附图说明
图1为一次煅烧的氮化碳SEM图和两次煅烧的氮化碳SEM图;
图2为材料的SEM、TEM和EDS图,(a)和(b)是g-C3N4材料的SEM图和TEM图;(c)和(d)是La(OH)3-C3N4材料的SEM图和TEM图;(e)~(h)为La(OH)3-C3N4的SEM-EDS图谱;
图3为材料的N2吸附-脱附曲线图和孔径分布图;
图4为不同材料吸附磷酸盐能力的对比图;
图5为不同剂量的La(OH)3-C3N4吸附磷酸盐能力的对比图;
图6为不同材料光催化降解盐酸四环性能的对比图;
图7为La(OH)3-C3N4在氙灯下处理养殖废水中的COD、磷酸盐和盐酸四环素效果图;
图8为La(OH)3-C3N4在阳光下处理养殖废水中的COD、磷酸盐和盐酸四环素效果图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。
实施例1
称量250 g三聚氰胺装入500 mL带盖的氧化铝坩埚中,将坩埚置于马弗炉中以2℃·min-1的速率缓慢升温至600 ℃,并在此温度下保温4 h,待自然冷却后取出淡黄色块状固体,研磨成粉末后获得一次煅烧的g-C3N4(如图1中(a)所示);将一次煅烧的g-C3N4重新放入马弗炉,以8 ℃·min-1的速率升温至550 ℃,保温2 h,自然冷却后取出产物,最终获得淡黄色粉末状的超薄氮化碳纳米片g-C3N4(如图1中(b)所示)。可以清晰的看出图1中的(a)所展现的一次煅烧的g-C3N4是二维的整体片层状结构,表面蓬松且粗糙;图1中的(b)所展现的超薄氮化碳纳米片g-C3N4是更加“碎片化”的结构,比表面积显著增加,增加了材料与污染物的接触率,既能为吸附磷酸盐提供更多的吸附位点,又能促进材料表面的光生载流子分离,提高材料的光催化活性。
实施例2
准确称量3 g 实施例1制得的超薄氮化碳纳米片g-C3N4(其为经过第一次煅烧和第二次煅烧后制得的)、1.083 g La(NO3)3·6H2O和0.9607 g柠檬酸(作为保护剂)加入100ml体积分数为50%的乙醇溶液中,磁力搅拌30 min;迅速往烧杯中加入20 mL浓度为0.2 mol·L-1的KOH溶液,再次磁力搅拌30 min后转入250 mL的水热反应釜,在200 ℃烘箱中反应10h,冷却至室温后取出产物(这里的产物指的是g-C3N4、La(NO3)3·6H2O和柠檬酸、乙醇溶液、KOH溶液混合后加入水热反应釜,在200 ℃烘箱中反应10 h所得产物,该产物为固液混合物,未固液分离),将产物分别用无水乙醇和去离子水洗涤4次(即先用无水乙醇清洗4次,再用去离子水清洗4次),离心分离后(离心分离得到固体产物)放置于烘箱中60 ℃烘干5h,即可得到La(OH)3-C3N4吸附-催化双功能材料。
对所制备的La(OH)3-C3N4吸附-催化双功能材料进行了多方面的分析和表征:通过扫描电子显微镜、透射电子显微镜和观察了材料的形貌,通过能量色散X射线光谱分析其表面元素组成,如图2所示:(a)和(b)是g-C3N4材料(即实施例1中经第一次煅烧和第二次煅烧所制得的超薄氮化碳纳米片g-C3N4)的SEM图和TEM图,图中g-C3N4呈现出超薄纳米片结构,表面光滑蓬松,无明显气孔;从图2中的(c)和(d)是La(OH)3-C3N4材料(由本实施例制得)的SEM图和TEM图,可见准球形La(OH)3纳米颗粒(直径为10~50 nm)均匀分布在g-C3N4纳米片表面,有效避免了La(OH)3纳米颗粒团聚,而且材料表面未观察到游离的La(OH)3;(e)~(h)为La(OH)3-C3N4的SEM-EDS图谱,显示了材料表面极具丰富的C、N、O和La元素,进一步证实了La(OH)3成功负载到g-C3N4表面。
通过N2吸附-脱附实验分析了材料的比表面积、孔容和孔径的相关系数,如图3所示:(a)显示两种材料均出现H3回滞环的IV型吸附脱附曲线,表明材料表面出现一定的介孔结构;(b)是材料孔径分布图,结果进一步表明介孔结构的存在。定量分析材料形貌结构可知:g-C3N4的比表面积为40.69 m2·g-1,孔容为0.085 cm3·g-1,孔径为8.38 nm;La(OH)3-C3N4的比表面积为87.09 m2·g-1,孔容为0.192 cm3·g-1,孔径为8.81 nm,这些特征表明La(OH)3-C3N4纳米复合材料对应于介孔结构,而且比表面积和孔容两种参数显著提高,能够增强材料的吸附性能和催化性能。上述表征共同证明了La(OH)3与g-C3N4材料复合成功,而且材料的比表面积和孔容显著增加,具有良好的吸附和光催化潜力。
以下实施例均在常温下进行。
实施例3
本实施例通过添加g-C3N4(即实施例1中经第一次煅烧和第二次煅烧所制得的超薄氮化碳纳米片g-C3N4)、La(OH)3和La(OH)3-C3N4三种不同材料进行磷酸盐吸附能力的考察,本实施例中的La(OH)3-C3N4制备方式同实施例2。使用磷酸二氢钾配置若干份20 mg/L的磷酸盐溶液(50 mL),各称量5 mg的g-C3N4、La(OH)3和La(OH)3-C3N4材料进行实验,吸附平衡后计算磷酸盐的吸附量和镧利用率。实验结果见图4:三种材料的饱和吸附量分别为18.99mg·g-1、142.39 mg·g-1和137.78 mg·g-1,g-C3N4的吸附量仅有镧系材料的1/7左右。用ICP-OES测得镧含量(La)并计算吸附P的镧利用率,La(OH)3和La(OH)3-C3N4的镧含量分别为29.75%和16.29%,La(OH)3-C3N4中的镧含量比La(OH)3低13.46%,而吸附量仅降低了4.61mg·g-1,由此可见La(OH)3-C3N4中的镧的利用率显著提高。其主要原因是La(OH)3负载到g-C3N4表面,显著提高了La元素分散性,避免了团聚效应,使得La3+能够与PO4 3-充分结合,提高了对La的利用率从而具备良好的吸附性能。
实施例4
本实施例通过添加不同La(OH)3-C3N4材料剂量进行磷酸盐吸附能力考察,本实施例中的La(OH)3-C3N4制备方式同实施例2。使用磷酸二氢钾配置若干份100 mg/L的磷酸盐溶液(50 mL),分别称量5 mg、25 mg、50 mg、75 mg和100 mg的La(OH)3-C3N4进行实验,吸附平衡后测定剩余PO4 3-浓度,计算去除率和吸附量。实验结果如图5:磷酸盐的去除率随着吸附材料剂量的增加而提高,材料添加量高于1.0 g·L-1时,去除率均高于98%;在剂量为1.0g·L-1时达到效率峰值,更多的剂量会导致材料吸附不饱和,降低了材料的利益率,因此,在考虑经济效益的情况下,处理高浓度PO4 3-废水(100 mg·L-1),1.0 g·L-1的剂量被认为是最佳投加量。
实施例5
各称量0.4 g·L-1的g-C3N4(即实施例1中经第一次煅烧和第二次煅烧所制得的超薄氮化碳纳米片g-C3N4)和La(OH)3-C3N4溶于初始浓度为40 mg·L-1的盐酸四环素溶液中进行暗吸附和光催化降解实验,此外再设置一组不添加光催化剂的空白进行对照,每隔一段时间取样,测定剩余盐酸四环素的浓度,本实施例中的La(OH)3-C3N4制备方式同实施例2。实验结果如图6:(a)在未添加催化剂的情况下,TC-HCl自身降解效率为12%左右。纯g-C3N4在暗吸附阶段效果不佳,经过4h的光催化反应后,TC-HCl的去除率为36.82%;La(OH)3-C3N4材料的降解性能最好,前1h的暗吸附过程中可吸附71.43%的TC-HCl,光催化降解后,TC-HCl总体去除率可以达到90.12%。图6中,(b)对光催化反应过程的数据结果进行一级动力学模型拟合,三条曲线均符合一级动力学方程,纯g-C3N4的光降解速率k=0.0657 h-1,La(OH)3-C3N4的光降解速率k=0.2633 h-1,两者对比,La(OH)3-C3N4的速率常数是g-C3N4的4倍,复合材料的光催化活性明显优于纯g-C3N4。综上所述:经La(OH)3改性的g-C3N4材料,在对盐酸四环素的总体去除效果和光催化活性都有显著的提升。
实施例6
通过氙灯模拟太阳光同步去除实际污水中的磷酸盐、盐酸四环素和COD,本实施例中的La(OH)3-C3N4制备方式同实施例2。实际污水来源于南京市某养殖场,滤除废水中杂质后将废液稀释至原来的5倍,再根据废水中磷酸盐、盐酸四环素和COD含量决定投加不同剂量La(OH)3-C3N4光催化剂,5 h后测定实际污水中剩余磷酸盐和盐酸四环素浓度并计算去除率。结果如图7:稀释后的养殖废水中盐酸四环素的含量约为35 mg·L-1,不添加催化剂直接光催化4h,自身降解效率仅有1.32%;当La(OH)3-C3N4的添加量为0.2 g·L-1,盐酸四环素的降解效率为63.54%;随着La(OH)3-C3N4的添加量继续提高到0.4和0.8 g·L-1时,降解效率也提高到66.58和71.59%,说明La(OH)3-C3N4处理复杂的养殖废水,也能保持稳定的降解效率。此外,我们同时检测了养殖废水中的PO4 3-含量的变化,测得稀释后的废水中PO4 3-浓度约为57.69 mg·L-1,La(OH)3-C3N4的剂量为0.2 g·L-1,PO4 3-的去除率为43.2%,吸附量为124.92mg·g-1,接近饱和吸附的状态;当添加量逐渐增加,PO4 3-的去除率也分别提升至81.29%和97.83%,吸附量分别为117.24 mg·g-1和70.55 mg·g-1。稀释后的COD的浓度约为150 mg·L-1,La(OH)3-C3N4的添加量分别为0.2、0.4和0.8 g·L-1时,COD的去除率分别为47.23%、60.89%和77.53%。综上所述,La(OH)3-C3N4是一种吸附-催化双功能的环境纳米材料,它不仅在吸附PO4 3-领域具有相当高的吸附容量,而且在光催化降解盐酸四环素和COD领域拥有优异的表现,通过吸附过程和光催化同步去除磷、盐酸四环素和COD污染物。
实施例7
在户外太阳光下同步去除实际污水中的磷酸盐、盐酸四环素和COD,本实施例中的La(OH)3-C3N4制备方式同实施例2。污水来源于南京市某养殖场,滤除废水中杂质后将废液稀释至原来的的5倍,量取50 mL实际污水装入规格为150 mL的锥形瓶中,通过微量增氧泵曝气确保光催化剂不会沉底。稀释后的养殖废水中盐酸四环素的含量约为35 mg·L-1,降解一段时间后测定实际污水中剩余磷酸盐、盐酸四环素和COD浓度并计算去除率。结果如图8:不添加催化剂4h后,盐酸四环素的含量几乎不变,降解效率仅有0.8%;控制La(OH)3-C3N4的剂量增加到0.2、0.4和0.8 g·L-1时,盐酸四环素的降解效率也提升至37.67%、47.38%和56.31%,说明当La(OH)3-C3N4的投加量为0.8 g·L-1时,在太阳光照下处理实际养殖污水,对盐酸四环素也有良好的降解效率;同样也测定了废水中PO4 3-和COD含量的变化,La(OH)3-C3N4的剂量增加到0.2、0.4和0.8 g·L-1时,磷酸盐的去除率分别为41.48%、76.63%和89.9%;COD的去除率分别为40.35%、55.56%和69.63%,进一步验证了该材料优异的实际应用性能。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或者等效变换的方式获得技术方案的,均落在本发明的保护范围之内。

Claims (10)

1.一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,包括以下步骤:
(1)氮化碳纳米片制备:以三聚氰胺为前驱体,在马弗炉中高温煅烧获得淡黄色固体;将固体研磨成粉末后再次送入马弗炉煅烧,获得氮化碳纳米片,所述氮化碳纳米片即g-C3N4纳米片;
(2) 双功能材料制备:将步骤(1)制得的g-C3N4纳米片、La(NO3)3·6H2O和柠檬酸在乙醇溶液中充分混匀后,迅速加入KOH溶液继续搅拌一段时间,然后转移至水热反应釜中,180~200 ℃下保持10~12 h,冷却后用无水乙醇和去离子水清洗,烘干,获得La(OH)3-C3N4吸附-催化双功能材料。
2.根据权利要求1所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(1)具体为:以三聚氰胺为前驱体,在马弗炉中第一次高温煅烧制得g-C3N4固体,再将g-C3N4固体研磨成粉末;将g-C3N4粉末放入马弗炉中二次煅烧制得g-C3N4纳米片。
3.根据权利要求2所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(1)中第一次煅烧需将三聚氰胺装入带盖的氧化铝坩埚中,第二次煅烧将g-C3N4粉末装入不带盖的氧化铝坩埚。
4.根据权利要求2所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(1)中第一次煅烧温度为550~600℃,第二次煅烧温度为500~550℃。
5.根据权利要求2所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(1)中第一次煅烧时马弗炉升温速率为1~2 ℃/min;第二次煅烧时马弗炉升温速率为5~8 ℃/min;
步骤(1)中第一次煅烧时,升温至到550~600℃后保温4~5 h;第二次煅烧时,升温至到500~550℃后保温2~3 h。
6.根据权利要求1所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(2)中的g-C3N4纳米片与La(NO3)3·6H2O的质量比为2:1~4:1;柠檬酸和La(NO3)3·6H2O物质的量比为1:1~2:1。
7.根据权利要求1所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(2)中的乙醇溶液体积分数为40%~60%;步骤(2)中KOH溶液的浓度为0.2~0.4 mol/L,g-C3N4纳米片与KOH溶液的质量体积比为(2-3)g/(10-20)mL。
8.根据权利要求3所述的一种可同步去除养殖污水中的COD、抗生素和磷的吸附-催化双功能材料的制备方法,其特征在于,步骤(2)中产物先后用无水乙醇和去离子水各清洗4遍,烘干温度为60~80 ℃,烘干时间为5~7 h。
9.根据权利要求1~8任一项所述的制备方法制得的吸附-催化双功能La(OH)3-C3N4材料。
10.权利要求9所述的吸附-催化双功能La(OH)3-C3N4材料在同步去除养殖污水中的COD、抗生素和磷中的应用,其特征在于:向养殖污水中加入La(OH)3-C3N4材料,La(OH)3-C3N4材料的施加量为0.1-5 g·L-1
CN202210578366.1A 2022-05-26 2022-05-26 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用 Active CN114870880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210578366.1A CN114870880B (zh) 2022-05-26 2022-05-26 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210578366.1A CN114870880B (zh) 2022-05-26 2022-05-26 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用

Publications (2)

Publication Number Publication Date
CN114870880A true CN114870880A (zh) 2022-08-09
CN114870880B CN114870880B (zh) 2024-02-09

Family

ID=82678211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210578366.1A Active CN114870880B (zh) 2022-05-26 2022-05-26 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用

Country Status (1)

Country Link
CN (1) CN114870880B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550676A (zh) * 2024-01-12 2024-02-13 中国科学院合肥物质科学研究院 一种双功能聚合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380230A (zh) * 2018-01-24 2018-08-10 江苏大学 超薄石墨相氮化碳的制备方法及应用
CN109133257A (zh) * 2018-08-31 2019-01-04 中国环境科学研究院 一种可见光光催化剂降解畜禽废水中抗生素的方法
CN110280289A (zh) * 2019-07-05 2019-09-27 上海理工大学 一种氮化碳光催化材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380230A (zh) * 2018-01-24 2018-08-10 江苏大学 超薄石墨相氮化碳的制备方法及应用
CN109133257A (zh) * 2018-08-31 2019-01-04 中国环境科学研究院 一种可见光光催化剂降解畜禽废水中抗生素的方法
CN110280289A (zh) * 2019-07-05 2019-09-27 上海理工大学 一种氮化碳光催化材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUEJIEYIN等: "Phosphate removal from actual wastewater via La(OH)3-C3N4 adsorption:Performance, mechanisms and applicability", SCIENCE OF THE TOTAL ENVIRONMENT, pages 1 - 12 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117550676A (zh) * 2024-01-12 2024-02-13 中国科学院合肥物质科学研究院 一种双功能聚合材料及其制备方法和应用
CN117550676B (zh) * 2024-01-12 2024-04-09 中国科学院合肥物质科学研究院 一种双功能聚合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114870880B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal
Zhao et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism
An et al. Surface decoration of BiPO4 with BiOBr nanoflakes to build heterostructure photocatalysts with enhanced photocatalytic activity
CN108855191A (zh) 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
CN112916035B (zh) 鱼鳞片管状氮化碳复合异质结光催化剂及其制备方法和应用
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN110694662B (zh) 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN108187687B (zh) 一种光芬顿催化剂的制备方法
CN109433190B (zh) 负载铂纳米粒子的介孔氧化锆纳米管复合材料及其制备方法与在持续处理有机废气中的应用
CN108479772B (zh) 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
CN113019454A (zh) 一种NH2-MIL-101(Fe)@NiCoP复合纳米光催化剂的制备方法及应用
CN110280281A (zh) 铁酸锌/黑磷微球复合物的制备方法及其在光催化领域中的应用
CN114870880A (zh) 一种可同步去除养殖污水中的cod、抗生素和磷的吸附-催化双功能材料的制备与应用
CN113181949A (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
Dong et al. The fabrication and characterization of CeO 2/Cu 2 O nanocomposites with enhanced visible-light photocatalytic activity
CN114797847B (zh) 一种金属掺杂的介孔碳基催化剂及其制备方法与应用
CN108793312B (zh) 利用氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂催化去除抗生素的方法
CN114534760B (zh) 一种N-CDs/FeNbO4复合光催化剂及其制备方法和应用
CN112774659B (zh) 一种石墨烯/氢化氧化铟复合光催化剂及其制备方法
CN108745405A (zh) 氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂及其制备方法
Shojaei et al. High photocatalytic activity in nitrate reduction by using Pt/ZnO nanoparticles in the presence of formic acid as hole scavenger
CN114433132A (zh) 一种超声辅助法合成z型异质结催化材料的方法
CN115414936B (zh) 缺陷铁酸铜光催化材料及其一步制备法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant