WO2023161976A1 - 光伝送システム、光伝送システムの伝送方法、及び通信装置 - Google Patents

光伝送システム、光伝送システムの伝送方法、及び通信装置 Download PDF

Info

Publication number
WO2023161976A1
WO2023161976A1 PCT/JP2022/007119 JP2022007119W WO2023161976A1 WO 2023161976 A1 WO2023161976 A1 WO 2023161976A1 JP 2022007119 W JP2022007119 W JP 2022007119W WO 2023161976 A1 WO2023161976 A1 WO 2023161976A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical transmission
signal
roadm
communication device
Prior art date
Application number
PCT/JP2022/007119
Other languages
English (en)
French (fr)
Inventor
佳奈 益本
剛志 関
俊哉 松田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/007119 priority Critical patent/WO2023161976A1/ja
Publication of WO2023161976A1 publication Critical patent/WO2023161976A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to an optical transmission system, a transmission method for an optical transmission system, and a communication device.
  • ROADM Reconfigurable Optical Add-Drop Multiplexer
  • a ROADM is configured as an optical mesh network made up of ROADM nodes, in which a plurality of ROADM devices are connected in a mesh form by optical fibers.
  • Each ROADM device has an Add/Drop function that drops/adds an arbitrary optical signal from wavelength-multiplexed WDM (Wavelength Division Multiplexing) signals from multiple routes, and a routing function that switches the route to an arbitrary route.
  • WDM Wavelength Division Multiplexing
  • the ROADM device generally has a function of transmitting and receiving supervisory control signals (hereinafter also referred to as OSC (Optical Supervisory Channel)).
  • OSC uses OSC light in optical transmission systems to check the connectivity of optical fibers, manage the optical power of signals, and manage wavelength information by passing through amplifier circuits and wavelength selective switches (WSS). conduct.
  • WSS wavelength selective switches
  • ROADM equipment will perform optical communication with equipment other than the ROADM equipment without electrical termination. be done.
  • devices that are not ROADM devices are considered devices that do not have an OSC.
  • the main function of the OSC in the ROADM equipment is to manage the conduction of optical signals in the transmitting/receiving units of each ROADM equipment, and to automatically cut off the conduction when the optical signal is interrupted in the optical transmission line. It is to perform APSD (Auto Power Shut Down).
  • APSD Auto Power Shut Down
  • the conduction management of the OSC not only cuts off the conduction but also has the function of restoring it.
  • the ROADM device appropriately controls the amplifier circuit, VOA (Variable Optical Attenuator), and WSS (see, for example, Non-Patent Document 1).
  • the OSC When communicating between ROAD devices based on the Open ROADM MSA (Multi-Source Agreement), the OSC is essential for communication between ROADM devices to check connectivity or conduct continuity management.
  • the simplest solution is to delete the OSC of the ROADM equipment.
  • the OSC light used in OSC is also used for optical continuity confirmation.
  • ROADM devices are generally used in core networks, and perform communications using high-power optical signals. Therefore, if the OSC is removed from the ROADM device, a high-power optical signal will be used as a signal during optical conduction, and it is assumed that the safety of the operator cannot be ensured. Also, since the OSC function is specified as a configuration of Open ROADM MSA, it cannot be deleted as a function.
  • An object of the present invention is to provide a system transmission method and a communication device.
  • An optical transmission system is an optical transmission system comprising: an optical transmission device that transmits and receives an optical signal via an optical transmission line; and a communication device that is connected to the optical transmission device via the optical transmission line.
  • the optical transmission device includes an SFP (Small Form factor Pluggable Transceiver) that mutually converts an electrical signal and an optical signal and transmits and receives the optical signal via the optical transmission line
  • the communication device includes the It is characterized by comprising a response unit that returns an optical signal transmitted from an optical transmission device to the optical transmission device.
  • an optical transmission system a transmission method of the optical transmission system, and a communication device are provided, which enable optical communication without electrically terminating the device of another system while ensuring the OSC function of the ROADM device. can do.
  • FIG. 10 is an explanatory diagram showing a configuration for performing communication between conventional ROADM devices as a comparative example of the present embodiment
  • FIG. 10 is an explanatory diagram showing a configuration when conventional ROADM devices communicate with each other in a loopback configuration using the OSC function, as a comparative example of the present embodiment
  • FIG. 2 is an explanatory diagram showing an optical transmission system according to the first embodiment including a communication device instead of the ROADM device
  • FIG. 10 is an explanatory diagram showing a configuration when conventional ROADM devices perform connectivity confirmation using the OSC function, as a comparative example of the present embodiment
  • FIG. 10 is an explanatory diagram showing a configuration when conventional ROADM devices communicate with each other in a loopback configuration using the OSC function, as a comparative example of the present embodiment
  • 4 is an explanatory diagram showing a configuration in which the optical transmission system shown in FIG. 3 is connected via a network as a second embodiment
  • FIG. FIG. 10 is an explanatory diagram showing a configuration in which conventional ROADM devices perform optical power management using OSC functions, as a comparative example of the present embodiment.
  • FIG. 4 is an explanatory diagram showing a configuration in which conventional ROADM devices perform optical power management in a looped configuration, as a comparative example of the present embodiment.
  • FIG. 9 is an explanatory diagram in which the communication device shown in FIG.
  • FIG. 10 is an explanatory diagram showing a configuration in which the communication device of the optical transmission system shown in FIG. 9 includes an optical amplifier as a fourth embodiment
  • FIG. 4 is an explanatory diagram showing a configuration when wavelength information is managed by OCM between conventional ROADM devices as a comparative example of the present embodiment
  • FIG. 10 is an explanatory diagram showing a configuration in which the monitoring control units of conventional ROADM devices acquire wavelength information from a centralized remote monitoring device, as a comparative example of the present embodiment.
  • FIG. 13 is an explanatory diagram in which the communication device of FIG. 6 is applied to the optical transmission system shown in FIG. 12 as a fourth embodiment;
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described.
  • this embodiment a mode for carrying out the present invention.
  • an outline of the present technology will be described with a conventional technology as a comparative example.
  • symbol is attached
  • FIG. 1 is an explanatory diagram showing a configuration for performing communication between conventional ROADM (Reconfigurable Optical Add-Drop Multiplexer) devices as a comparative example of the present embodiment.
  • ROADM Reconfigurable Optical Add-Drop Multiplexer
  • the optical transmission system 300 of Comparative Example 1 includes a ROADM device 100 and a ROADM device 200 .
  • the ROADM device 100 and the ROADM device 200 are configured by the same optical transmission device, and are connected by optical transmission lines 10 and 20 configured by optical fibers.
  • the ROADM device 100 is configured with a supervisory control section 110 , a transmission device 120 and an optical multiplexing/demultiplexing section 190 .
  • the transmission device 120 includes an OXC (Optical cross Connect) unit 130, an optical amplifier unit 140, an SFP (Small Form factor Pluggable transceiver) 150 for OSC (Optical Supervisory Channel), a transmitter 151, a receiver 152, and an OCM (Optical Channel Monitor). ) 160.
  • OXC Optical cross Connect
  • SFP Small Form factor Pluggable transceiver
  • OSC Optical Supervisory Channel
  • transmitter 151 Optical Supervisory Channel
  • receiver 152 Optical Channel Monitor
  • OCM Optical Channel Monitor
  • the OXC unit 130 is configured with a WSS (Wavelength Selective Switch) 131 and a WSS 132 .
  • the OXC unit 130 sets optical communication paths for data transfer in the optical transmission paths 10 and 20 .
  • the OXC unit 130 outputs a predetermined data signal to a predetermined data transmission path when data transmission paths with different formats exist for each application or transmission speed. For example, the OXC unit 130 sets a data transmission line as an optical communication line for each data center or network service provider.
  • the WSSs 131 and 132 have, for example, an N-input 1-output (N ⁇ 1) or 1-input N-output (1 ⁇ N) Mux/Demux function, and each WDM signal from an input port can be output as desired. Output to port.
  • the OXC section 130 may be configured including an arrayed-waveguide grating (AWG: Arrayed-Waveguide Grating) (not shown) and a transponder (not shown). In this case, the OXC section 130 will output a predetermined optical signal from the transponder via the arrayed waveguide diffraction grating as the output of the WSS 131 and 132 .
  • AMG arrayed-waveguide Grating
  • the optical amplifying section 140 includes a post-amplifier 141 , a pre-amplifier 142 , and a VOA (Variable Optical Attenuator) 143 .
  • VOA Very Optical Attenuator
  • the post-amplifier 141 is an optical amplifier that collectively amplifies the optical level of the WDM signal that is multiplexed and output to the optical transmission line 10 .
  • the preamplifier 142 is an optical amplifier that collectively amplifies the optical level of the WDM signal attenuated by the optical transmission line 20 .
  • the VOA 143 is a variable optical attenuator that has an optical attenuation function and adjusts the intensity of optical signals for each wavelength.
  • the VOA 143 is arranged on the transmission side and adjusts the intensity of the optical input in accordance with the characteristics of the optical path of the optical transmission line 10, such as the difference in amplification factor between channels and the wavelength characteristics of transmission line loss. As a result, the VOA 143 suppresses variations in signal strength for each channel, and stabilizes the optical output on the receiving side.
  • the OCM 160 measures the wavelength spectrum of the optical signal input from the VOA 143 of the optical amplifier 140 .
  • the OCM 160 also measures the wavelength spectrum of the optical signal output from the preamplifier 142 of the optical amplification section 140 .
  • the OSC SFP 150 mutually converts an electrical signal and an optical signal, and transmits and receives the optical signal via the optical transmission lines 10 and 20 .
  • the OSC SFP 150 transmits an optical signal to the ROADM device 200 from a transmitter 151 forming an output unit, and receives an optical signal transmitted from the ROADM device 200 by a receiver 152 forming an input unit.
  • the OSC SFP 150 has a transmission terminal T and a reception terminal R.
  • the monitor control unit 110 adjusts the optical power at the transmission unit 151, the reception unit 152, the reception terminal R of the OSC SFP 150, and the OCM 160 before and after the optical amplification unit 140 (or before and after the WSSs 131 and 132). measurement.
  • the monitoring control unit 110 constantly monitors while measuring the optical power, and performs APSD (Auto Power Shut Down) that automatically cuts off the conduction when signal interruption is confirmed.
  • APSD Auto Power Shut Down
  • the OCM 160 may measure not only the wavelength spectrum but also the optical power, and transmit the measurement result to the monitor control unit 110 .
  • Information of the main signal system (use wavelength, number of wavelengths, noise information, span loss, etc.) is superimposed on the optical signal (that is, the signal of the OSC light). face each other to send and receive information.
  • the supervisory control unit 110 issues an instruction based on information transmission/reception, and performs amplifier control (amplification control) and WSS control (wavelength selection control) of the optical amplifier unit 140 .
  • the information of this main signal system is also called a monitor control signal.
  • the optical multiplexing/demultiplexing unit 190 includes an optical circuit (not shown) that demultiplexes input light into a plurality of components and outputs them, and an optical circuit (not shown) that multiplexes and outputs a plurality of input lights. It is
  • the OSC SFP 150 is composed of an optical module, and the OSC SFP 150 and the monitor control unit 110 constitute an OSC function (corresponding to an OSC function unit). Also, the OSC SFP 150 is an example of an SFP for performing optical communication.
  • the function of the OSC composed of the OSC SFP 150 and the monitor control unit 110 mainly performs three controls.
  • the supervisory control unit 110 confirms communication of optical signals at the transmission unit 151, the reception unit 152, and the reception terminal R of the ROADM device 100, and executes APSD when the optical signal is blocked. do.
  • the second control measures optical power as optical power management in the transmission device 120 .
  • the third control is to measure the wavelength spectrum in the OCM 160 as wavelength information management.
  • the optical transmission line 10 also transmits optical signals from the ROADM device 100 to the ROADM device 200 .
  • the optical transmission line 20 transmits optical signals from the ROADM device 200 to the ROADM device 100 .
  • the optical signals communicated through the optical transmission lines 10 and 20 are superimposed with the monitoring control signal.
  • the supervisory control unit 210 of the ROADM device 200 corresponds to the supervisory control unit 110 of the ROADM device 100
  • the transmission device 220 of the ROADM device 200 corresponds to the transmission device 120 of the ROADM device 100
  • the OXC unit 230 of the transmission device 220 corresponds to the OXC unit 130 of the transmission device 120
  • the optical amplification unit 240 of the transmission device 220 corresponds to the optical amplification unit 140 of the transmission device 120
  • the OSC SFP 250 of the transmission device 220 is , corresponds to the OSC SFP 150 of the transmission device 120
  • the optical multiplexer/demultiplexer 290 of the ROADM device 200 corresponds to the optical multiplexer/demultiplexer 190 of the ROADM device 100 .
  • optical couplers 154, 157 and the optical couplers 254, 257 are couplers for branching or coupling optical signals, and are provided in the transmission devices 120, 220 as appropriate.
  • the OSC SFP 150 transmits an optical signal from the transmission terminal T to the ROADM device 200 via the transmission section 151 and the optical transmission line 10.
  • the ROADM device 200 receives the optical signal through the optical transmission line 10 and the receiving section 252, and the OSC SFP 250 receives the optical signal at the receiving terminal R.
  • the OSC SFP 250 transmits an optical signal from the transmission terminal T to the ROADM device 100 via the transmission section 251 and the optical transmission line 20 .
  • the OSC SFP 150 receives the optical signal through the optical transmission line 20 and the receiver 152 at the reception terminal R.
  • FIG. 2 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration when conventional ROADM devices communicate with each other in a loopback configuration using the OSC function. Note that the optical multiplexer/demultiplexer 190 and the optical multiplexer/demultiplexer 290 shown in FIG. 1 are not shown because they are not related to the control of this embodiment.
  • the optical transmission system 301 is configured with a ROADM device 101 and a ROADM device 201 .
  • the ROADM device 101 and the ROADM device 201 are configured by the same optical transmission device, and are connected by optical transmission lines 10 and 20 configured by optical fibers.
  • the transmission device 121 of the ROADM device 101 is configured by including optical couplers 155 and 156, an optical isolator 153, and optical filters 158, 159, and 170 in contrast to the transmission device 120 of FIG.
  • the optical filters 158, 159, and 170 are optional components provided when the OSC light is removed for the purpose of increasing the wavelength utilization efficiency.
  • the transmission device 221 of the ROADM device 201 is configured by including optical couplers 255 and 256, an optical isolator 253, and optical filters 258, 259, and 270 in contrast to the transmission device 220 of FIG.
  • the optical filters 258, 259, and 270 are optional components provided when the OSC light is removed for the purpose of increasing the wavelength utilization efficiency.
  • the ROADM device 101 and the ROADM device 201 each have a folded configuration.
  • the OSC SFP 150 transmits an optical signal from the transmission terminal T to the optical transmission line 10 via the optical coupler 154 and the transmission section 151 .
  • the ROADM device 201 transmits the optical signal from the optical transmission line 10 input via the receiving section 252 and the optical coupler 256 to the optical transmission line 20 via the optical coupler 255 and the transmitting section 251 .
  • the ROADM device 101 receives the return signal input through the receiving section 152 and the optical coupler 157 at the receiving terminal R of the OSC SFP 150 .
  • the OSC SFP 250 transmits an optical signal from the transmission terminal T to the optical transmission line 20 via the optical coupler 254 and the transmission section 251 .
  • the ROADM device 101 transmits an optical signal input via the receiver 152 and the optical coupler 156 to the optical transmission line 10 via the optical coupler 155 and the transmitter 151 .
  • the OSC SFP 250 receives the return signal input via the receiving section 252 and the optical coupler 257 at the receiving terminal R.
  • the thick solid line arrows and the broken line arrows indicate the optical transmission lines 10 and 20. As shown, the optical signal will be transmitted in duplicate.
  • the optical transmission system according to the present embodiment shown in FIG. 3 is an explanatory diagram showing an optical transmission system configured with a communication device instead of the ROADM device.
  • the optical transmission system 302 includes a ROADM device 201 (optical transmission device) that transmits optical signals to the optical transmission lines 10 and 20, and a communication device 400 connected to the ROADM device 201 via the optical transmission lines 10 and 20. It is configured.
  • the communication device 400 of the optical transmission system 302 is configured with a monitor control unit 410, a response unit 420, and a device 430 of another system.
  • the monitor control unit 410 monitors the communication status of the communication device 400 .
  • the separate system device 430 includes, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor) or an ASIC (Application Specific Integrated Circuit), is provided in the communication device 400, and performs predetermined signal processing.
  • the predetermined signal processing executed by the device 430 of the separate system is not particularly limited and may be communication control, image processing, audio processing, data control, or the like.
  • the response unit 420 is configured to return the optical signal transmitted from the ROADM device 201 to the ROADM device 201 concerned.
  • the response unit 420 includes optical couplers 422 and 423 , an optical isolator 421 and a filter 424 .
  • the optical couplers 422 and 423 branch the optical signal transmitted from the ROADM device 201 .
  • the optical isolator 421 unidirectionally outputs an optical signal from another system device 430 to an optical coupler 422 . Due to the existence of this optical isolator 421 , the optical signals branched by the optical couplers 422 and 423 are transmitted in the direction of the ROADM device 201 .
  • the optical isolator 421 plays a role of blocking the optical signal branched by the optical coupler 422 toward the device 430 of another system and transmitting it toward the ROADM device 201 .
  • the filter 424 is an optional component that is provided when the OSC light is deleted for the purpose of increasing the wavelength utilization efficiency.
  • the OSC SFP 250 of the transmission device 221 transmits an optical signal from the transmission terminal T to the optical transmission line 20 via the optical coupler 254 and the transmission section 251 .
  • the response unit 420 of the communication device 400 returns the optical signal input via the optical coupler 423 and the filter 424 to the optical transmission line 10 via the optical coupler 422 .
  • the OSC SFP 250 receives the return signal input from the optical transmission line 10 via the receiving section 252 and the optical coupler 257 at the receiving terminal R.
  • the optical transmission system 302 enables optical communication between the ROADM device 201 and the communication device 400 without electrically terminating the device 430 of another system while ensuring the OSC function of the ROADM device 201. It can be carried out.
  • the ROADM device 201 is equipped with a monitor control unit 210 .
  • the monitoring control unit 210 monitors optical signals received by the transmission unit 251 , the reception unit 252 , and the reception terminal R of the OSC SFP 250 .
  • the monitor control unit 210 requests APSD to cut off the conduction. Notice. In this case, the monitoring control unit 210 may cut off the conduction of the ROADM device 201 and may cut off the conduction of the transmission device 221 .
  • FIG. 4 is an explanatory diagram showing, as a comparative example of the present embodiment, a configuration in which conventional ROADM devices confirm communication with each other using the OSC function.
  • the monitor control signals controlled by the monitor controllers 110 and 210 will be described with reference to the explanatory diagram shown in FIG.
  • the monitor controller 110 monitors the OSC SFP 150 and the monitor controller 210 monitors the OSC SFP 250 .
  • the OSC SFP 150 transmits an optical signal from the transmission terminal T to the ROADM device 200 via the transmission section 151 and the optical transmission line 10 .
  • the monitor control unit 210 monitors whether or not the optical signal has been received by the transmission unit 251 , the reception unit 252 and the reception terminal R of the OSC SFP 250 .
  • the monitoring control unit 210 detects that the OSC SFP 250 cannot receive an optical signal at the reception terminal R
  • the OSC SFP 250 is connected to the transmission unit 251 from the transmission terminal T.
  • An APSD request is sent to the reception terminal R of the OSC SFP 150 via the optical transmission line 20 .
  • the supervisory control unit 210 superimposes a signal indicating an APSD request, which is a supervisory control signal, on the optical signal, and transmits the optical signal to the supervisory control unit 110 .
  • the monitor control unit 110 monitors the reception terminal R of the OSC SFP 150, and when the OSC SFP 150 receives a signal indicating the superimposed APSD request at the reception terminal R, it accepts the APSD request. In response to receiving this APSD request, the monitor control unit 110 cuts off the conduction of the ROADM device 100 or the transmission device 120 .
  • FIG. 5 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration when conventional ROADM devices communicate with each other in a loopback configuration using the OSC function. Optical signals monitored by the monitoring controllers 110 and 210 will be described with reference to the explanatory diagram shown in FIG.
  • the monitor controller 110 monitors the OSC SFP 150 and the monitor controller 210 monitors the OSC SFP 250 .
  • the ROADM device 101 has the OSC SFP 150 from the transmission terminal T to the optical transmission line 10 via the optical coupler 154 and the transmission section 151 as indicated by the thick solid line arrow. send an optical signal to The ROADM device 201 transmits an optical signal input via the receiving section 252 and the optical coupler 256 to the optical transmission line 20 via the optical coupler 255 and the transmitting section 251, as indicated by the thick solid arrow. .
  • the OSC SFP 150 receives the return signal input via the receiving section 152 and the optical coupler 157 at the receiving terminal R, as indicated by the thick solid arrow.
  • the OSC SFP 250 transmits an optical signal from the transmission terminal T to the optical transmission line 20 via the optical coupler 254 and the transmission section 251, as indicated by the dashed arrow.
  • the ROADM device 101 transmits an optical signal input via the receiving section 152 and the optical coupler 156 to the optical transmission line 10 via the optical coupler 155 and the transmitting section 151, as indicated by the dashed arrow.
  • the OSC SFP 250 receives the return signal input via the receiving section 252 and the optical coupler 257 at the receiving terminal R of the OSC SFP 250, as indicated by the dashed arrow.
  • both optical signals (OSC signals) indicated by thick solid line arrows and broken line arrows of the OSC SFP 150 and the OSC SFP 250 pass through the optical transmission lines 10 and 20 in the same direction. Therefore, it becomes impossible to transmit and receive optical signals. That is, the OSC SFP 150 cannot receive a return signal even if it transmits an optical signal, and the OSC SFP 250 cannot receive a return signal even if it transmits an optical signal.
  • the monitor control unit 110 detects an APSD request due to the occurrence of an error in the optical transmission lines 10 and 20 at the reception terminal R of the OSC SFP 150 .
  • the monitor control unit 210 detects an APSD request due to the occurrence of an error in the optical transmission lines 10 and 20 at the reception terminal R of the OSC SFP 250 .
  • the supervisory control unit 110 and the supervisory control unit 210 cut off the conduction of the ROADM device 101 and the ROADM device 201, or interrupt the conduction of the transmission device 121 and the transmission device 221. Cut off.
  • FIG. 6 is an explanatory diagram showing a configuration in which the optical transmission system shown in FIG. 3 is connected via a network as a second embodiment.
  • the explanatory diagram shown in FIG. 6 differs from the explanatory diagram of FIG. 3 in that they are connected by a network.
  • the monitor control unit 210 when the OSC SFP 250 cannot receive the return signal returned from the response unit 420 of the communication device 400 at the reception terminal R, the monitor control unit 210 according to the present embodiment provides an external monitor signal via the network 500.
  • a controller for example, a remote centralized monitoring device (not shown) is notified.
  • the centralized remote monitoring device notifies the monitoring control unit 410 of the communication device 400 of the APSD request.
  • the monitoring control unit 410 can receive an instruction from the centralized remote monitoring device and disconnect the communication device 400 .
  • the centralized remote monitoring device may notify the ROADM device 201 and/or the transmission device 221 of the APSD request via the network 500 to cut off the conduction of the ROADM device 201 and/or the transmission device 221. good.
  • FIG. 7 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration in which conventional ROADM devices perform optical power management using the OSC function.
  • the monitor controller 210 measures the optical power of the receiver 252 will be described with reference to the explanatory diagram shown in FIG.
  • an optical transmission system 304 as a comparative example corresponds to the configuration of the optical transmission system 300 (FIG. 1). The point is that it has
  • the measurement unit 212 measures the optical power of the received optical signal when the ROADM device 202 receives the optical signal transmitted from the transmission terminal T by the OSC SFP 150 of the ROADM device 101, as indicated by the thick solid arrow. . Note that the measuring unit 212 always measures and observes the optical power at the transmitting unit 251 , the receiving unit 252 and the receiving terminal R of the OSC SFP 250 .
  • the ROADM device 101 transmits an optical signal to the ROADM device 202 from the transmission terminal T of the OSC SFP 150 .
  • the measurement unit 212 of the monitor control unit 211 of the ROADM device 202 detects, for example, that the receiving unit 252 has decreased the received optical power.
  • the supervisory control unit 211 superimposes a supervisory control signal for increasing the optical power on the optical signal, and the OSC SFP 250 transmits it from the transmission terminal T to the ROADM device 101 as indicated by the dashed arrow.
  • the supervisory control unit 211 superimposes the supervisory control signal for increasing the optical power on the optical signal, and as indicated by the dashed arrow, transmits the signal from the transmission terminal T of the OSC SFP 250 to the OSC signal of the ROADM device 101 . is transmitted to the reception terminal R of the SFP 150 for use.
  • the supervisory controller 111 of the ROADM device 101 controls the post-amplifier 141 and the VOA 143 to transmit the optical signal. increase the transmission power (optical power) of the
  • the monitor control unit 211 measures the loss of the transmission path between the ROADM device 101 and the ROADM device 202 (span loss measurement), and the monitor control unit 111 adjusts the levels of the post-amplifier 141 and the VOA 143 according to the span loss.
  • a control signal may be transmitted.
  • FIG. 8 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration in which conventional ROADM devices perform optical power management in a folded configuration. Note that the supervisory controller 211 and the supervisory controller 111 of the optical transmission system 305 shown in FIG. 8 are connected via a network 500 .
  • the supervisory control unit 211 of the ROADM device 203 is connected via the network 500 to the external supervisory control unit, For example, it is connected to a remote centralized monitoring device (not shown).
  • the ROADM device 101 and the ROADM device 203 cannot transmit and receive optical signals between the OSC SFP 150 and the OSC SFP 250, as described with reference to FIG. Therefore, the remote centralized monitoring device controls the post-amplifier 141 and the VOA 143 so as to increase the optical power of the receiver 252 of the ROADM device 203 to the supervisory control unit 111 of the ROADM device 101, thereby increasing the transmission power to be transmitted. raise control.
  • the monitor control unit 211 measures the loss of the transmission path between the ROADM equipment 101 and the ROADM equipment 203 (span loss measurement). level can be adjusted.
  • FIG. 9 is an explanatory diagram in which the communication device shown in FIG. 6 is applied to the optical transmission system shown in FIG. 8 as a third embodiment.
  • the explanatory diagram shown in FIG. 9 differs from the explanatory diagram of FIG. 8 in that a communication device 401 is provided instead of the ROADM device 101 .
  • an optical transmission system 306 is provided with a communication device 401 instead of the ROADM device 101 in the optical transmission system 305 shown in FIG.
  • the monitor control unit 211 of the ROADM device 203 has a measurement unit 212 that measures the optical power of the signal returned by the response unit 420 .
  • the monitor control unit 211 notifies the remote centralized monitoring device via the network 500 to notify the monitor control unit 411 of the transmission power of the return signal. Amplify and transmit.
  • the monitor control unit 411 receives an instruction from the centralized remote monitoring device, and the optical power of the return signal of the response unit 420 can be increased by amplifier control for increasing the transmission power.
  • the monitor control unit 411 only needs to be able to increase the transmission power of the response unit 420, and the amplifier control method is not limited.
  • FIG. 10 is an explanatory diagram showing a configuration in which the communication device of the optical transmission system shown in FIG. 9 includes an optical amplifying section as a fourth embodiment.
  • the explanatory diagram shown in FIG. 10 differs from the explanatory diagram of FIG. 9 in that the communication device 402 further includes an optical amplifier 440 .
  • an optical transmission system 307 includes an optical amplifier 440 in the communication device 401 of the optical transmission system 306 shown in FIG.
  • the optical amplifier 440 has a function of amplifying the transmission power for transmitting the return signal.
  • the optical amplifying section 440 includes a post-amplifier 441 , a pre-amplifier 442 , a VOA 443 and an OCM 460 .
  • the post-amplifier 441 is equivalent to the post-amplifier 141
  • the pre-amplifier 442 is equivalent to the pre-amplifier 142
  • the VOA443 is equivalent to the VOA143
  • the OCM460 is equivalent to the OCM160.
  • the optical amplifying unit 440 receives an instruction from the supervisory control unit 411, amplifies the transmission power of the optical signal received via the optical transmission line 20 by the responding unit 420, and outputs the signal as a return signal via the optical transmission line 10. Send.
  • the monitor control unit 411 can receive instructions from the centralized remote monitoring device and increase the transmission power for transmitting the return signal.
  • FIG. 11 is an explanatory diagram showing a configuration when wavelength information is managed by OCM between conventional ROADM devices as a comparative example of this embodiment.
  • the monitoring control unit 213 of the ROADM device 203 receives the wavelength information of the node (ROADM device 100) from the optical signal received at the reception terminal R of the OSC SFP 250. to obtain the used wavelength and the number of wavelengths.
  • the supervisory control unit 213 controls the post-amplifier 241 of the optical amplification unit 240 and the WSS 231 of the OXC unit 230 based on the wavelength information of the node (ROADM device 100) received at the reception terminal R of the OSC SFP 250. Specifically, the supervisory control unit 213 opens a wavelength port and/or adjusts an amplifier based on the acquired wavelength information.
  • the OCM 260 also measures the wavelength spectrum of the optical signal received from the ROADM device 100 and notifies the monitoring control unit 213 of wavelength information on the wavelengths used and the number of wavelengths. Thereby, the monitoring control unit 213 controls the OXC unit 230 based on the wavelength information measured by the OCM 260, and controls the wavelength port to be used.
  • the monitoring control unit 213 closes the wavelength port of the unmeasurable wavelength in the WSS 231.
  • the monitoring control unit 213 measures the wavelengths used, and if the wavelength tilt is large, corrects the variation in the optical power for each wavelength, and controls the wavelength tilts to be uniform.
  • FIG. 12 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration in which the monitoring control units of conventional ROADM devices acquire wavelength information from a centralized remote monitoring device.
  • the monitoring control unit 214 includes an acquisition unit 215 that acquires the operating wavelength and the number of wavelengths of the node (ROADM device 100) as wavelength information from the centralized remote monitoring device via the network 500.
  • FIG. 12 is an explanatory diagram showing, as a comparative example of this embodiment, a configuration in which the monitoring control units of conventional ROADM devices acquire wavelength information from a centralized remote monitoring device.
  • the monitoring control unit 214 includes an acquisition unit 215 that acquires the operating wavelength and the number of wavelengths of the node (ROADM device 100) as wavelength information from the centralized remote monitoring device via the network 500.
  • the monitoring control unit 214 acquires the wavelength information of the wavelength used and the number of wavelengths of the node from the centralized remote monitoring device, and also acquires the measured wavelength information of the wavelength used and the number of wavelengths from the OCM 260 .
  • the monitoring control unit 214 compares the wavelength information acquired from the centralized remote monitoring device by the acquisition unit 215 with the wavelength information measured by the OCM 260 .
  • the monitoring control unit 214 closes the wavelength port of the unacquirable wavelength in the WSS 231.
  • the monitoring control unit 214 measures the wavelengths used by the OCM 260, and if the wavelength tilt is large, corrects the variation in optical power for each wavelength, and controls the wavelength tilts to be uniform.
  • FIG. 13 is an explanatory diagram showing that the communication device of FIG. 6 is applied to the optical transmission system shown in FIG. 12 as a fourth embodiment. That is, the optical transmission system 310 shown in FIG. 13 is a combination of the communication device 403 corresponding to the communication device 400 shown in FIG. 6 and the ROADM device 204 of the optical transmission system 309 shown in FIG.
  • communication device 403 is connected to ROADM device 204 via network 500 .
  • the supervisory control unit 412 transmits wavelength information to the supervisory control unit 214 via the centralized remote monitoring device, which is returned as a node (communication device 403) by the response unit 420 of the communication device 403.
  • the ROADM device 204 includes an OCM 260 (optical monitor) that measures the wavelength spectrum of the return signal returned by the response unit 420 of the communication device 403, an OXC unit 230 (optical cross-connector) that selects and sets an optical transmission line, It has The OXC section 230 has WSSs 231 and 232 that select wavelengths in the wavelength spectrum.
  • OCM 260 optical monitor
  • OXC unit 230 optical cross-connector
  • the monitoring control unit 214 includes an acquisition unit 215 , and the acquisition unit 215 acquires wavelength information regarding the wavelength spectrum transmitted from the communication device 403 .
  • the monitoring control unit 214 controls the WSSs 231 and 232 according to the measurement result and/or adjusts the measured wavelength. Controls power per wavelength in the spectrum.
  • the monitoring control unit 214 matches the wavelength information acquired by the acquisition unit 215 with the wavelength information measured by the OCM 260 . If the wavelength information acquired by the acquisition unit 215 and the wavelength information measured by the OCM 260 are different and the wavelength information that should be acquired cannot be measured, the monitoring control unit 214 causes the WSS 231 to close the wavelength port of In addition, when the optical power of the measured wavelengths varies and the wavelength tilt is large, the monitoring control unit 211 corrects the optical power for each wavelength and controls the wavelength tilts to be uniform.
  • An optical transmission system 302 includes a ROADM device 201 that transmits and receives optical signals via optical transmission lines 10 and 20, and a communication device 400 that is connected to the ROADM device 201 via the optical transmission lines 10 and 20.
  • the ROADM device 201 includes an OSC SFP 250 that mutually converts an electrical signal and an optical signal and transmits and receives the optical signal via the optical transmission lines 10 and 20, and the communication device 400 , and a response unit 420 for returning an optical signal transmitted from the ROADM device 201 to the ROADM device 201 .
  • an optical signal is transmitted from the OSC SFP 250 to the optical transmission line 20 .
  • the response unit 420 of the communication device 400 returns the transmitted optical signal to the ROADM device 201 via the optical transmission line 10 .
  • the ROADM device 201 receives the return signal transmitted by the OSC SFP 250 .
  • the optical transmission system 302 can perform optical communication between the ROADM device 201 and the communication device 400 without electrically terminating the device 430 of another system while ensuring the OSC function of the ROADM device 201. can be done.
  • the optical transmission system 303 further includes a supervisory control unit 210 that monitors the optical signal. It notifies the communication device 400 of a request for APSD (Auto Power Shut Down) to cut off the conduction.
  • APSD Auto Power Shut Down
  • the electrical continuity of the communication device 400 can be interrupted by the monitor control unit 410 .
  • the supervisory control unit 211 measures the optical power of the return signal in which the OSC SFP 250 transmits an optical signal to the communication device 401 and the response unit 420 returns the optical signal.
  • a measurement unit 212 is further provided, and when the optical power of the return signal measured by the measurement unit 212 is lost, the transmission power of the return signal is amplified and transmitted by notifying the communication device 401 via the network. , is characterized by
  • the communication device 401 can increase the transmission power of the return signal of the response section 420 by controlling the transmission power to be increased in the monitoring control section 411 .
  • the communication device 402 is characterized by further comprising an optical amplifier 440 that amplifies the transmission power for transmitting the return signal.
  • the communication device 402 can increase the transmission power of the return signal by the optical amplifier 440 in the monitor controller 411 .
  • the ROADM device 204 further includes an OCM 260 that measures the wavelength spectrum of the signal returned by the response section 420, and an OXC section 230 that selects and sets an optical transmission line.
  • the OXC unit 230 has WSSs 231 and 232 that select wavelengths in the wavelength spectrum
  • the monitoring control unit 214 further includes an acquiring unit 215 that acquires wavelength information regarding the wavelength spectrum to be transmitted.
  • the monitoring control unit 214 can match the wavelength information acquired by the acquisition unit 215 with the wavelength information measured by the OCM 260 . If the wavelength information acquired by the acquisition unit 215 and the wavelength information measured by the OCM 260 are different and the wavelength information that should be acquired cannot be measured, the monitoring control unit 214 determines the wavelength of the unmeasurable wavelength in the WSS 231. Close the port. In addition, when the optical power of the measured wavelengths varies and the wavelength tilt is large, the monitoring control unit 211 can correct the optical power for each wavelength to correct the wavelength tilt.
  • the response unit 420 includes optical couplers 422 and 423 for branching the optical signal transmitted from the ROADM device 201, and optical couplers 422 and 423 and another system for transmitting the optical signal. and an optical isolator 421 connected between the device 430 .
  • the optical isolator 421 is characterized by blocking the optical signals branched by the optical couplers 422 and 423 toward the device 430 of the other system and transmitting them in the direction of the ROADM device 201 .
  • the response unit 420 can return the optical signal input through the optical coupler 423 to the optical transmission line 10 by the optical isolator 421 and the optical coupler 422 without electrically terminating the device 430 of another system. can.
  • ROADM equipment optical transmission equipment 110, 210, 211, 213, 214 supervisory control section 120, 121, 220, 221 transmission device 130, 230 OXC section (optical cross connect section) 131, 132, 231, 232 WSS (wavelength selective switch) 140, 240 optical amplifier 141, 241 post-amplifier 142, 242 pre-amplifier 143, 243 VOA SFP for 150, 250 OSC 151, 251 transmitter 152, 252 receiver 153, 253, 421 optical isolator 154, 157, 254, 257 optical coupler 158, 159, 170, 258, 259, 270 optical filter 160, 260 OCM (optical monitor) 212 measurement unit 215 acquisition unit 300 to 310 optical transmission system 400 to 403 communication device 420 response unit 440 optical amplification unit 500 network

Abstract

光伝送システム300は、光伝送路(10,20)を介して光信号を送受信するROADM装置(200)と、ROADM装置(200)に光伝送路(10,20)で接続された通信装置(400)と、を備える。ROADM装置(200)は、電気信号と光信号を相互に変換して、当該光信号を、光伝送路(10,20)を介して送受信するOSC用SFP(250)を備える。通信装置(400)は、ROADM装置(200)から送信された光信号を、ROADM装置(200)に折り返す応答部(420)を備える。

Description

光伝送システム、光伝送システムの伝送方法、及び通信装置
 本発明は、光伝送システム、光伝送システムの伝送方法、及び通信装置に関する。
 近年、光通信ネットワーク網を効率的に運用するパス管理技術として、ROADM(Reconfigurable Optical Add-Drop Multiplexer)が検討されている。ROADMは、例えば、複数のROADM装置が光ファイバでメッシュ状に繋がれ、ROADMノードからなる光メッシュネットワークとして構成される。
 各ROADM装置は、複数方路からの波長多重されたWDM(Wavelength Division Multiplexing)信号から任意の光信号を分岐/挿入するAdd/Drop機能、及び任意の方路に経路を切り替えるルーティング機能を備えている。
 また、ROADM装置は、一般的に、監視制御用信号を送受信する機能(以下、これをOSC(Optical Supervisory Channel)ともいう。)を有している。OSCは、光伝送システムにおいて、OSC光を用いて光ファイバの疎通確認、信号の光パワー管理、及び増幅回路や波長選択スイッチ(WSS:Wavelength Selective Switch)を通過させることによる、波長情報の管理を行う。
 ところで、将来、光通信ネットワーク網において柔軟性の高いネットワーク構成が求められ、電気の終端点を削減する場合、ROADM装置は、ROADM装置ではない装置と電気終端せずに光通信を行うことが考えられる。この場合、ROADM装置ではない装置は、OSCを有さない装置と考えられる。
 ここで、ROADM装置が有するOSCの主な機能は、各ROADM装置の送受信部における光信号の導通管理を行い、光伝送路において光信号が遮断された場合には、自動的に導通を遮断するAPSD(Auto Power Shut Down)を行うことである。OSCの導通管理は、導通を遮断するだけでなく、復旧する機能も備えている。
 また、一般的なROADM装置では、OSCを利用することにより、各区間の光パワー管理や波長情報の管理を行うことができる。そのため、ROADM装置では、増幅回路、VOA(Variable Optical Attenuator)、及びWSSを適切に制御している(例えば、非特許文献1参照)。
"Open ROADM MSA Device White Paper",[online],[2022年2月4日検索],インターネット<http://openroadm.org/download.html>
 Open ROADM MSA(Multi-Source Agreement)に基づいて、ROAD装置同士の通信を行う場合、ROADM装置間の通信において、疎通確認、又は導通管理を行うため、OSCは必須である。
 これに対し、ROADM装置と、ROADM装置とは異なる通信装置(OSCを有さない通信装置)とにおいて通信を行う場合は、ネットワークを電気終端せずに光接続を行うことになり、監視制御部においてエラーとして検出されてしまい、通信をすることができない。
 この場合、最も簡易な解決策は、ROADM装置のOSCを削除することが考えられる。しかしながら、OSCで使用されるOSC光は、光導通確認にも使用されている。また、ROADM装置は、一般的にコア網で使用されており、高パワーな光信号を用いて通信を行っている。そのため、ROADM装置からOSCが削除された場合、光導通時の信号として高パワーな光信号を用いることとなり、作業者の安全性が確保できないことが想定される。また、OSCの機能は、Open ROADM MSAの構成として規定されていることもあり、機能として削除することができない。
 また、ROADM装置が有する光合分波部を経由して、別システムの装置と通信をすることも考えられる。しかしながら、この場合、通信する2つの装置(ROADM装置と別システムの装置)が同じ場所に存在する必要がある、という制限が生じる。
 本発明は、このような点に鑑みてなされたのであり、ROADM装置のOSCの機能を確保したまま、別システムの装置を電気終端せず、光通信を可能とする、光伝送システム、光伝送システムの伝送方法、及び通信装置を提供することを課題とする。
 本発明に係る光伝送システムは、光伝送路を介して光信号を送受信する光伝送装置と、前記光伝送装置に前記光伝送路で接続された通信装置と、を備える光伝送システムであって、前記光伝送装置は、電気信号と光信号を相互に変換して、当該光信号を、前記光伝送路を介して送受信するSFP(Small Form factor Pluggable transceiver)を備え、前記通信装置は、前記光伝送装置から送信された光信号を、当該光伝送装置に折り返す応答部を備える、ことを特徴としている。
 本発明によれば、ROADM装置のOSCの機能を確保したまま、別システムの装置を電気終端せず、光通信を可能とする、光伝送システム、光伝送システムの伝送方法、及び通信装置を提供することができる。
本実施形態の比較例として、従来技術のROADM装置同士の通信を行う際の構成を示した説明図である。 本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により折り返し構成で通信を行う際の構成を示した説明図である。 第1の実施形態に係る光伝送システムが、ROADM装置の代わりに、通信装置を備えて構成された光伝送システムを示す説明図である。 本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により疎通確認を行う際の構成を示した説明図である。 本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により折り返し構成で通信を行う際の構成を示した説明図である。 第2の実施形態として、図3に示す光伝送システムが、ネットワークで接続された構成を示す説明図である。 本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により光パワー管理を行う構成を示した説明図である。 本実施形態の比較例として、従来のROADM装置同士が、折り返し構成で、光パワー管理を行う構成を示した説明図である。 第3の実施形態として、図8に示す光伝送システムに、図6に示す通信装置を適用した説明図である。 第4の実施形態として、図9に示す光伝送システムの通信装置が、光増幅部を備える構成を示した説明図である。 本実施形態の比較例として、従来のROADM装置同士において、OCMにより波長情報の管理を行う際の構成を示した説明図である。 本実施形態の比較例として、従来のROADM装置同士において、監視制御部が、遠隔集中監視装置から波長情報を取得する構成を示した説明図である。 第4の実施形態として、図12に示す光伝送システムに、図6の通信装置を適用した説明図である。
 次に、本発明を実施するための形態(以下、「本実施形態」と称する。)について説明する。まず、本技術の概要について、従来技術を比較例として説明する。なお、同一の構成について同一の符号を付し、説明を適宜、省略する。
<本技術の概要:比較例1>
 図1は、本実施形態の比較例として、従来技術のROADM(Reconfigurable Optical Add-Drop Multiplexer)装置同士の通信を行う際の構成を示した説明図である。
 図1に示すように、比較例1の光伝送システム300は、ROADM装置100と、ROADM装置200とを備えて構成されている。ROADM装置100とROADM装置200は、一例として、同一の光伝送装置で構成されており、光ファイバで構成された光伝送路10,20で接続されている。
 ROADM装置100は、監視制御部110、伝送装置120、及び光合分波部190を備えて構成されている。伝送装置120は、OXC(Optical cross Connect)部130、光増幅部140、OSC(Optical Supervisory Channel)用SFP(Small Form factor Pluggable transceiver)150、送信部151、受信部152、及びOCM(Optical Channel Monitor)160を備えて構成されている。
 OXC部130は、WSS(Wavelength Selective Switch)131、及びWSS132を備えて構成されている。OXC部130は、光伝送路10,20においてデータ転送のための光通信路を設定する。OXC部130は、用途や伝送速度ごとに、形式の異なるデータ伝送路が存在する場合、所定のデータ信号を所定のデータ伝送路に出力する。例えば、OXC部130は、データセンターやネットサービスの事業者毎に、光通信路としてのデータ伝送路を設定する。
 WSS131,132は、例えば、N入力1出力(N×1)、または1入力N出力(1×N)のMux/Demux機能を有しており、入力ポートからの各WDM信号を、任意の出力ポートに出力する。
 なお、OXC部130は、アレイ導波路回折格子(AWG:Arrayed-Waveguide Grating)(不図示)とトランスポンダ(不図示)を含んで構成されていてもよい。この場合、OXC部130は、WSS131,132の出力として、アレイ導波路回折格子を介してトランスポンダから所定の光信号を出力することになる。
 光増幅部140は、ポストアンプ141、プリアンプ142、及びVOA(Variable Optical Attenuator)143を備えて構成されている。
 ポストアンプ141は、光伝送路10に合波出力するWDM信号の光レベルを一括増幅する光増幅器である。プリアンプ142は、光伝送路20により減衰したWDM信号の光レベルを一括増幅する光増幅器である。
 VOA143は、光減衰機能を備え、波長毎に光信号の強さを調整する可変光減衰器である。VOA143は、送信側に配置され、チャンネル毎の増幅率の違いや、伝送路損失の波長特性といった、光伝送路10の光路の特性にあわせて光入力の強度を調整する。これにより、VOA143は、チャンネル毎の信号の強さのバラツキを抑え、受信側での光出力を一定にする。
 OCM160は、光増幅部140のVOA143から入力される光信号に対して、波長スペクトルを測定する。また、OCM160は、光増幅部140のプリアンプ142から出力される光信号に対して、波長スペクトルを測定する。
 OSC用SFP150は、電気信号と光信号を相互に変換し、光信号を、光伝送路10,20を介して送受信する。OSC用SFP150は、出力部を構成する送信部151からROADM装置200に光信号を送信するとともに、ROADM装置200から送信される光信号を、入力部を構成する受信部152で受信する。なお、OSC用SFP150は、送信端子Tと受信端子Rを有している。
 監視制御部110は、受信したOSC光に対し、送信部151、受信部152、OSC用SFP150の受信端子R、及び光増幅部140の前後(又は、WSS131,132の前後)のOCM160において光パワーの測定を行う。監視制御部110は、光パワーの測定を行いながら常に監視し、信号断が確認された場合、自動的に導通を遮断するAPSD(Auto Power Shut Down)を行う。
 なお、OCM160は、波長スペクトルを測定するだけでなく、光パワーも測定して、その測定結果を監視制御部110に送信するようにしてもよい。
 また、光信号(すなわち、OSC光の信号である。)には、主信号系の情報(使用波長、波長数、雑音情報及びスパンロスなど)が重畳されており、ROADM装置100とROADM装置200とが対向して、情報の送受信を行う。監視制御部110は、情報の送受信に基づいて指示を出し、光増幅部140のアンプ制御(増幅制御)、WSS制御(波長選択制御)を行う。この主信号系の情報を、監視制御用信号ともいう。
 光合分波部190は、入力光を複数に分波して出力する光回路(図示せず)と、複数の入力光を合波して出力する光回路(図示せず)とを含んで構成されている。
 なお、本実施形態では、OSC用SFP150は、光モジュールで構成され、OSC用SFP150と監視制御部110とにより、OSCの機能(OSC機能部に相当する。)を構成する。また、OSC用SFP150は、光通信を行うためのSFPの一例である。OSC用SFP150と監視制御部110とから構成されるOSCの機能は、主に3つの制御を行う。
 1つ目の制御は、監視制御部110は、ROADM装置100の送信部151、受信部152、及び受信端子Rにおける光信号の疎通確認を行い、光信号が遮断された場合は、APSDを実行する。2つ目の制御は、伝送装置120において、光パワー管理として、光パワーを測定する。そして、3つ目の制御は、OCM160において、波長情報の管理として、波長スペクトルを測定する。
 また、光伝送路10は、ROADM装置100からROADM装置200に光信号を送信する。光伝送路20は、ROADM装置200からROADM装置100に光信号を送信する。光伝送路10,20において通信される光信号には、監視制御用信号が重畳されている。
 本実施形態では、ROADM装置200の監視制御部210は、ROADM装置100の監視制御部110に相当し、ROADM装置200の伝送装置220は、ROADM装置100の伝送装置120に相当する。伝送装置220のOXC部230は、伝送装置120のOXC部130に相当し、伝送装置220の光増幅部240は、伝送装置120の光増幅部140に相当し、伝送装置220のOSC用SFP250は、伝送装置120のOSC用SFP150に相当する。ROADM装置200の光合分波部290は、ROADM装置100の光合分波部190に相当する。
 また、光カプラ154,157と光カプラ254,257は、光信号を分岐又は結合するカプラであり、伝送装置120,220において、適宜、設けられている。
 図1に示す比較例では、ROADM装置100は、OSC用SFP150が送信端子Tから、送信部151と光伝送路10とを介して、ROADM装置200に光信号を送信する。一方、ROADM装置200は、光伝送路10と受信部252とを介した光信号を、OSC用SFP250が受信端子Rで光信号を受信する。
 ROADM装置200は、OSC用SFP250が送信端子Tから、送信部251と光伝送路20とを介して、ROADM装置100に光信号を送信する。一方、ROADM装置100は、光伝送路20と受信部152とを介した光信号を、OSC用SFP150が受信端子Rで受信する。
<比較例2>
 図2は、本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により折り返し構成で通信を行う際の構成を示した説明図である。なお、図1において示した光合分波部190と光合分波部290は、本実施形態の制御に関係しないため、図示を省略する。
 図2に示すように、光伝送システム301は、ROADM装置101と、ROADM装置201とを備えて構成されている。光伝送システム301は、図1と同様、ROADM装置101とROADM装置201が、同一の光伝送装置で構成されており、光ファイバで構成された光伝送路10,20で接続されている。
 ROADM装置101の伝送装置121は、図1の伝送装置120に対して、光カプラ155,156、光アイソレータ153、及び光フィルタ158,159,170を備えて構成されている。光フィルタ158,159,170は、波長の利用効率を上げる目的で、OSC光を削除する場合に設けられる、任意の構成要素である。
 ROADM装置201の伝送装置221は、図1の伝送装置220に対して、光カプラ255,256、光アイソレータ253、及び光フィルタ258,259,270を備えて構成されている。光フィルタ258,259,270は、波長の利用効率を上げる目的で、OSC光を削除する場合に設けられる、任意の構成要素である。
 光伝送システム301では、ROADM装置101とROADM装置201とが、それぞれ折り返し構成を有している。具体的には、ROADM装置101は、OSC用SFP150が送信端子Tから、光カプラ154と送信部151とを介して、光伝送路10に光信号を送信する。ROADM装置201は、受信部252と光カプラ256とを介して入力された光伝送路10からの光信号を、光カプラ255と送信部251とを介して、光伝送路20に送信する。そして、ROADM装置101は、OSC用SFP150の受信端子Rで、受信部152と光カプラ157とを介して入力された折り返し信号を受信する。
 同様に、ROADM装置201は、OSC用SFP250が送信端子Tから、光カプラ254と送信部251とを介して、光伝送路20に光信号を送信する。ROADM装置101は、受信部152と光カプラ156とを介して入力された光信号を、光カプラ155と送信部151とを介して、光伝送路10に送信する。そして、ROADM装置201は、OSC用SFP250が受信端子Rで、受信部252と光カプラ257とを介して入力された折り返し信号を受信する。
 図2に示した光伝送システム301の比較例の場合、ROADM装置101とROADM装置201との各々において折り返し構成が採用されているため、光伝送路10,20において、太い実線矢印と破線矢印で示すように、光信号が2重で送信されることになる。
<第1の実施形態>
 図3に示す本実施形態に係る光伝送システムは、ROADM装置の代わりに、通信装置を備えて構成された光伝送システムを示す説明図である。光伝送システム302は、光伝送路10,20に光信号を伝送するROADM装置201(光伝送装置)と、ROADM装置201に光伝送路10,20で接続された通信装置400と、を備えて構成されている。
 図3に示すように、光伝送システム302の通信装置400は、監視制御部410、応答部420、及び別システムの装置430を備えて構成されている。
 監視制御部410は、通信装置400の通信状況を監視する。別システムの装置430は、例えば、CPU(Central Processing Unit)、DSP(Digital Signal Processor)又はASIC(Application Specific Integrated Circuit)を備え、通信装置400に設けられ、所定の信号処理を行う。なお、別システムの装置430が実行する所定の信号処理は、通信制御、画像処理、音声処理、データの制御など、特に限定されるものではない。
 応答部420は、ROADM装置201から送信された光信号を、当該ROADM装置201に折り返すように構成されている。
 応答部420は、光カプラ422,423と、光アイソレータ421と、フィルタ424とを備えて構成されている。
 光カプラ422,423は、ROADM装置201から送信された光信号を分岐する。光アイソレータ421は、別システムの装置430からの光信号を光カプラ422への一方向に出力する。この光アイソレータ421が有るため、光カプラ422,423で分岐された光信号が、ROADM装置201の方向に透過される。言い換えれば、光アイソレータ421は、光カプラ422で分岐された光信号を、別システムの装置430の方向へは遮断し、ROADM装置201の方向に透過させる役割を果たす。また、フィルタ424は、波長の利用効率を上げる目的で、OSC光を削除する場合に設けられる、任意の構成要素である。
 本実施形態に係る光伝送システム302では、伝送装置221のOSC用SFP250が送信端子Tから、光カプラ254と送信部251とを介して、光伝送路20に光信号を送信する。通信装置400の応答部420は、光カプラ423とフィルタ424とを介して入力された光信号を、光カプラ422を介して光伝送路10に折り返す。ROADM装置201は、OSC用SFP250が受信端子Rで、光伝送路10から受信部252と光カプラ257とを介して入力された折り返し信号を受信する。
 これにより、本実施形態に係る光伝送システム302は、ROADM装置201のOSCの機能を確保したまま、別システムの装置430を電気終端することなく、ROADM装置201と通信装置400間で光通信を行うことができる。
 また、ROADM装置201は、監視制御部210を備えている。監視制御部210は、送信部251、受信部252、及びOSC用SFP250の受信端子Rが受信する光信号を監視している。
 これにより、監視制御部210は、例えば、通信装置400の応答部420から折り返された光信号(折り返し信号)を、OSC用SFP250の受信端子Rで受信できない場合、導通を遮断するAPSDの依頼を通知する。この場合、監視制御部210は、ROADM装置201の導通を遮断してもよく、伝送装置221の導通を遮断してもよい。
<比較例3>
 図4は、本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により疎通確認を行う際の構成を示した説明図である。なお、図1に示した説明図を利用し、監視制御部110,210が制御する監視制御用信号について説明する。
 図4に示すように、比較例としての光伝送システム300では、監視制御部110がOSC用SFP150を監視し、監視制御部210がOSC用SFP250を監視する。
 図1と同様に、ROADM装置100は、OSC用SFP150が送信端子Tから、送信部151と光伝送路10とを介して、光信号をROADM装置200に送信する。この場合、監視制御部210は、送信部251、受信部252、及びOSC用SFP250の受信端子Rで、光信号を受信できたか否かを監視する。
 例えば、光伝送路10において光ファイバが切断され、監視制御部210は、OSC用SFP250が受信端子Rで光信号を受信できないことを検出すると、OSC用SFP250が送信端子Tから、送信部251と光伝送路20とを介して、OSC用SFP150の受信端子Rに、APSDの依頼を通知する。具体的には、監視制御部210は、監視制御用信号であるAPSDの依頼を示す信号を光信号に重畳し、監視制御部110に送信する。
 監視制御部110は、OSC用SFP150の受信端子Rを監視しており、OSC用SFP150が受信端子Rで、重畳されたAPSDの依頼を示す信号を受信すると、APSDの依頼を受け付ける。このAPSDの依頼の受信に応じて、監視制御部110は、ROADM装置100または伝送装置120の導通を遮断する。
<比較例4>
 図5は、本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により折り返し構成で通信を行う際の構成を示した説明図である。なお、図2に示した説明図を利用して、監視制御部110,210が監視する光信号を説明する。
 図5に示すように、比較例としての光伝送システム301では、監視制御部110がOSC用SFP150を監視するともに、監視制御部210がOSC用SFP250を監視する。
 図5では、図2で説明したように、ROADM装置101は、OSC用SFP150が送信端子Tから、太い実線矢印で示すように、光カプラ154と送信部151とを介して、光伝送路10に光信号を送信する。ROADM装置201は、太い実線矢印で示すように、受信部252と光カプラ256とを介して入力された光信号を、光カプラ255と送信部251とを介して、光伝送路20に送信する。そして、ROADM装置101は、太い実線矢印で示すように、OSC用SFP150が受信端子Rで、受信部152と光カプラ157とを介して入力された折り返し信号を受信する。
 同様に、ROADM装置201は、OSC用SFP250が送信端子Tから、破線矢印で示すように、光カプラ254と送信部251とを介して、光伝送路20に光信号を送信する。ROADM装置101は、破線矢印で示すように、受信部152と光カプラ156とを介して入力された光信号を、光カプラ155と送信部151とを介して、光伝送路10に送信する。そして、ROADM装置201は、破線矢印で示すように、OSC用SFP250が受信端子Rで、受信部252と光カプラ257とを介して入力された折り返し信号を受信する。
 しかしながら、この比較例では、OSC用SFP150とOSC用SFP250の太い実線矢印と破線矢印とで示す両方の光信号(OSC信号)が、光伝送路10,20毎に同じ向きで通過することになるため、光信号を送受信できなくなる。すなわち、OSC用SFP150は、光信号を送信しても、折り返し信号を受信することができず、また、OSC用SFP250は、光信号を送信しても、折り返し信号を受信することができない。
 このため、監視制御部110は、OSC用SFP150の受信端子Rにおける光伝送路10,20のエラーの発生により、APSDの依頼を検知する。同様に、監視制御部210は、OSC用SFP250の受信端子Rにおける光伝送路10,20のエラーの発生により、APSDの依頼を検知する。これにより、光伝送システム301では、監視制御部110、及び監視制御部210のそれぞれが、ROADM装置101、及びROADM装置201の導通を遮断するか、又は伝送装置121、及び伝送装置221の導通を遮断する。
<第2の実施形態>
 図6は、第2の実施形態として、図3に示す光伝送システムが、ネットワークで接続された構成を示す説明図である。図6に示す説明図が図3の説明図と異なる点は、ネットワークで接続されている点である。
 図6に示すように、本実施形態に係る光伝送システム303は、図3に示す光伝送システム302の監視制御部410と監視制御部210とが、ネットワーク500で接続されている。
 本実施形態に係る監視制御部210は、例えば、通信装置400の応答部420から折り返された折り返し信号を、OSC用SFP250が受信端子Rで受信できない場合に、ネットワーク500を介して、外部の監視制御部、例えば、遠隔集中監視装置(図示せず)に通知する。この場合、遠隔集中監視装置は、通信装置400の監視制御部410に対して、APSDの依頼を通知する。
 これにより、監視制御部410は、遠隔集中監視装置からの指示を受け付け、通信装置400の導通を遮断することができる。また、遠隔集中監視装置は、ネットワーク500を介して、ROADM装置201又は/及び伝送装置221に対し、APSDの依頼を通知して、ROADM装置201又は/及び伝送装置221の導通を遮断してもよい。
<比較例5>
 図7は、本実施形態の比較例として、従来のROADM装置同士が、OSCの機能により光パワー管理を行う構成を示した説明図である。なお、この比較例では、図1に示した説明図を参考に、監視制御部210が受信部252の光パワーを測定する例を用いて説明する。
 図7に示すように、比較例としての光伝送システム304は、光伝送システム300(図1)の構成に対応しており、異なる点は、ROADM装置202の監視制御部211が、測定部212を備えている点である。
 測定部212は、太い実線矢印で示すように、ROADM装置101のOSC用SFP150が送信端子Tから送信した光信号を、ROADM装置202が受信した場合において、受信した光信号の光パワーを測定する。なお、測定部212は、送信部251、受信部252及びOSC用SFP250の受信端子Rにおいて、光パワーを常に測定し、観測する。
 具体的には、ROADM装置101は、OSC用SFP150の送信端子Tから、ROADM装置202に光信号を送信する。ROADM装置202の監視制御部211の測定部212が、例えば、受信部252において、受信した光パワーが下がったことを検出したとする。この場合、監視制御部211は、光パワーを上げる監視制御用信号を光信号に重畳し、破線矢印で示すように、OSC用SFP250が、送信端子TからROADM装置101に送信する。
 図7に示す比較例では、監視制御部211は、光パワーを上げる監視制御用信号を光信号に重畳させ、破線矢印で示すように、OSC用SFP250の送信端子Tから、ROADM装置101のOSC用SFP150の受信端子Rに対して、送信する。
 ROADM装置101の監視制御部111は、OSC用SFP150が受信端子Rで、受信部252の光パワーを上げる監視制御用信号を受信すると、ポストアンプ141とVOA143とを制御して、送信する光信号の送信パワー(光パワー)を上げる。
 なお、監視制御部211は、ROADM装置101とROADM装置202との伝送路のロスを測定し(スパンロス測定)、スパンロスに合わせて、監視制御部111にポストアンプ141とVOA143のレベルを調整する監視制御用信号を送信してもよい。
<比較例6>
 図8は、本実施形態の比較例として、従来のROADM装置同士が、折り返し構成で、光パワー管理を行う構成を示した説明図である。なお、図8に示す光伝送システム305の監視制御部211と監視制御部111とは、ネットワーク500で接続されている。
 図8に示すように、比較例としての光伝送システム305は、光伝送システム304(図7)に対し、ROADM装置203の監視制御部211が、ネットワーク500を介して、外部の監視制御部、例えば、遠隔集中監視装置(図示せず)に接続されている。
 図8では、ROADM装置101とROADM装置203は、図5で説明したように、OSC用SFP150とOSC用SFP250とが光信号の送受信を行うことができない。そのため、遠隔集中監視装置が、ROADM装置101の監視制御部111に対して、ROADM装置203の受信部252の光パワーを上げるように、ポストアンプ141とVOA143とを制御して、送信する送信パワーを上げる制御を実行する。
 なお、監視制御部211は、ROADM装置101とROADM装置203との伝送路のロスを測定(スパンロス測定)し、スパンロスに合わせて、遠隔集中監視装置により、監視制御部111にポストアンプ141とVOA143のレベルを調整させてもよい。
<第3の実施形態>
 図9は、第3の実施形態として、図8に示す光伝送システムに、図6に示す通信装置を適用した説明図である。図9に示す説明図が図8の説明図と異なる点は、ROADM装置101の代わりに、通信装置401が設けられている点である。
 図9に示すように、本実施形態に係る光伝送システム306は、図8に示す光伝送システム305において、ROADM装置101の代わりに通信装置401が設けられている。
 ROADM装置203の監視制御部211は、応答部420が折り返した折り返し信号の光パワーを測定する測定部212を備えている。監視制御部211は、測定部212において測定した折り返し信号の光パワーが損失している場合、ネットワーク500を介して、遠隔集中監視装置に通知して、監視制御部411に折り返し信号の送信パワーを増幅させて送信させる。
 これにより、通信装置401は、監視制御部411が遠隔集中監視装置から指示を受け付けて、送信パワーを上げるアンプ制御により、応答部420の折り返し信号の光パワーを上げることができる。なお、監視制御部411は、応答部420の送信パワーを上げることができればよく、アンプ制御の方法は、限定されるものではない。
<第4の実施形態>
 図10は、第4の実施形態として、図9に示す光伝送システムの通信装置が、光増幅部を備える構成を示した説明図である。図10に示す説明図が図9の説明図と異なる点は、通信装置402が、光増幅部440を更に備えている点である。
 図10に示すように、本実施形態に係る光伝送システム307は、図9に示す光伝送システム306の通信装置401に、光増幅部440が設けられている。
 光増幅部440は、折り返し信号を送信する送信パワーを増幅する機能を有している。光増幅部440は、ポストアンプ441、プリアンプ442、VOA443及びOCM460を備えて構成されている。
 ポストアンプ441は、ポストアンプ141と同等であり、プリアンプ442は、プリアンプ142と同等であり、VOA443は、VOA143と同等であり、OCM460は、OCM160と同等である。
 光増幅部440は、監視制御部411からの指示を受け付け、応答部420で光伝送路20を介して受信した光信号に対して送信パワーを増幅し、光伝送路10を介して折り返し信号として送信する。
 このように、通信装置402は、監視制御部411が遠隔集中監視装置から指示を受け付けて、折り返し信号を送信する送信パワーを上げることができる。
<比較例7>
 図11は、本実施形態の比較例として、従来のROADM装置同士において、OCMにより波長情報の管理を行う際の構成を示した説明図である。
 図11に示すように、比較例としての光伝送システム308では、ROADM装置203の監視制御部213が、OSC用SFP250の受信端子Rで受信した光信号により、ノード(ROADM装置100)の波長情報として使用波長及び波長数を取得する。
 例えば、監視制御部213は、OSC用SFP250の受信端子Rで受信したノード(ROADM装置100)の波長情報に基づいて、光増幅部240のポストアンプ241や、OXC部230のWSS231を制御する。具体的には、監視制御部213は、取得した波長情報に基づいて波長ポートを開け、及び/又は、アンプを調整する。
 また、OCM260は、ROADM装置100から受信した光信号の波長スペクトルを測定し、使用波長や波長数の波長情報を監視制御部213に通知する。これにより、監視制御部213は、OCM260で測定した波長情報に基づいて、OXC部230を制御し、使用する波長ポートを制御する。
 例えば、監視制御部213は、取得するはずの波長がOCM260で測定できない場合、WSS231において、測定できない波長の波長ポートを閉じる。また、監視制御部213は、使用波長を測定し、波長チルトが大きい場合、波長ごとに光パワーのバラつきを修正し、波長チルトを揃えるように制御する。
<比較例8>
 図12は、本実施形態の比較例として、従来のROADM装置同士において、監視制御部が、遠隔集中監視装置から波長情報を取得する構成を示した説明図である。なお、図12において、監視制御部214は、ネットワーク500を介して、遠隔集中監視装置から波長情報としてノード(ROADM装置100)の使用波長及び波長数を取得する取得部215を備えている。
 この場合、監視制御部214は、遠隔集中監視装置から、ノードの使用波長及び波長数の波長情報を取得するとともに、OCM260から、測定した使用波長や波長数の波長情報を取得する。
 図12の場合、監視制御部214は、取得部215において遠隔集中監視装置から取得した波長情報と、OCM260で測定した波長情報とを突合する。
 監視制御部214は、図11と同様に、取得予定の波長がOCM260で測定できない場合、WSS231において、取得できない波長の波長ポートを閉じる。また、監視制御部214は、OCM260で使用波長を測定し、波長チルトが大きい場合、波長ごとに光パワーのバラつきを修正し、波長チルトを揃えるように制御する。
<第4の実施形態>
 図13は、第4の実施形態として、図12に示す光伝送システムに、図6の通信装置を適用したことを示す説明図である。すなわち、図13に示す光伝送システム310は、図6に示す通信装置400に対応する通信装置403と、図12に示す光伝送システム309のROADM装置204とを組み合わせたものである。
 図13に示すように、通信装置403は、ネットワーク500を介して、ROADM装置204に接続されている。この場合、監視制御部412は、遠隔集中監視装置を介して、通信装置403の応答部420が、ノード(通信装置403)として折り返す波長情報を監視制御部214に送信する。監視制御部214は、取得部215を有しているため、波長情報としてノード(通信装置403)の使用波長及び波長数を取得する。
 ROADM装置204は、通信装置403の応答部420が折り返した折り返し信号の波長スペクトルを測定するOCM260(光モニタ)と、光伝送路を選択して設定するOXC部230(光クロスコネクト部)と、を備えている。OXC部230は、波長スペクトルにおける波長を選択するWSS231,232を有している。
 監視制御部214は、取得部215を備え、取得部215は、通信装置403から送信される波長スペクトルに関する波長情報を取得する。
 監視制御部214は、OCM260で測定した波長スペクトルの測定結果と、取得部215で取得した波長情報とが一致しない場合、測定結果に合わせてWSS231,232を制御し、及び/又は、測定した波長スペクトルの波長ごとのパワーを制御する。
 このように、監視制御部214は、取得部215で取得した波長情報と、OCM260で測定した波長情報とを突合する。また、監視制御部214は、取得部215で取得した波長情報と、OCM260で測定した波長情報とにおいて、波長情報が異なり、取得するはずの波長が測定できない場合には、WSS231においてその測定できない波長の波長ポートを閉じる。また、監視制御部211は、測定した波長の光パワーにばらつきがあり、波長チルトが大きい場合、波長ごとに光パワーを修正し、波長チルトを揃えるように制御する。
<効果>
 以下、本発明に係る光伝送システム302と、ROADM装置200に接続される通信装置400の効果について、説明する。
 本発明に係る光伝送システム302において、光伝送路10,20を介して光信号を送受信するROADM装置201と、ROADM装置201に光伝送路10,20で接続された通信装置400と、を備える光伝送システムであって、ROADM装置201は、電気信号と光信号を相互に変換して、当該光信号を、光伝送路10,20を介して送受信するOSC用SFP250を備え、通信装置400は、ROADM装置201から送信された光信号を、当該ROADM装置201に折り返す応答部420を備える、ことを特徴とする。
 これにより、本実施形態に係る光伝送システム302では、OSC用SFP250から、光伝送路20に光信号を送信する。通信装置400の応答部420は、その送信された光信号を、光伝送路10を介してROADM装置201に折り返す。そして、ROADM装置201は、OSC用SFP250が送信された折り返し信号を受信する。
 よって、本実施形態に係る光伝送システム302は、ROADM装置201のOSCの機能を確保したまま、別システムの装置430を電気終端せず、ROADM装置201と通信装置400とが光通信を行うことができる。
 また、本発明に係る光伝送システム303において、光信号を監視する監視制御部210を、さらに備え、監視制御部210は、通信装置400から折り返された折り返し信号を受信できない場合、ネットワークを介し、通信装置400に対して、導通を遮断するAPSD(Auto Power Shut Down)の依頼を通知する。
 これにより、光伝送システム302では、監視制御部410により、通信装置400の導通を遮断することができる。
 また、本発明に係る光伝送システム306において、監視制御部211は、OSC用SFP250が通信装置401に光信号を送信し、応答部420が当該光信号を折り返した折り返し信号の光パワーを測定する測定部212を、さらに備え、測定部212で測定した折り返し信号の光パワーが損失している場合、ネットワークを介して通信装置401に通知することにより、折り返し信号の送信パワーを増幅させて送信させる、ことを特徴とする。
 これにより、通信装置401は、監視制御部411において、送信パワーを上げる制御により、応答部420の折り返し信号の送信パワーを上げることができる。
 また、本発明に係る光伝送システム307おいて、通信装置402は、折り返し信号を送信する送信パワーを増幅する光増幅部440を、さらに備えることを特徴とする。
 これにより、通信装置402は、監視制御部411において、光増幅部440により、折り返し信号の送信パワーを上げることができる。
 また、本発明に係る光伝送システム310において、ROADM装置204は、応答部420が折り返した折り返し信号の波長スペクトルを測定するOCM260と、光伝送路を選択して設定するOXC部230と、をさらに備え、OXC部230は、波長スペクトルにおける波長を選択するWSS231,232を有し、監視制御部214は、送信される波長スペクトルに関する波長情報を取得する取得部215を、さらに備え、監視制御部214は、OCM260で測定した波長スペクトルの測定結果と、取得部215で取得した波長情報とが一致しない場合、測定結果に合わせてWSS231,232を制御し、及び/又は、測定した波長スペクトルの波長ごとのパワーを制御する、ことを特徴とする。
 これにより、監視制御部214は、取得部215で取得した波長情報と、OCM260で測定した波長情報とを突合することができる。監視制御部214は、取得部215で取得した波長情報と、OCM260で測定した波長情報とにおいて、波長情報が異なり、取得するはずの波長が測定できない場合には、WSS231においてその測定できない波長の波長ポートを閉じる。また、監視制御部211は、測定した波長の光パワーにばらつきがあり、波長チルトが大きい場合は、波長ごとに光パワーを修正し、波長チルトを修正することができる。
 また、本発明に係る光伝送システム302において、応答部420は、ROADM装置201から送信された光信号を分岐する光カプラ422,423と、光カプラ422,423と光信号を送信する別システムの装置430との間に接続された光アイソレータ421と、を備える。光アイソレータ421は、光カプラ422,423で分岐された光信号を、別システムの装置430側へは遮断し、ROADM装置201の方向に透過させる、ことを特徴とする。
 これにより、応答部420は、光カプラ423を介して入力された光信号を、光アイソレータ421と光カプラ422とにより、別システムの装置430を電気終端せず、光伝送路10に折り返すことができる。
 なお、本発明は、以上説明した実施形態に限定されるものではなく、多くの変形が本発明の技術的思想内で、当分野において通常の知識を有する者により可能である。
 100,200~204 ROADM装置(光伝送装置)
 110,210,211,213,214 監視制御部
 120,121,220,221 伝送装置
 130,230 OXC部(光クロスコネクト部)
 131,132,231,232 WSS(波長選択スイッチ)
 140,240 光増幅部
 141,241 ポストアンプ
 142,242 プリアンプ
 143,243 VOA
 150,250 OSC用SFP
 151,251 送信部
 152,252 受信部
 153,253,421 光アイソレータ
 154,157,254,257 光カプラ
 158,159,170,258,259,270 光フィルタ
 160,260 OCM(光モニタ)
 212 測定部
 215 取得部
 300~310 光伝送システム
 400~403 通信装置
 420 応答部
 440 光増幅部
 500 ネットワーク
 

Claims (8)

  1.  光伝送路を介して光信号を送受信する光伝送装置と、前記光伝送装置に前記光伝送路で接続された通信装置と、を備える光伝送システムであって、
     前記光伝送装置は、
     電気信号と光信号を相互に変換して、当該光信号を、前記光伝送路を介して送受信するSFP(Small Form factor Pluggable transceiver)を備え、
     前記通信装置は、
     前記光伝送装置から送信された光信号を、当該光伝送装置に折り返す応答部を備える、
     ことを特徴とする光伝送システム。
  2.  前記光伝送装置は、
     光信号を監視する監視制御部を、さらに備え、
     前記監視制御部は、
     前記通信装置から折り返された前記光信号を受信できない場合、ネットワークを介し、前記通信装置に対して、導通を遮断するAPSD(Auto Power Shut Down)の依頼を通知する、
     ことを特徴とする請求項1に記載の光伝送システム。
  3.  前記監視制御部は、
     前記SFPが前記通信装置に光信号を送信し、前記応答部が当該光信号を折り返した折り返し信号の光パワーを測定する測定部を、さらに備え、
     前記測定部で測定した前記折り返し信号の光パワーが損失している場合、前記ネットワークを介して前記通信装置に通知することにより、前記折り返し信号の送信パワーを増幅させて送信させる、
     ことを特徴とする請求項2に記載の光伝送システム。
  4.  前記通信装置は、
     前記折り返し信号を送信する送信パワーを増幅する光増幅部を、さらに備える、
     ことを特徴とする請求項3に記載の光伝送システム。
  5.  前記光伝送装置は、
     前記応答部が折り返した折り返し信号の波長スペクトルを測定する光モニタと、
     光伝送路を選択して設定する光クロスコネクト部と、をさらに備え、
     前記光クロスコネクト部は、
     前記波長スペクトルにおける波長を選択する波長選択スイッチを有し、
     前記監視制御部は、
     送信される波長スペクトルに関する波長情報を取得する取得部を、さらに備え、
     前記光モニタで測定した前記波長スペクトルの測定結果と、前記取得部で取得した前記波長情報とが一致しない場合、前記測定結果に合わせて前記波長選択スイッチを制御し、及び/又は、測定した前記波長スペクトルの波長ごとのパワーを制御する、
     ことを特徴とする請求項2から4のうちいずれか1項に記載の光伝送システム。
  6.  前記応答部は、
     前記光伝送装置から送信された光信号を分岐する光カプラと、
     前記光カプラと光信号を送信する別システムの装置との間に接続された光アイソレータとを備え、
     前記光アイソレータは、
     前記光カプラで分岐された前記光信号を、前記別システムの装置側へは遮断し、前記光伝送装置の方向に透過させる、
     ことを特徴とする請求項1から5のうちいずれか1項に記載の光伝送システム。
  7.  光伝送路に光信号を伝送する光伝送装置と、前記光伝送装置に前記光伝送路で接続された通信装置と、を備える光伝送システムの伝送方法であって、
     前記光伝送装置が、電気信号を光信号に変換し、当該光信号を、前記光伝送路を介して、前記通信装置に送信するステップと、
     前記通信装置が、前記光伝送装置から送信された光信号を、当該光伝送装置に折り返すステップと、
     前記光伝送装置が、前記通信装置から折り返された折り返し信号を受信するステップと、
     を含むことを特徴とする光伝送システムの伝送方法。
  8.  光伝送装置から送信された光信号を、当該光伝送装置に折り返す応答部と、
     前記応答部が前記光伝送装置に折り返した折り返し信号が切断された場合、前記光伝送装置から通知される、導通を遮断するAPSD(Auto Power Shut Down)の指示を受け付ける監視制御部と、
     を備えることを特徴とする通信装置。
PCT/JP2022/007119 2022-02-22 2022-02-22 光伝送システム、光伝送システムの伝送方法、及び通信装置 WO2023161976A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007119 WO2023161976A1 (ja) 2022-02-22 2022-02-22 光伝送システム、光伝送システムの伝送方法、及び通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007119 WO2023161976A1 (ja) 2022-02-22 2022-02-22 光伝送システム、光伝送システムの伝送方法、及び通信装置

Publications (1)

Publication Number Publication Date
WO2023161976A1 true WO2023161976A1 (ja) 2023-08-31

Family

ID=87765138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007119 WO2023161976A1 (ja) 2022-02-22 2022-02-22 光伝送システム、光伝送システムの伝送方法、及び通信装置

Country Status (1)

Country Link
WO (1) WO2023161976A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033442A (ja) * 2004-07-16 2006-02-02 N Ii C Tele Netsutowaakusu Kk 光ファイバ破断監視システム及び光ファイバ破断監視方法
US20140177657A1 (en) * 2012-12-22 2014-06-26 Adva Optical Networking Se Optical Fiber Transmission System
JP2017523698A (ja) * 2014-06-30 2017-08-17 ゼットティーイー コーポレーションZte Corporation 光パワー低減保護方法及び装置、コンピュータ記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033442A (ja) * 2004-07-16 2006-02-02 N Ii C Tele Netsutowaakusu Kk 光ファイバ破断監視システム及び光ファイバ破断監視方法
US20140177657A1 (en) * 2012-12-22 2014-06-26 Adva Optical Networking Se Optical Fiber Transmission System
JP2017523698A (ja) * 2014-06-30 2017-08-17 ゼットティーイー コーポレーションZte Corporation 光パワー低減保護方法及び装置、コンピュータ記憶媒体

Similar Documents

Publication Publication Date Title
US8554074B2 (en) Colorless, directionless, and gridless optical network, node, and method
US6535309B1 (en) Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method
US11101885B2 (en) Supervisory signal paths for an optical transport system
US9397749B2 (en) Method and apparatus for performing an automatic power adjustment for an optical signal
US8554070B2 (en) Optical transmission apparatus and optical attenuation amount control method
US9166679B2 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
WO2011003247A1 (zh) 实现完全无阻的波长无关性的可重构光分插复用装置
JP2008236798A (ja) リング光ネットワークで制御信号を通信する方法及びシステム
EP1043859A2 (en) Optical add/drop multiplexer node device
JP4826451B2 (ja) 光増幅器を備えた光伝送装置
US20080138074A1 (en) Optical wavelength multiplexing system, optical wavelength multiplexing method, and computer product
JP4294452B2 (ja) 双方向光通信用の光装置
EP3057247B1 (en) Reconfigurable optical add-drop multiplexer apparatus
EP1443695A2 (en) An optical transmission apparatus and an optical wavelength multiplex network therewith
US7120360B2 (en) System and method for protecting traffic in a hubbed optical ring network
US20050286896A1 (en) Hybrid optical ring network
JP4119777B2 (ja) リング光ネットワークの動作中に試験を行う方法及びシステム
JP2008503886A (ja) 波長分割多重(wdm)光分波器
JP3589974B2 (ja) Oadmノード及びそれを用いた波長多重ネットワーク
JP2019075654A (ja) 伝送システム及び伝送方法
WO2023161976A1 (ja) 光伝送システム、光伝送システムの伝送方法、及び通信装置
JP4915449B2 (ja) 光伝送装置
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
JP2006180417A (ja) 光伝送装置
JP4036687B2 (ja) 複数のノード装置がリング状に接続された光リングネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928507

Country of ref document: EP

Kind code of ref document: A1