CN114858410A - 识别和监测光学系统中的连接 - Google Patents

识别和监测光学系统中的连接 Download PDF

Info

Publication number
CN114858410A
CN114858410A CN202110075711.5A CN202110075711A CN114858410A CN 114858410 A CN114858410 A CN 114858410A CN 202110075711 A CN202110075711 A CN 202110075711A CN 114858410 A CN114858410 A CN 114858410A
Authority
CN
China
Prior art keywords
optical
source
add
monitor
links
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110075711.5A
Other languages
English (en)
Inventor
龚立夫
史朝翔
黄必昌
刘锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai FTZ Oplink Communications Inc
Molex LLC
Original Assignee
Zhuhai FTZ Oplink Communications Inc
Molex LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai FTZ Oplink Communications Inc, Molex LLC filed Critical Zhuhai FTZ Oplink Communications Inc
Priority to CN202110075711.5A priority Critical patent/CN114858410A/zh
Priority to US17/577,049 priority patent/US11863295B2/en
Publication of CN114858410A publication Critical patent/CN114858410A/zh
Priority to US18/370,903 priority patent/US20240014919A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0268Restoration of optical paths, e.g. p-cycles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0779Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

提供了用于识别和监测光学系统中的连接的技术。多个光端口被配置为接收与一个或多个远程光学装置耦接的多个光链路。至少一个光源生成识别(ID)信号。至少一个光学元件被配置为通过多个光链路将ID信号引导到从源光学装置到远程光学装置的传输路径。远程光学装置包括将ID信号引导通过WDM滤波器的集合,并返回ID信号的一个或多个光学元件。至少一个光学元件将返回的ID信号引导到光信道监测器。至少一个微处理器被配置为执行控制指令以生成所述ID信号,并响应于返回的ID信号而处理所述光信道监测器的一个或多个输出,以识别所述多个光链路。

Description

识别和监测光学系统中的连接
技术领域
本公开大体上涉及光学系统,并且更具体地涉及光学装置之间的连接的识别和监测。
背景技术
本部分中描述的方法是可以采用的方法,但不一定是先前已经设想或采用的方法。因此,除非另有说明,否则在本部分中描述的任何方法不应仅由于其包括在本部分中而将其假定为现有技术。
光学网络用于许多应用,例如通信、测量、监测、能量输送和其他应用。光学网络通常在供应商与家庭、企业和其他网络之间提供高速语音、视频和数据传输。在光学网络中,光链路连接两个或更多个光学装置。光链路包括连接到能够通过通信介质(例如,一根或多根光纤)进行光通信的装置的通信介质。
光学网络中的光链路配置可能变得复杂。例如,一个光学装置可能与一个或多个其他光学装置连接、与每个光学装置对之间的一个或多个光链路连接。光学装置可能位于同一光学网络装置支架(shelf)的不同插槽、同一网络装置机架(rack)的不同支架、同一站点的不同位置和/或不同站点中。例如,一些光学装置可能位于远离由光学网络的运营商控制的站点的位置,以便在物理上靠近用户位置。光学接线板或光学配线盒(opticalshuffle box)可用于在站点处管理光学连接。
在光学网络中经常采用波分复用(“WDM”)系统来处理路由。WDM系统通常复用多个具有不同波长的光学信号,以便多个不同的信号可以在单个光纤上传播。因为光纤可以同时承载多个信号,所以当分离多个信号时,WDM会增加网络节点处光链路的复杂性。
光链路通常在特设基础上使用电缆进行物理连接,这使得电缆管理和/或映射变得困难。诸如在装置设置、配置和/或重新配置等期间,识别连接路径可能是复杂的任务。监测光链路的操作,诸如检测断开的连接和/或降级,也可能具有挑战性。
典型的方案可能涉及具有复杂算法的激光器和光电检测器,以便识别和/或监测远程站点处的光链路,这可能需要复杂的通电(powered)电路和强大的CPU来处理识别、监测和/或与网络控制器的通信。但是,远程光学装置可能是无源的、没有电路、也没有接入电源。例如,无源光学装置可能出现在与具有通电光学装置的连接站点在地理位置上相距较远的远程站点处。
发明内容
所附权利要求可以用作发明内容。
附图说明
在附图中:
图1示出了示例实施例中的光学系统;
图2示出了示例实施例中的光学系统,其中ID块在源光学装置中并且远程ID块在远程光学装置中;
图3A至图3B示出了示例实施例中的WDM滤波器的集合;
图4示出了示例实施例中的光学系统,其中监测器块在源光学装置中并且远程监测器块在远程光学装置中;
图5示出了示例实施例中的具有用于源光学装置的监测器块和用于远程光学装置的远程监测器块的光学系统;
图6示出了示例实施例中的具有光分插复用器(OADM)节点的光学系统;
图7示出了示例实施例中的OADM节点中的定向装置和分插组装置;
图8示出了示例实施例中的实现ID机制的OADM节点中的定向装置和分插组装置;
图9示出了示例实施例中实现监测器机制的OADM节点中的定向装置和分插组装置;
尽管每个附图出于例示清楚的示例的目的而图示了特定实施例,但是其他实施例可以省略、增加、重新排序或修改附图中所示的任何元件。为了说明清楚的示例,可以参考一个或多个其他附图来描述一个或多个附图。然而,在其他实施例中,不要求使用一个或多个其他图中所示的特定布置。
具体实施方式
在下面的描述中,阐述了许多具体细节以便提供对本发明的透彻理解。然而,将显而易见的是,可以在没有这些具体细节的情况下实践本发明。以下详细描述描述了示例性实施例,并且公开的特征不旨在限于明确公开的组合。因此,除非另有说明,否则本文公开的特征可以被组合以形成出于简洁目的未另外示出的附加组合。
将进一步理解的是:除非另有明确说明,否则术语“或”可以是包含性或排他性的;术语“集合(组)”可以包括零个、一个或两个或更多个元件;除非另有说明,否则术语“第一”、“第二”、“某个”和“特定”用作命名约定以将元件彼此区分开,并不表示所引用项目的顺序、时序或任何其他特性;如本文所用,术语“和/或”是指并且涵盖一个或多个相关联的所列项目的任何和所有可能的组合;术语“包括”和/或“包含”指定存在所述特征,但不排除一个或多个其他特征的存在或增加。
总体概述
本文大体上描述了用于识别和监测光学系统中的连接的系统、方法、装置和其他技术。光学系统包括一个或多个源光学装置和一个或多个远程光学装置,其实现识别机制和/或监测器机制。
为了实现识别机制,源光学装置包括识别(ID)块,该ID块包括光学元件,其对到一个或多个远程光学装置的一个或多个连接进行识别。一个或多个远程光学装置均包括远程ID块,该远程ID块包括一个或多个光学元件。在源光学装置处生成的ID信号被传输到一个或多个远程光学装置,由远程ID块进行处理,然后传输回源光学装置,在源光学装置处,ID块基于返回的ID信号识别一个或多个连接。在源光学装置处生成的用于识别的ID信号属于ID波长λ{ID}的集合。在一些实施例中,λ{ID}不与服务波长λ{service}的集合重叠,并且在源光学装置和远程光学装置的正常运行期间不使用识别机制。
为了实现监测器机制,源光学装置包括监测器块,该监测器块包括光学元件,该光学元件评估源光学装置和一个或多个远程光学装置之间的一个或多个连接的连通性。一个或多个远程光学装置均包括远程监测器块,该远程监测器块包括一个或多个光学元件。在源光学装置处生成的监测器信号被传输到一个或多个远程光学装置,由远程监测器块进行处理,然后再传输回源光学装置,在源光学装置处,监测器块基于返回的监测器信号评估一个或多个连接的连通性。在源光学装置处生成的监测器信号可以具有参考波长λr。在一些实施例中,λr不与服务波长λ{service}的集合重叠,并且在源光学装置和远程光学装置的正常运行期间不使用监测器机制。
在一些实施例中,远程ID块和/或远程监测器块仅包括不需要电子元件和/或电功率的无源元件。以这种方式,仅纯无源光电路被部署在可以使用ID机制和/或监测器机制进行测试的远程光学装置中。通过说明书和附图,附加特征和优点是显而易见的。
系统概述
图1示出了示例实施例中的光学系统。光学系统100包括具有一个或多个源光学装置102和一个或多个远程光学装置106至108的光学网络。如本文所使用的,术语“光学装置”是指具有一个或多个光端口的光学设备,光端口用于将光学装置可通信地耦接至另一装置,使得光学信号可以在光学装置之间的通信链路上传播。光学装置可以是独立装置,和/或可以包括两个或更多个光学装置组件。
源光学装置102经由一个或多个光链路1至i与一个或多个远程光学装置106至108通信。源光学装置102可以通过一个或多个光链路与特定的远程光学装置106至108耦接。光链路可以包括可以在两点之间传输信息的发送器、接收器和电缆组件。光链路可以包括单向或双向光纤。例如,光链路1包括用于单向通信的两根光纤,而光链路3包括用于双向通信的一根光纤。如本文所用,光链路内的光纤被称为光链路组件。光链路可以包括一根或多根电缆,这些电缆以一个或多个光学连接器端接,这些光学连接器被设计为与光学装置的光端口配合。
源光学装置102可以被配置为结合一个或多个远程光学装置106至108执行一个或多个功能。这些功能由源光学装置102处的功能块104和远程光学装置106至108处的一个或多个功能块110至112执行。如本文所使用的,诸如功能块104和110至112等光学块是一个或多个光学元件的集合,其生成和/或处理与特定功能有关的一个或多个光学信号。在一些实施例中,源光学装置102是OADM节点中的定向装置,并且远程光学装置106至108是OADM节点中的分插组装置。
功能块104生成具有从服务波长λ{service}集合中选择的频率的服务信号,这些信号通过一个或多个通信链路1至i传输到一个或多个远程光学装置106至108。在一些实施例中,λ{service}包括特定通信频带(例如,O频带、E频带、S频带、C频带、L频带、850nm频带、U频带和/或其他通信频带)中的波长。信道是指以特定波长传输的光学信号。如本文所用,术语“传输路径”是指从源光学装置102的功能块104到远程光学装置108的功能块112的服务信号的路径。如本文所用,术语“接收路径”是指从远程光学装置108的功能块112到源光学装置102的功能块104的服务信号的路径。传输路径和/或接收路径可以在光链路上行进。传输路径i通过光链路i承载从W1到X1的特定服务波长λi的服务信号。接收路径i承载从Z1到Y1的在光链路i上传播的λi的服务信号。
在一些实施例中,源光学装置102被配置为识别在一个或多个远程光学装置106至108处的光学连接。例如,源光学装置102可以确定特定波长的信号在特定光链路上传播。在一些实施例中,源光学装置102识别到多个远程光学装置106至108的多个光学连接。源光学装置102可以包括识别(ID)块114,该ID块114包括一个或多个光学元件,所述一个或多个光学元件识别与一个或多个远程光学装置106至108的连接。ID块114例如通过在B1处将ID信号引导到传输路径i中,来将具有从波长λ{ID}的集合中选择的频率的识别(ID)信号发送到一个或多个远程光学装置106至108。远程光学装置108处的远程ID块116处理来自ID块114的ID信号,并将返回的ID信号传输回ID块114。在远程光学装置108处,来自传输路径i的ID信号在G1处被引导到远程ID块116,而从远程ID块116返回的ID信号在H1处被引导到接收路径。返回的ID信号在M1处从传输路径i被引导到ID块114。
术语“识别机制”在本文用于指代源光学装置102处的ID块114和在光学地连接到源光学装置的一个或多个远程光学装置108处的远程ID块116的组合。在下文中更详细地描述识别机制。
替代地和/或附加地,源光学装置102可以被配置为监测一个或多个远程光学装置106至108处的光学连接。例如,源光学装置102可以包括监测器块118,该监测器块118包括一个或多个光学元件,其监测源光学装置102与一个或多个远程光学装置106至108之间的连接,以便评估光链路的连通性。例如通过在P1处将监测器信号引导到传输路径i中,监测器块118将具有波长λr的一个或多个参考频率的监测器信号传输到一个或多个远程光学装置106至108。远程光学装置108处的远程监测器块120处理来自监测器块118的监测器信号,并将返回的监测器信号传输回监测器块118。在远程光学装置108处,来自传输路径i的监测器信号在E1处被引导到远程监测器块120,以及从远程监测器块120返回的监测器信号在F1处被引导到接收路径。返回的监测器信号在K1处从传输路径i被引导到监测器块118。
源光学装置102可以包括一个或多个微处理器150。微处理器150可以执行功能块104、ID块114和/或监测器块118所需的一个或多个计算。在一些实施例中,微处理器150执行一个或多个控制指令以执行一个或多个控制过程。控制指令可以包括硬编码指令、固件和/或软件。在一些实施例中,微处理器150执行用于ID控制过程的指令以生成ID信号,并处理对返回的ID信号的测量以生成输出,该输出包括到远程光学装置106至108的一个或多个光链路的标识。在一些实施例中,微处理器150执行用于监测器控制过程的指令以生成监测器信号,并且处理对返回的监测器信号的测量以生成输出,该输出包括到一个或多个远程光学装置106至108的一个或多个连接的健康状况。
术语“监测机构”在本文中用于指代源光学装置102处的监测器块118和光学地连接到源光学装置的一个或多个远程光学装置108处的远程监测器块120的组合。在下文中更详细地描述监测器机构。
在光学系统中,源光学装置102和一个或多个连接的远程光学装置106至108既可以实现识别机制也可以实现监测器机制,或者可以独立地实现识别机制或监测器机制。同一光学系统中的不同源光学装置可能不实现识别机制和/或监测器机制中的任何一个,或者实现识别机制和/或监测器机制中的一个或两个。在一些实施例中,源光学装置102是光分插复用器(OADM)节点中的定向装置,并且OADM节点中的每个分插组装置都实现识别机制、监测器机制或识别机制和监测器机制两者。
为了便于说明,本文中关于特定源光学装置、特定远程光学装置和/或特定光链路描述的各方面可以应用于一个或多个其他源光学装置、远程光学装置和/或光链路。例如,光学系统可以包括一个或多个源光学装置;源光学装置可以通过一个或多个光链路与远程光学装置通信;和/或源光学装置可以与一个或多个远程光学装置通信。此外,用于识别和监测的技术可以应用于来自源光学装置的一个光链路、多个光链路和/或所有光链路。尽管在特定实施例中可以示出一个或多个特定元件,但是在不脱离本公开的精神或范围的情况下,其他元件和配置可以提供等同的功能。
识别机制
图2示出了示例实施例中光学系统,其中ID块在源光学装置中并且远程ID块在远程光学装置中。光学系统200包括通过光链路i连接的源光学装置202和远程光学装置208。使用服务波长的集合λ{service}中的特定服务波长λi,从W2到X2的传输路径i承载从源光学装置202的功能块204到远程光学装置208的功能块212的服务信号,而从Z2到Y2的接收路径i承载从远程光学装置208的功能块212到源光学装置202的功能块204的服务信号。
源光学装置202包括ID块214,该ID块214识别在一个或多个远程光学装置处的一个或多个连接。远程光学装置208包括远程ID块216。如前所述,一个远程ID块可以存在于连接到源光学装置202的一个或多个远程光学装置中。此外,多个远程ID块可以存在于远程光学装置208中。
ID块214使用ID波长的集合λ{ID}在传输路径i上传输ID信号。在A2处,光源220生成波长的集合λ{ID}的光。在一些实施例中,光源220包括一个或多个宽带光源、一个或多个可调激光器、诸如发光二极管(LED)和激光二极管(LD)等一个或多个二极管和/或一个或多个可以提供λ{ID}光的其他光源。在一些实施例中,光源220是出于其他目的而存在于源光学装置202中的光源,例如属于功能块204的光源。
在B2处,使用一个或多个元件222-224将ID信号引导到的传输路径i。例如,元件224可以是分路器和/或开关、多路复用器或另一光学元件。在一些实施例中,光源220生成λ{ID}光,其被引导进入在一个或多个其他光链路上传播的传输路径。例如,元件222可以是使用一个或多个元件242将光传输到一个或多个其他传输路径的开关元件和/或分路器元件,这些其他传输路径例如但不限于在光链路2上传播的传输路径。
在G2处,通过使用能够将ID信号引导到旁路路径中的元件226(例如,G2处的开关或另一个光学元件)将ID信号引导到从G2和H2的旁路路径中。在一些实施例中,仅当为光学系统200执行光链路的识别时才启用旁路路径。在这种情况下,元件226可以是在功能块204和功能块212的正常运行期间不影响服务信号的传输的开关。
通过传输路径i传输的ID信号进入旁路路径G2-H2,并传播到波分复用(WDM)滤波器的集合228。WDM滤波器的集合228中的每个WDM滤波器可以通过或阻止不同的波长。可以以不同的组合来使用WDM滤波器的集合228。当WDM滤波器的集合包括最大数量的不同波长的滤波器l,并且用于“构建此种光学ID块”的滤波器的最大数量为k(k<=l)时,“此种光学ID块”可以创建的唯一标识符(ID)的总数将等于Cl k+Cl k-1+…+Cl 1。例如,如果WDM滤波器的集合在典型的具有4THz总带宽的C频带中具有400GHz信道间隔,则该WDM滤波器的集合最多可具有l=10个不同波长的滤波器(4THz/400GHz)。如果仅使用一个滤波器来构建“光学块”(k=1),则可以识别10条光链路。如果最多两个滤波器用于“构建光学块”(k=2),则可以识别55条光链路(C10 2+C10 1=45+10=55)。基于源光学装置202的最大连通性,可以确定所需的最小数量的滤波器,以确保能够在从源光学装置202到远程光学装置208的所有连接中唯一地识别每个连接。
在一些实施例中,WDM滤波器的集合228和/或远程ID块216是远程光学装置208中的可插入组件。当WDM滤波器的集合228和/或远程ID块216是可插入组件时,可以改变WDM滤波器的数量,从而例如容纳更多数量的可由源光学装置202识别的远程光学装置208。
图3A示出了示例实施例中远程ID块(例如,远程ID块216)中的WDM滤波器的集合(例如,WDM滤波器的集合228)的配置。旁路路径(例如,G2-H2)中的WDM滤波器的集合328包括一个或多个光学陷波滤波器,其可以阻挡不同波长(λijk)的信号。滤光器串联放置,并且在光通过WDM滤波器的集合328的情况下,一个或一系列波长将被阻止。
图3B示出了示例实施例中的远程ID块(例如,远程ID块216)中的WDM滤波器的集合(例如,WDM滤波器的集合228)的配置。旁路路径(例如,G2-H2)中的WDM滤波器的集合包括一个或多个光学带通滤波器,其每一个均可以通过不同波长(λijkm)的信号。滤光器级联在一起,并且在光通过该块的情况下,一个或一系列波长将通过,而其余部分将被阻止。
返回图2,ID信号在H2处被引导到接收路径i中。在M2处,一个或多个元件232至234(例如,一个或多个分路器、滤波器、多路分解器和/或其他光学模块)将返回的ID信号从接收路径i引导到光信道监测器(OCM)240的一个或多个元件236至238的集合。OCM 240测量返回的ID信号的性质,例如特定的接收到的信号的波长。在一些实施例中,OCM 240包括可调滤波器236和光电检测器238。可调滤波器236和光电检测器238被集成以执行光学波长信道监测。OCM 240允许ID块214确定ID波长的集合λ{ID}中的哪些波长已经被阻止或通过,从而允许ID块214唯一地识别光链路i。光源220生成的光穿过路径A2-B2-C2-D2-G2-H2-I2-J2-M2-N2-O2
为了执行识别,从光链路的接收路径(例如,接收路径i)返回的光被引导通过信道监测器(例如,OCM 240)。源光学装置202可以具有一个或多个OCM,用于测试具有远程ID块(例如,远程ID块216)的光链路(例如,光链路i)的集合。在一些实施例中,OCM 240在两个或更多个接收路径之间共享,使得通过一个或多个其他光链路返回的返回的ID信号也被引导到OCM240。例如,元件244(例如,分路器元件和/或滤波器元件)将来自接收路径的光引导到OCM240,该接收路径通过光链路2传播。在一些实施例中,一个OCM 240在具有远程ID块的所有可测试光链路之间共享。替代地和/或附加地,一个或多个附加的OCM元件可以存在于到其他远程ID块的一个或多个连接中。源光学装置202可以包括使用OCM 240的输出来执行识别的电子电路。在一些实施例中,ID块214可以识别与一个或多个光链路相关联的波长、与特定波长相关联的一个或多个端口或其他识别信息。
在一些实施例中,源光学装置202与远程光学装置208之间的每个连接包括远程监测器块和监测器块,其可以包括共享元件。在一些实施例中,ID块可以包括电路214,和/或可以共享由源光学装置202的其他功能(例如,功能块204)使用的电路和/或资源。在一些实施例中,源光学装置202包括一个或多个微处理器(例如,微处理器150),其执行一个或多个控制指令以执行本文所述的一个或多个识别控制过程。在一些实施例中,远程ID块216是仅包括无源光学元件的无源光学块。
在一些实施例中,ID信号波长的集合λ{ID}可能与服务信号波长的集合λ{service}重叠,并且识别机制在光学系统200的正常运行期间不工作。例如,本文描述的识别机制可以在源光学装置202和远程光学装置208的安装、修改、测试和/或配置期间使用。在一些实施例中,λ{ID}不与λ{service}重叠。当ID波长λ{ID}和服务波长λ{service}之间没有冲突或重叠时,识别机制可以在源光学装置202和远程光学装置208的正常运行期间使用。
监测器机制
图4示出了示例实施例中具有源光学装置中的监测器块和远程光学装置中的远程监测器块的光学系统。光学系统400包括通过光链路i连接的源光学装置402和远程光学装置408。使用服务波长的集合λ{service}中的特定服务波长λi的光,从W4到X4的传输路径i通过光链路i承载从源光学装置402的功能块404到远程光学装置408的功能块412的服务信号。从Z4到Y4的接收路径i使用λi光承载从功能块412到源光学装置402的服务信号。
源光学装置402包括监测器块418,该监测器块418监测源光学装置402和一个或多个远程光学装置408之间的一个或多个连接。远程光学装置408包括远程监测器块420,其通信地与监测器块418耦接。如先前所指出的,远程监测器块420可以存在于连接到源光学装置402的一个或多个远程光学装置中。此外,多个远程监测器块可以存在于远程光学装置408中。
监测器块418使用参考波长λr的监测器信号在传输路径i上传输监测器信号。监测器信号在P4处被引导到传输路径i中。例如,光源422在Q4处可以生成监测器信号。在一些实施例中,光源422包括一个或多个宽带光源、一个或多个可调激光器、诸如发光二极管(LED)和激光二极管(LD)等一个或多个二极管和/或一个或多个可以提供参考波长λr的光的其他光源。在一些实施例中,光源420是出于其他目的而存在于源光学装置402中的光源,例如属于功能块404的光源。在一些实施例中,使用多个参考波长和/或动态选择的参考波长。
在一些实施例中,光源422生成λr光,其被引导进入在一个或多个其他光链路上传播的传输路径。例如,元件424可以是使用一个或多个元件将光传输到一个或多个其他传输路径的开关元件和/或分路器元件,这些其他传输路径例如但不限于在光链路3上传播的传输路径。
在P4处,使用一个或多个元件426将监测器信号添加到与的光链路i对应的传输路径i中。例如,元件426可以是多路复用器(MUX)元件,其将来自功能块404的服务信号与来自光源422的监测器信号组合。监测器信号在路径Q4–P4–C4–D4–E4–F4–I4–J4–K4–L4上传播。
在E4处,例如通过使用元件432,将监测器信号引导到从E4到F4的旁路路径中。例如,旁路路径可以使用WDM技术设置,例如,通过使用E4处的光解复用器(DEMUX)元件432和F4处的MUX元件434。DEMUX元件432在E4处分离λr监测器信号,使得在远程光学装置408的功能块412处不接收它们。MUX元件434在F4处将波长为λr的λr监测器信号添加到接收路径i,以便它们返回到源光学装置402进行处理。
在K4处,一个或多个光学元件436至438将监测器信号从接收路径i引导到光电检测器440。例如,DEMUX元件436在K4处可以分离λr监测器信号波长并将其引导到光电检测器440。重定向的监测器信号在源光学装置402的功能块404处不被接收。可替代地,其他元件可以用于将监测器信号从接收路径i引导到光电检测器440。光电检测器440评估从远程光学装置408返回的监测器信号。例如,光电检测器440可以用于检测返回的监测器信号的功率,以便确定路径C4-D4-E4-F4-I4-J4上的光损耗。基于远程监测器块420的配置,在一个或多个实施例中可以假设D4与I4之间的光损耗可忽略不计。可以比较并连续监测光链路i的连通性和/或健康状况。例如,可将C4-D4和I4-J4上的光损耗与在工厂校准和/或配置时的基准数据进行比较。监测器机制可以在源光学装置402和远程光学装置408的正常运行期间检测严重的光纤断裂事件或损耗退化问题。
在一些实施例中,光电检测器440在两个或更多个光链路之间共享,使得来自一个或多个其他接收路径的监测器信号也被引导到同一光电检测器440。例如,元件438(例如但不限于光耦接器或开关元件)可以将光从光链路3的接收路径引导到光电检测器440。在一些实施例中,一个光电检测器440在具有远程ID块的所有受监测的光链路之间共享。替代地和/或附加地,一个或多个附加的光电检测器元件可以存在于到其他远程监测器块的一个或多个连接中。
在一些实施例中,源光学装置402与远程光学装置之间的每个连接包括远程监测器块和监测器块,其可以包括共享元件。在一些实施例中,监测器块418可以包括电路,和/或可以共享由源光学装置402的其他功能(例如,功能块404)使用的电路和/或资源。在一些实施例中,源光学装置402包括一个或多个微处理器(例如,微处理器150),其执行一个或多个控制指令以执行本文所述的一个或多个监测器控制过程。在一些实施例中,远程监测器块420是仅包括无源光学元件的无源光学块。
在一些实施例中,监测器机制在光学系统400的正常运行期间工作,并且监测器信号的参考波长λr不与服务信号的波长λ{service}重叠。例如,λr可以在为服务信号选择的频带之外。在一些实施例中,使用多于一个的参考波长。传输路径和接收路径的独立监测
在一些实施例中,源光学装置被配置为独立地监测由传输路径使用的第一链路组件570和由接收路径使用的第二链路组件572的连通性和健康状况。图5示出了示例实施例中的具有源光学装置的监测器块和远程光学装置的远程监测器块的光学系统。光学系统500包括通过光链路i连接的源光学装置502和远程光学装置508。从W5到X5的传输路径i承载从源光学装置502的功能块504到远程光学装置508的功能块512的服务信号。从C5到D5,传输路径i在光链路i的第一链路组件570(例如,第一光纤)上行进。从Z5到Y5的接收路径i承载从功能块512到功能块504的服务信号。从I5到J5,传输路径i在光链路i的第二链路组件572(例如,第二光纤)上行进。服务信号具有服务波长的集合λ{service}中的特定服务波长λi
源光学装置502包括监测器块518。一个或多个远程监测器块520可以存在于连接到源光学装置502的一个或多个光学装置中。监测器块518在要被监测的一个或多个光链路组件上传输参考波长λr的监测器信号。包括监测器块元件522-530和远程监测器块元件552-554的第一电路被配置为监测传输路径i,并且包括监测器块元件532-540和远程监测器块元件556-558的第二电路被配置为监测接收路径i。在一些实施例中,第一电路和第二电路使用相对于传输路径i和接收路径i执行相同或相似功能的元件以相同或相似方式运行。在下文中更详细地描述第一电路。
在与传输路径i相关联的第一电路中,光源528生成λr监测器信号。在P5处,使用一个或多个元件将监测器信号引导到对应的传输路径i。例如,WDM元件524可以包括将λr监测器信号添加到λi服务信号的MUX元件。在一些实施例中,光源528包括一个或多个宽带光源、一个或多个可调激光器、诸如发光二极管(LED)和激光二极管(LD)等一个或多个二极管和/或一个或多个可以提供λr光的其他光源。在一些实施例中,光源528是出于其他目的而存在于源光学装置502中的光源,例如属于功能块504的光源。在一些实施例中,光源528生成监测器信号,其被引导到一个或多个其他光链路的传输路径。例如,元件522可以是将光传输到一个或多个其他传输路径的开关元件和/或分路器元件,这些其他传输路径例如但不限于在光链路3上传播的传输路径。
在远程光学装置508处的远程监测器块520中,监测器信号在E5处使用一个或多个元件进入旁路路径。例如,WDM元件552可以包括E5处的分离λr监测器信号的DEMUX元件,使得它们在功能块512处不被接收。WDM元件552将λr监测器信号引导到R5。在R5处,反射器554反射λr监测器信号。λr监测器信号传播回WDM元件552,该WDM元件552可以包括MUX元件,该MUX元件将反射的监测器信号引导回源光学装置502。尽管传输路径i通过表示从W5到X5的服务信号的方向的箭头表示,但是传输路径i允许双向信令,允许反射的监测器信号从R5处的反射器554传播到P5处的WDM元件524。反射的监测器信号传播到L5处的光电检测器526。例如,T5处的循环器可以经由元件522将输出的监测器信号从光源528引导到WDM 524,并且可以将输入的反射的监测器信号引导到光电检测器526。在一些实施例中,WDM元件524的DEMUX元件在P5处将返回的波长λr的监测器信号分离,使得它们不传播到功能块504。
光电检测器526检测反射的监测器信号的功率,以便确定在其从光源528到光电检测器526的路径Q5–T5–A5–P5–C5–D5–E5–R5–E5–D5–C5–P5–A5–T5–L5上的光损耗。源光学装置502可以具有一个或多个光电检测器526,用于评估反射的监测器信号。在一些实施例中,光电检测器526在两个或更多个光链路之间共享,使得来自一个或多个其他接收路径的反射的监测器信号也被引导到同一光电检测器526。可替代地和/或附加地,光电检测器元件可以存在于一个或多个其他光链路中。基于监测器块518和远程监测器块520的配置,在一个或多个实施例中可以假设在第一链路组件570外部的段上的光损耗可以忽略。第一链路组件570的连通性和/或健康状况可以被比较并且被连续地监测。例如,由光电检测器526检测到的光学测量结果可以与在工厂校准和/或配置时的基准数据进行比较以确定光损耗。监测器机制可以在源光学装置502和远程光学装置508的正常运行期间检测第一链路组件570中的光纤断开或故障事件或损耗退化问题。
在一些实施例中,与传输路径i相关联的第一电路具有附加组件,用于改善健康状况和连通性监测。例如,光电检测器530可以用于监测光源528的健康状况。光从光源528传播到光电检测器530,而没有在任何光链路上传播。例如,光可以经由元件529从光源528传播到光电检测器530,该元件529例如但不限于光学分路器或开关元件,其将光远离路径Q5–T5引导到光电检测器530。光电检测器530可以确定光源528的电流输出,并且将光源的电流输出与在工厂校准时的基准数据进行比较,以确定光源528的健康状况。在一些实施例中,将由光电检测器526检测到的光学测量结果与由光电检测器530检测到的电流的电流输出进行比较,以确定传输路径i上的光损耗。
在一些实施例中,源光学装置502与远程光学装置之间的每个连接包括远程监测器块和监测器块,其可以包括共享元件。
在一些实施例中,监测器机制在光学系统500的正常运行期间工作,并且参考波长λr不与服务信号的波长λ{service}重叠。例如,λr可以在为服务信号选择的频带之外。在一些实施例中,使用多于一个的参考波长。
在一些实施例中,监测器机制在光学系统500的正常运行期间工作,并且监测器信号的参考波长λr不与服务信号的波长λ{service}重叠。例如,参考波长λr可以在为服务信号选择的频带之外。在一些实施例中,使用多于一个的参考波长。
在一些实施例中,监测器块518可以包括电路,和/或可以共享由源光学装置502的其他功能(例如,功能块504)使用的电路和/或资源。在一些实施例中,源光学装置502包括一个或多个微处理器(例如,微处理器150),其执行一个或多个控制指令以执行本文所述的一个或多个监测器控制过程。在一些实施例中,远程监测器块520是仅包括无源光学元件的无源光学块。示例光分插复用器(OADM)节点实现
光分插复用器(OADM)是在波分复用(WDM)系统中使用的光学装置,用于将不同波长的光复用并路由到单根光纤中或单根光纤外。这允许具有不同波长的多个通信信道在光纤上传播。OADM装置通常包括光解复用器(DEMUX)、光复用器(MUX)、重新配置光解复用器和光复用器之间的路径的方法,以及用于添加和去除信号的端口的集合。OADM通常用于电信网络。OADM既可以指固定的光分插复用器(FOADM),也可以指可重构光分插复用器(ROADM)。
图6示出了示例实施例中的具有OADM节点的光学系统。光学系统600包括多个OADM节点,其包括OADM节点608。OADM节点608通过至少一个节点间光链路620-626耦接到光学系统600中的多个其他节点。节点间光链路620-626包括至少一个光纤,用于以单向和/或双向方式向OADM节点608和从OADM节点608传输多个波长信号。通常,一个或多个OADM节点608布置在总线、环形、星形、网格或混合拓扑布置中。OADM节点608可以是光学系统600中的终端节点,例如当OADM节点608仅连接到一个节点间光链路620-626时。
OADM节点608包括至少一个定向装置610至616。定向装置610至616将通过对应的节点间光链路620-626接收到的信号路由到OADM节点608内的其他组件,例如但不限于一个或多个分插组装置602至606和/或一个或多个其他定向装置610至616。例如,OADM节点608可以包括一个或多个快速通信链路,其直接在定向装置610至616之间发送和接收服务信号,而无需增加或去除任何信道。
定向装置610可以通过一个或多个光链路耦接到一个或多个分插组装置602至606。分插组装置602至606可以对波长的不同集合的信号执行分插功能。例如,特定的定向装置610可以与第一分插组装置602通信具有第一波长集合的信号、与第二分插组装置604通信具有第二波长集合的信号,并且与第三分插组装置606通信具有第三波长集合的信号。在一些实施例中,分配给特定分插组装置60的信号是光学系统600使用的频带的子带。在一些实施例中,OADM节点608仅具有一个分插组装置602,并且定向装置610至616将服务信号的整个频带发送到单个分插组装置602。
分插组装置602至606分离并组合接收到的服务信号中的特定波长的各个信道。例如,分插组装置602可以去除或分离波长λx的信号、通过耦接装置628和分插组装置602至606的光链路630将λx信号传输到装置628、通过光链路630从装置628接收λx信号、并且将接收到的λx信号添加到组合的输出信号,该组合的输出信号包括来自一个或多个其他装置的多个波长的输出信号。装置628可以是光学装置、电气装置和/或电光学装置。可以采用一个或多个应答器、接收器、收发器和/或其他光电和电光学装置以与装置628通信。
分插组装置602可以去除和添加多个波长(例如但不限于λx)的信号,并且可以与多个装置(例如但不限于装置628)通信各个波长信号。分插组装置602将包括分配给分插组装置602的多个信道的组合信号发送到一个或多个定向装置610至616。
尽管将OADM节点608图示为逻辑装置,但是OADM节点608的组件可以单独部署。分插组装置602至606通常在物理上独立于定向装置610至616而独立地部署。例如,一个或多个分插组装置602至606可以位于与一个或多个定向装置610至616相同的光学网络装置支架的不同插槽中、同一网络装置机架的一个或多个不同支架、在同一站点处的一个或多个不同位置,和/或远离包含一个或多个定向装置610至616的站点。在一些实施例中,一个或多个分插组装置602至606位于靠近一个或多个最终用户的位置。在一些实施例中,分插组装置602至606与定向装置610至616之间的一条或多条光链路通过一个或多个光缆系统(例如但不限于一个或多个光学接线板和/或光学配线盒)行进。
定向装置610至616可以很好地配备有通电电气元件,例如光源(例如,光电二极管、激光二极管和/或其他光源)和/或光信道监测器(OCM)。此外,定向装置610至616可以紧密地链接到供电的光学网络装置和/或网络控制器,使得更容易在配置和/或运行期间识别和/或监测它们的光连通性。替代地,一个或多个分插组装置602至606可以具有到OADM节点608中的定向装置610至616和/或其他装置的复杂的连接路径。此外,一个或多个分插组装置602至606可以是无源的、没有电路的并且没有通电光学元件的。
图7示出了示例实施例中的OADM节点中的定向装置和分插组装置。OADM节点700包括一个或多个定向装置760和一个或多个分插组装置762。该定向装置可以通过具有一个或多个其他定向装置(例如,定向装置610至616)的一个或多个光链路718-720发送和接收信号。为了清楚地说明,下面更详细地描述一个定向装置760和一个分插组装置762;一个或多个所描述的特征可以应用于OADM节点700内的一个或多个其他定向装置和/或分插组装置。在一些实施例中,一个或多个定向装置760是源光学装置(例如,源光学装置102、202、402、502),其包括一个或多个识别块和/或一个或多个监测器块。在一些实施例中,一个或多个分插组装置762是远程光学装置(例如,远程光学装置108、208、408、508),其包括一个或多个远程识别块和/或一个或多个远程监测器块。在不将本公开限于示例实施例的情况下,在图8至图9中描述具体示例。
定向装置760可以包括用于分离信号的DEMUX元件704,使得被分配给特定分插组装置762的特定子带可以被引导到特定的分插组装置762。DEMUX元件704将通过通信链路720接收到的波长的集合λ{service}的服务信号分离成一个或多个信号子集,并通过一个或多个光链路722-726将分离的信号传输至一个或多个对应的分插组装置762。例如,波长λ{i}的信号通过通信链路722从DEMUX元件704被引导到分插组装置762;波长λ{j}的信号通过通信链路724从DEMUX元件704被引导到另一个分插组装置;以及波长λ{k}的信号通过通信链路726从DEMUX元件704被引导到另一个分插组装置。
定向装置760可以包括MUX元件702,用于组合来自一个或多个分插组装置(例如,分插组装置602至606)的信号,从而组合的信号可以通过一个或多个通信链路718-720发送到一个或多个定向装置(例如,定向装置610至616)。例如,MUX元件702可以组合以下信号:通过通信链路722从分插组装置762返回的λ{i}信号;通过通信链路724从另一个分插组装置返回的λ{j}信号;以及通过通信链路726从另一个分插组装置返回的λ{k}信号。
在一个或多个实施例中,定向装置760可以包括可以由ID块(例如,ID块114、214)和/或监测器块(例如,监测器块118、418、518)使用的一个或多个通电的电气和/或光学元件,例如,前置放大器708、光信道监测器710、升压放大器706、光电二极管712、光管理信道714、可变光衰减器、光源、电源、电子电路、处理器和/或包括通电元件的其他元件。
在分插组装置762中,DEMUX元件736基于波长分离信号,并将分离的信号引导到多个单波长光链路728-732。每个单波长光链路728-732可以在分插组装置762和装置(例如,装置628)之间承载特定波长(例如,λabc)的信号。MUX元件734对通过单波长光链路728-732接收到的返回的信号进行组合,使得组合的返回信号可以通过通信链路722被发送到定向装置760。
分插组装置762可以连接到一个或多个定向装置760。例如,分插组装置762可以通过一个或多个光链路752-754连接到一个或多个其他定向装置(例如,定向装置610至616)。例如,分插组装置762还可以通过光链路752-754从其他定向装置接收λ{i}信号。在一些实施例中,来自两个或更多个定向装置的信号可以被引导到分插组装置762中的MUX元件734和DEMUX元件736。可替代地和/或附加地,来自定向装置的信号可以具有其自己的MUX元件734和DEMUX元件736。例如,组合的信号也可以通过通信链路752-754从MUX元件734传输到一个或多个其他定向装置。
示例节点ID机制的实现
图8示出了示例实施例中的实现ID机制的OADM节点中的定向装置和分插组装置。OADM节点800包括一个或多个定向装置860和一个或多个分插组装置862。定向装置860可以通过一个或多个光链路818-820向一个或多个其他定向装置(例如,定向装置610至616)发送信号或从其接收信号。为了清楚说明,在下文中更详细地描述一个定向装置860和一个分插组装置862;一个或多个所描述的特征可以应用于OADM节点800内的一个或多个其他定向装置和/或分插组装置。在一些实施例中,OADM节点800、一个或多个定向装置860和/或一个或多个分插组装置862包括相对于本文描述的一个或多个其他实施例描述的一个或多个元件。
定向装置860包括一个或多个ID块组件,例如DEMUX元件804上游的光源850和/或DEMUX元件804下游的光源856。DEMUX元件804将通过通信链路820接收到的波长λ{service}的集合的服务信号分离成一个或多个信号子集中,并通过一个或多个光链路822-826将分离的信号传输到一个或多个对应的分插组装置862。
在分插组装置862中,DEMUX元件836基于波长分离信号,并将分离的信号引导到多个单波长光链路828-832,其可以将分插组装置862耦接至一个或多个装置。MUX元件834对通过单波长光链路828-832接收到的返回信号进行组合,使得组合的返回信号可以通过光链路822被发送到定向装置860。
ID信号被添加到从定向装置860传输到分插组装置862的服务信号的传输路径。分插组装置862包括一个或多个远程ID块组件,例如,元件866-870。例如,元件866可以将ID信号引导到包括WDM滤波器的集合868的旁路路径中,元件870可以将ID信号引导到用于从分插组装置862返回到定向装置860的服务信号的接收路径中。
在定向装置860中,返回的ID信号被引导到光信道监测器(OCM)810。OCM 810测量返回的ID信号的性质,例如特定的返回ID信号的波长。OCM 810允许定向装置860确定ID波长的集合λ{ID}中的哪些波长已经被阻止或通过,从而允许识别对应的光链路822。在一些实施例中,在MUX元件802组合通过一个或多个光链路822-826从一个或多个分插组装置862接收到的信号之后,OCM 810接收返回的ID信号。
分插组装置862可以连接到一个或多个定向装置860。例如,分插组装置862可以通过一个或多个光链路852-854连接到一个或多个其他定向装置(例如,定向装置610至616)。分插组装置862还可以通过光链路852-854从其他定向装置接收ID信号和/或服务信号。
在分插组装置862中,具有WDM滤波器的集合的旁路路径可以存在于每个定向装置和每个分插组装置之间的每个连接路径中。例如,来自光链路852-854的ID信号可以通过元件866至870,或者可以通过一个或多个相似的元件的集合。此外,用于OADM节点800的每个定向装置的旁路路径可以存在于OADM节点800的一个或多个其他分插组装置中。
在一些实施例中,定向装置860包括一个或多个微处理器(例如,微处理器150),其执行一个或多个控制指令以执行本文所述的一个或多个识别控制过程。在一些实施例中,分插组装置862是仅包括无源光学元件的无源光学装置。
示例OADM节点监测器机制的实现
图9示出了示例实施例中的实现监测器机制的OADM节点中的定向装置和分插组装置。OADM节点900包括一个或多个定向装置960和一个或多个分插组装置962。定向装置960可以通过一个或多个光链路918-920向一个或多个其他定向装置(例如,定向装置610至616)发送信号并从其接收信号。为了清楚说明,在下文中更详细地描述一个定向装置960和一个分插组装置962;一个或多个所描述的特征可以应用于OADM节点900内的一个或多个其他定向装置和/或分插组装置。在一些实施例中,OADM节点900、一个或多个定向装置960和/或一个或多个分插组装置962包括相对于本文描述的一个或多个其他实施例描述的一个或多个元件。
定向装置960包括一个或多个监测器块组件,例如用于生成参考波长λr的监测器信号的光源940。MUX元件942可以将λr监测器信号添加到一个或多个服务信号,例如具有分配给特定的分插组装置962的波长集合中的波长的λ{i}服务信号。添加的监测器信号通过光链路922从定向装置960传输到分插组装置962。相同或相似的机制可以通过一个或多个其他光链路924-926将参考信号添加到服务信号中,该服务信号被发送到一个或多个其他分插组装置。
分插组装置962包括一个或多个远程监测器块组件,例如元件944至946。例如,元件944可以例如通过使用DEMUX元件944将监测器信号引导到旁路路径中,以从定向装置960的传输路径中去除λr监测器信号,并且MUX元件946将λr监测器信号添加到通向定向装置960的接收路径。其余的服务信号由分插组装置962处理,例如由DEMUX元件936和MUX元件934处理,以分离传输到光链路928-932的信号并合并从光链路928-932接收到的信号。
在定向装置960处,返回的λr监测器信号被评估。例如,DEMUX元件948可以分离来自接收路径的λr监测器信号,并将它们引导到光电检测器950。光电检测器950评估从分插组装置962返回的监测器信号。例如,光电检测器950可以用于检测返回的监测器信号的功率,以便确定光链路922上的光损耗。
分插组装置962可以连接到一个或多个定向装置960。例如,分插组装置962可以通过一个或多个光链路952-954连接到一个或多个其他定向装置(例如,定向装置610至616)。分插组装置962还可以通过光链路952-954从其他定向装置接收监测器信号和/或服务信号。
在分插组装置962中,旁路路径可以存在于每个定向装置和每个分插组装置之间的每个连接路径中。例如,来自光链路952-954的监测器信号可以通过元件944至946,或者可以通过一个或多个相似的元件的集合。此外,用于OADM节点900的每个定向装置的旁路路径可以存在于OADM节点900的一个或多个其他分插组装置中。
在一些实施例中,定向装置960包括一个或多个微处理器(例如,微处理器150),其执行一个或多个控制指令以执行本文所述的一个或多个监测器控制过程。在一些实施例中,分插组装置962是仅包括无源光学元件的无源光学装置。
本公开的其他方面
因此,说明书和附图应被认为是说明性的而不是限制性的。本发明的范围的唯一且排他的指示,以及申请人意图将其作为本发明的范围的是,以本权利要求书所发布的特定形式而在本申请发布的权利要求书(包括任何后续更正)的字面和等效范围。
在前述说明书中,参考具体细节描述了实施例,具体细节可随实现方式而变化。然而,将理解的是,可以在不脱离本发明的精神和范围的情况下进行各种修改。以上阐述的示例作为对如何制作和使用实施例的完整公开和描述而提供给本领域普通技术人员,但是无意于限制发明人所认为的其发明的范围。对于本领域技术人员显而易见的是,用于执行本文公开的方法和系统的上述模式的修改旨在落入本公开和所附权利要求的范围内。本发明的范围的唯一且排他的指示,以及申请人意图将其作为本发明的范围的是,以本权利要求书所发布的特定形式而在本申请发布的权利要求书(包括任何后续更正)的字面和等效范围。

Claims (29)

1.一种源光学装置,包括:
多个光端口,其被配置为接收与一个或多个远程光学装置耦接的多个光链路;
光源,其生成参考波长的监测器信号;
被配置为通过所述多个光链路、将所述监测器信号引导到从所述源光学装置到所述一个或多个远程光学装置的传输路径的至少一个光学元件,其中,所述一个或多个远程光学装置包括通过所述多个光链路中的对应光链路、将所述监测器信号返回到所述源光学装置的一个或多个光学元件;
光电检测器;
被配置为将通过所述多个光链路接收到的返回的监测器信号引导到所述光电检测器的至少一个光学元件;以及
至少一个微处理器,其被配置为执行控制指令,以生成所述监测器信号,并响应于所述返回的监测器信号处理所述光电检测器的一个或多个输出,以确定所述光链路的连通性。
2.根据权利要求1所述的源光学装置,其中,所述一个或多个远程光学装置是无源光学装置。
3.根据权利要求1所述的源光学装置,其中,确定所述多个光链路的连通性包括:检测一个或多个光链路上的光纤断开或故障事件。
4.根据权利要求1所述的源光学装置,其中,确定所述光链路的连通性包括:基于用于所述光源的基准数据,确定在一个或多个光链路上的光损耗。
5.根据权利要求1所述的源光学装置:
其中,所述通过所述多个光链路中的对应光链路、将所述监测器信号返回到所述源光学装置的一个或多个光学元件包括在从所述源光学装置开始的每个传输路径中的解复用器装置和在到所述源光学装置的每个接收路径中的复用器装置,以及
其中,所述解复用器装置和所述复用器装置引导所述监测器信号通过每个传输路径和每个接收路径之间的旁路路径。
6.根据权利要求1所述的源光学装置,
其中,所述一个或多个远程光学装置处的所述一个或多个光学元件包括反射器,所述反射器通过由一个或多个传输路径所使用的一个或多个传输光链路组件返回所述监测器信号,以及
其中,所述至少一个微处理器被配置为确定接收光链路组件的连通性。
7.根据权利要求1所述的源光学装置,还包括:
被配置为通过由一个或多个接收路径所使用的一个或多个光链路组件、将参考波长的第二监测器信号引导到所述远程光学装置的至少一个光学元件,其中,所述一个或多个远程光学装置处的所述一个或多个远程光学元件包括第二反射器,所述第二反射器通过由所述一个或多个接收路径所使用的所述一个或多个光链路组件返回所述第二监测器信号;
被配置为将返回的第二监测器信号引导到第二光电检测器的至少一个光学元件;以及
其中,所述至少一个微处理器,被配置为响应于返回的第二监测器信号,基于所述第二光电检测器的输出来评估接收光链路组件的连通性。
8.根据权利要求1所述的源光学装置,还包括第二光电检测器,其中,确定所述光链路的连通性包括:基于由所述第二光电检测器测量的所述光源的电流输出,确定一个或多个光链路上的光损耗。
9.根据权利要求1所述的源光学装置,所述光学系统还包括
光源,其生成识别波长的集合的识别信号;
被配置为通过所述多个光链路将识别信号引导到从所述源光学装置到所述一个或多个远程光学装置的传输路径的至少一个光学元件,其中,所述一个或多个远程光学装置包括将所述识别信号引导通过波分复用滤波器的集合并通过所述多个光链路中的对应光链路将所述识别信号返回到所述源光学装置的一个或多个光学元件;
光信道监测器;
被配置为将通过所述多个光链路接收到的返回的识别信号引导到光信道监测器的至少一个光学元件;以及
电子电路,其被配置为响应于所述返回的识别信号,基于所述光信道监测器的输出来识别所述多个光链路。
10.根据权利要求1所述的源光学装置,
其中,所述源光学装置是光分插复用器节点处的定向装置;以及
其中,所述一个或多个远程光学装置是光分插复用器节点处的分插组装置。
11.一种源光学装置,包括:
多个光端口,其被配置为接收与一个或多个远程光学装置耦接的多个光链路;
光源,其生成识别波长的集合的识别信号;
被配置为通过多个光链路将所述识别信号引导到从所述源光学装置到所述一个或多个远程光学装置的传输路径的至少一个光学元件,其中,所述一个或多个远程光学装置包括将所述识别信号引导通过波分复用滤波器的集合并通过所述多个光链路中的对应光链路将所述识别信号返回到所述源光学装置的一个或多个光学元件;
光信道监测器;
被配置为将通过所述多个光链路接收到的返回的识别信号引导到光信道监测器的至少一个光学元件;以及
至少一个微处理器,其被配置为执行控制指令以生成所述识别信号,并响应于所述返回的识别信号处理所述光信道监测器的一个或多个输出,以识别所述多个光链路。
12.根据权利要求11所述的源光学装置,其中,所述一个或多个远程光学装置是无源光学装置。
13.根据权利要求11所述的源光学装置,其中,识别所述多个光链路包括:识别与特定波长相关联的特定输入路径和特定输出路径。
14.根据权利要求11所述的源光学装置,其中,识别特定光链路包括:识别与特定波长相关联的特定双向路径。
15.根据权利要求11所述的源光学装置,所述光学系统还包括:
光源,其生成参考波长的监测器信号;
被配置为通过所述多个光链路将监测器信号引导到从源光学装置到所述一个或多个远程光学装置的传输路径的至少一个光学元件,其中,所述一个或多个远程光学装置包括通过所述多个光链路中的对应光链路将所述监测器信号返回到所述源光学装置的一个或多个光学元件;
光电检测器;
被配置为将通过所述多个光链路接收到的返回的监测器信号引导到光电检测器的至少一个光学元件;
电子电路,其被配置为响应于所述返回的监测器信号,基于光电检测器的输出来确定所述光链路的连通性。
16.根据权利要求11所述的源光学装置:
其中,所述源光学装置是光分插复用器节点处的定向装置;以及
其中,所述一个或多个远程光学装置是光分插复用器节点处的分插组装置。
17.一种光学系统,包括:
用于光分插复用器节点的第一定向装置;
多个分插组装置,其被配置为通过多个光链路与所述第一定向装置通信地耦接;
生成识别波长的集合的识别信号的至少一个光源,其在所述第一定向装置中;
被配置为通过所述多个光链路将所述识别信号引导到从所述第一定向装置到所述多个分插组装置的传输路径的至少一个光学元件,其在所述第一定向装置中;
将所述识别信号引导通过波分复用滤波器的集合并通过所述多个光链路将所述识别信号返回到所述第一定向装置的一个或多个光学元件,其在所述多个分插组装置的每个分插组装置中;
被配置为将返回的识别信号引导到光信道监测器至少一个光学元件,其在所述第一定向装置中;
在所述第一定向装置中的至少一个微处理器,其被配置为执行控制指令以生成所述识别信号,并响应于返回的识别信号处理所述光信道监测器的一个或多个输出,以识别所述多个光链路。
18.根据权利要求17所述的光学系统,其中,所述多个分插组装置是无源光学装置。
19.根据权利要求17所述的光学系统,其中,所述波分复用滤波器的集合是所述多个分插组装置中的每个分插组装置的可插的组件。
20.根据权利要求17所述的光学系统,还包括:
第二定向装置,其中,所述多个分插组装置被配置为通过第二多个光链路与所述第二定向装置通信地耦接;
生成识别波长的集合的第二识别信号的至少一个第二光源,其在所述第二定向装置中;
被配置为通过所述多个光链路将所述第二识别信号引导到从所述第二定向装置到所述多个分插组装置的传输路径的至少一个第二光学元件,其在所述第二定向装置中;
通过所述多个光链路将所述第二识别信号引导通过波分复用滤波器的第二集合并将所述第二识别信号返回到所述第二定向装置的一个或多个第二光学元件,其在所述多个分插组装置的每个分插组装置中;
被配置为将第二返回的识别信号引导到第二光信道监测器的至少一个光学元件,其在所述第二定向装置中;
在所述第二定向装置中的至少一个第二微处理器,其被配置为执行第二控制指令以生成所述第二识别信号,并响应于第二返回的识别信号而处理所述第二光信道监测器的一个或多个输出,以识别所述第二多个光链路。
21.一种光学系统,包括:
用于光分插复用器节点的第一定向装置;
多个分插组装置,其被配置为通过多个光链路与所述第一定向装置通信地耦接;
生成参考波长的监测器信号的至少一个光源,其在所述第一定向装置中;
被配置为通过所述多个光链路将所述监测器信号引导到从所述第一定向装置到所述一个或多个远程光学装置的传输路径的至少一个光学元件,其在所述第一定向装置中;
通过对应的光链路将所述监测器信号返回到所述源光学装置的一个或多个光学元件,其在所述多个分插组装置的每个分插组装置中;
在所述第一定向装置中的光电检测器以及被配置为将通过所述多个光链路接收到的返回的监测器信号引导到所述光电检测器的至少一个光学元件;以及
被配置为执行控制指令以生成所述监测器信号并响应于返回的监测器信号而处理所述光电检测器的一个或多个输出以确定所述多个光链路的连通性的至少一个微处理器,其在所述第一定向装置中。
22.根据权利要求21所述的光学系统,其中,所述一个或多个分插组装置是无源光学装置。
23.根据权利要求21所述的光学系统,其中,确定所述多个光链路的连通性包括:检测一个或多个光链路上的光纤断开或故障事件。
24.根据权利要求21所述的光学系统,其中,确定所述光链路的连通性包括:基于用于所述至少一个光源的基准数据,确定在一个或多个光链路上的光损耗。
25.根据权利要求21所述的光学系统:
其中,每个分插组装置处的所述一个或多个光学元件包括:在从源光学装置开始的每个传输路径中的解复用器装置和在到源光学装置的每个接收路径中的复用器装置,以及
其中,所述解复用器装置和所述复用器装置引导所述监测器信号通过每个传输路径和每个接收路径之间的旁路路径。
26.根据权利要求21所述的光学系统,
其中,每个分插组装置处的所述一个或多个光学元件包括反射器,所述反射器通过由一个或多个传输路径所使用的一个或多个传输光链路组件返回所述监测器信号,以及
其中,所述控制指令在被执行时确定一个或多个接收光链路组件的连通性。
27.根据权利要求21所述的光学系统,还包括:
被配置为通过由一个或多个接收路径所使用的一个或多个光链路组件将参考波长的第二监测器信号引导到所述远程光学装置的至少一个光学元件,其中,每个分插组装置处的所述一个或多个光学元件包括第二反射器,所述第二反射器通过由所述一个或多个接收路径所使用的所述一个或多个光链路组件返回所述第二监测器信号;以及
被配置为将返回的第二监测器信号引导到第二光电检测器的至少一个光学元件,其中,所述控制指令在被执行时确定一个或多个接收链路组件的连通性。
28.根据权利要求21所述的光学系统,还包括:
在所述第一定向装置中的第二光电检测器,
其中,确定所述光链路的连通性包括:基于由所述第二光电检测器测量的所述光源的电流输出,确定一个或多个光链路上的光损耗。
29.根据权利要求21所述的光学系统,还包括:
第二定向装置,其中,所述多个分插组装置被配置为通过第二多个光链路与所述第二定向装置通信地耦接;
在所述第二定向装置中的至少一个第二光源,其生成参考波长的第二监测器信号;
被配置为通过所述多个光链路将所述第二监测器信号引导到从所述第二定向装置到所述多个分插组装置的传输路径的至少一个第二光学元件,其在所述第一定向装置中;
通过对应的光链路将所述第二监测器信号返回到所述第二定向装置的一个或多个第二光学元件,其在所述多个分插组装置的每个分插组装置中;
在所述第二定向装置中的第二光电检测器以及被配置为将通过所述多个光链路接收到的返回的第二监测器信号引导到所述第二光电检测器的至少一个第二光学元件;
被配置为执行控制指令以生成所述第二监测器信号并响应于返回的第二监测器信号处理所述第二光电检测器的一个或多个输出以确定所述第二多个光链路的连通性的至少一个第二微处理器,其在所述第二定向装置中。
CN202110075711.5A 2021-01-20 2021-01-20 识别和监测光学系统中的连接 Pending CN114858410A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110075711.5A CN114858410A (zh) 2021-01-20 2021-01-20 识别和监测光学系统中的连接
US17/577,049 US11863295B2 (en) 2021-01-20 2022-01-17 Identifying and monitoring connections in an optical system
US18/370,903 US20240014919A1 (en) 2021-01-20 2023-09-21 Identifying and monitoring connections in an optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110075711.5A CN114858410A (zh) 2021-01-20 2021-01-20 识别和监测光学系统中的连接

Publications (1)

Publication Number Publication Date
CN114858410A true CN114858410A (zh) 2022-08-05

Family

ID=82405618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110075711.5A Pending CN114858410A (zh) 2021-01-20 2021-01-20 识别和监测光学系统中的连接

Country Status (2)

Country Link
US (2) US11863295B2 (zh)
CN (1) CN114858410A (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615358B1 (en) * 1993-03-11 2004-10-20 AT&T Corp. Optical network based on remote interrogation of terminal equipment and an optical network unit therefor using wavelength shifting
US7280189B2 (en) * 2004-07-08 2007-10-09 Weller Whitney T Method and apparatus for testing optical fiber based networks
JP5151691B2 (ja) * 2008-05-27 2013-02-27 富士通株式会社 伝送路種別特定装置および伝送路種別特定方法
US8406620B2 (en) * 2009-07-15 2013-03-26 Pmc Sierra Israel Ltd. Passive optical network (PON) in-band optical time domain reflectometer (OTDR)
US20120134663A1 (en) * 2010-11-29 2012-05-31 Hongsheng Wang System and method for managing optical system failure
US8655167B1 (en) * 2011-01-05 2014-02-18 Google Inc. Fiber diagnosis system for point-to-point optical access networks
WO2013155235A1 (en) * 2012-04-11 2013-10-17 Ultra Communications, Inc. Optical time domain reflectometer with high resolution and high sensitivity
EP3742149B1 (en) * 2018-02-23 2021-10-20 Mitsubishi Electric Corporation Multi-direction path monitoring device

Also Published As

Publication number Publication date
US20220231780A1 (en) 2022-07-21
US11863295B2 (en) 2024-01-02
US20240014919A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US9680569B2 (en) Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (ROADM) node
JP6873095B2 (ja) Roadmサービス側の光ファイバ接続をマッチングさせるための装置および方法
US7653311B2 (en) Optical wavelength add-drop multiplexer
JP2012244530A (ja) ファイバ誤接続検出方法及びノード装置
US11165529B2 (en) Optical wavelength multiplex transmission system, optical wavelength multiplex apparatus, and standby system checking method
JP4672273B2 (ja) 波長多重光伝送システム及びそれにおける送信波長制御方法
EP2806583B1 (en) Optical fiber transmission system
US9178610B1 (en) Optical loopback in a wavelength division multiplexing system
US10615868B2 (en) Communication system and fault detection method
CN111385052B (zh) 一种光交换装置、系统及功率计算方法
US11349591B2 (en) Apparatus, systems, and methods for optical channel management
US20120318965A1 (en) Optical transmission system and optical transmission method
US10439710B2 (en) Passive wavelength division mobile fronthaul network system
JP6297139B2 (ja) 光リングネットワーク
US11863295B2 (en) Identifying and monitoring connections in an optical system
JP2010041660A (ja) Wdm伝送装置
EP2482480B1 (en) Optical network element for WDM
JP3588657B2 (ja) 光線路監視システム
US9544669B2 (en) Routing in a WDM-based PON
WO2023161976A1 (ja) 光伝送システム、光伝送システムの伝送方法、及び通信装置
EP4456447A2 (en) Apparatus, systems, and methods for optical channel management
EP2328292B1 (en) WDM channel extraction device
CN118802056A (zh) 光网络系统和光网络设备
KR20140011533A (ko) 양방향 동일 파장을 사용하는 광스위칭 기능 내장형 광통신 단말장비
WO2014038036A1 (ja) 波長監視システム、及び波長監視方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination