WO2011003247A1 - 实现完全无阻的波长无关性的可重构光分插复用装置 - Google Patents

实现完全无阻的波长无关性的可重构光分插复用装置 Download PDF

Info

Publication number
WO2011003247A1
WO2011003247A1 PCT/CN2009/073974 CN2009073974W WO2011003247A1 WO 2011003247 A1 WO2011003247 A1 WO 2011003247A1 CN 2009073974 W CN2009073974 W CN 2009073974W WO 2011003247 A1 WO2011003247 A1 WO 2011003247A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
coupler
wavelength
unit
output
Prior art date
Application number
PCT/CN2009/073974
Other languages
English (en)
French (fr)
Inventor
张红宇
叶兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/383,151 priority Critical patent/US8861968B2/en
Priority to EP09846998A priority patent/EP2453601A4/en
Priority to IN1119DEN2012 priority patent/IN2012DN01119A/en
Priority to KR1020127003464A priority patent/KR101533872B1/ko
Publication of WO2011003247A1 publication Critical patent/WO2011003247A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/02122Colourless, directionless or contentionless [CDC] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0219Modular or upgradable architectures

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a reconfigurable optical add/drop multiplexer that achieves completely unimpeded wavelength independence.
  • DWDM Dense Wavelength Division Multiplexing
  • TDM Time Division Multiplexing
  • the scheduling function of the service can be quickly and flexibly implemented to adapt to the networking and services. Changes in distribution. Similar to the Synchronous Digital Hierarchy (SDH) device for VC-4 switching and scheduling, the intelligentization of the network requires DWDM devices to provide wavelength-based reconfigurable functions, ie, wavelength reconfigurable optical add-drop. Reconfigurable Optical Add Drop Multiplexing (RO ADM), flexible implementation of wavelength add/drop multiplexing and remote configuration.
  • the ROADM can connect any point to any point without manual deployment, and can also implement single-wavelength up-and-down and straight-through configurations.
  • the ROADM technology can increase the flexibility of the WDM network, enabling operators to dynamically control the wavelength transmission path remotely, which can effectively reduce the operator's operation and maintenance costs.
  • an intelligent reconfigurable optical add/drop multiplex ROADM system capable of providing multi-directional and service broadcast functions is required.
  • 1 is a schematic diagram of a conventional ROADM device. The device comprises three parts: a line direction, a downlink unit, and an upper unit.
  • the optical signals transmitted from the direction 1 to the direction X through the line fiber respectively enter the dispersion compensation module in the direction (the module is matched according to the dispersion and dispersion tolerance of the system), and after the dispersion compensation, the light is placed in the corresponding direction.
  • the amplifier OPA
  • the optical signal in this direction broadcasts the wavelength selection switch (Wavelength Selective Switch, WSS) and the way of the line in the form of broadcast.
  • WSS wavelength Selective Switch
  • the wavelength selection switch in the direction of the line is broadcasted from all directions to
  • the input signal in the direction and the signal input from the uplink unit are combined and the wavelength signal is combined and output to the dispersion compensation module (the module is matched according to the dispersion and dispersion tolerance of the system), amplified by the optical power amplifier (OBA), and output to Line fiber.
  • OOA optical power amplifier
  • the wavelength scheduling between the X line directions is realized, and the wavelength scheduling can be realized by remotely controlling the wavelength selection switch through the network management of the device.
  • 1 is composed of a coupler, a wavelength selective switch, an optical amplifier (OA), a tunable filter, and a receiver (RX), wherein the direction 1 ⁇ X is broadcasted by the line direction of the combiner.
  • the signal is distributed to several groups via the coupler of the down-channel unit (for example, 1x2 coupler can be assigned to 2 groups, 1x4 coupler can be assigned to 4 groups, with jt ⁇ ), and each group is selected by wavelength selection switch. Selecting the set of wavelength signals to be demultiplexed from the input optical signals and outputting them, and outputting them by the optical amplifier (OA), outputting them to the tunable filter to select the lower wavelength, and receiving by the receiver (RX) to achieve the direction.
  • 1x2 coupler can be assigned to 2 groups
  • 1x4 coupler can be assigned to 4 groups, with jt ⁇
  • each group is selected by wavelength selection switch. Selecting the set of wavelength signals to be demultiplexed from the input optical signals and outputting them, and outputting them
  • the tunable filter can be implemented by a wavelength selective switch (WSS).
  • WSS wavelength selective switch
  • the reconstruction of the downstream wavelength can be realized by remotely controlling the wavelength selective switch and the tunable filter through the network management of the device.
  • the upper unit in FIG. 1 is composed of a wavelength selective switch, a coupler 1, an optical amplifier (OA), a coupler 2, and a transmitter TX, wherein the optical signals output by the transmitter (TX) of each group are coupled through the group. After being combined, the device 1 is amplified by an optical amplifier (OA) and output to the coupler 2.
  • OA optical amplifier
  • the coupler 2 outputs the combined optical signal to the wavelength selective switch in each direction in a broadcast form, and the wavelength selection switch in each direction sets the light of each group.
  • the signal selects the wavelength selection switch that is output to the line direction in the corresponding direction after combining.
  • the transmitter (TX) is a wavelength tunable TX
  • the direction-independent, wavelength-independent downlink function is implemented, but each group cannot have the same wavelength on the road, the same wavelength can pass through multiple groups, and then the wavelength selection switch will be used.
  • the group signal is selected to be combined.
  • the reconstruction of the upstream wavelength can be realized by remotely controlling the wavelength selective switch and the wavelength tunable transmitter (TX) through the network management of the device.
  • the prior art can only achieve partial wavelength independence, that is, the wavelengths of the downstream channels under each wavelength selection and distribution unit cannot be the same, and the wavelengths of the upper channels under each combination and distribution unit cannot be the same.
  • WSS is currently used to implement reconfigurable down-circuit, but WSS devices are more expensive, and WSS devices larger than 9 ports are immature, so more wavelengths are realized. When going up and down, a lot of WSS is needed, which makes the ROADM equipment costly and bulky.
  • the reconfigurable optical add/drop multiplex apparatus for achieving wavelength independence independent of the present invention includes: a downlink unit for distinguishing optical signals of multiple wavelengths between directions 1 and X of line direction broadcast input.
  • the multi-wavelength optical signals between the directions 1 and X are switched to any corresponding output port through a plurality of NxN optical switches, and the received optical signals are combined by the corresponding Kxl coupler/optical switch and sent to the corresponding Receiver RX; an uplink unit for broadcasting an optical signal emitted by the transmitter TX to a plurality of NxN optical switches via N ⁇ couplers/optical switches, and switching the optical signals to respective outputs by the respective NxN optical switches
  • the port then combines the corresponding optical signals of directions 1 to X and outputs them to the line direction; where X is an integer greater than or equal to 2, and K and ⁇ are integers.
  • a ⁇ splitter with a direction 1 ⁇ and a N NxN optical switch wherein the ⁇ splitter in the direction 1 ⁇ X is used for the direction 1 of the broadcast direction of the line direction
  • the optical signals of different wavelengths between ⁇ X are distinguished and output to Y NxN optical switches; the above-mentioned Y NxN optical switches are used to switch the input multi-wavelength optical signals in each direction to any corresponding output port, and send to Corresponding to the above Kxl coupler/optical switch; wherein X is an integer greater than or equal to 2, K, ⁇ , ⁇ , ⁇ are integers greater than or equal to 1, ⁇ > ⁇ , JLN>M, JL YxN >XxM.
  • an lxL combiner with a direction 1 X is further provided, wherein L is an integer greater than or equal to 1, and is used for respectively transmitting optical signals of multiple wavelengths between directions 1 and X of the line direction broadcast input through lxL.
  • the coupler is divided into L parts and output to the ⁇ splitter in the above direction 1 to X.
  • an optical amplifier OA is disposed between the 1 1 ⁇ 1 in the direction 1 X and the ⁇ splitter in the direction 1 X for amplifying the optical signal outputted by the lxL coupler, and outputting the signal to the The ⁇ splitter of the direction 1 ⁇ X.
  • an Mxl combiner with a direction 1 X and Y NxN optical switches are provided, wherein the Y NxN optical switches are used to broadcast the directions of the ⁇ coupler/optical switch The multi-wavelength optical signal is switched to any corresponding output port; the Mxl combiner in the above direction 1 ⁇ X is used to combine and output the optical signals of the corresponding directions output by the NxN optical switch.
  • an Lx1 coupler having directions 1 to X is further disposed in the above-mentioned uplink unit, wherein L is an integer greater than or equal to 1 for coupling the signals output by the Mxl combiner to Lx1 respectively. After the device is combined, the output is broadcast to the line direction.
  • an optical amplifier OA is disposed between the Lxl coupler in the above direction 1 ⁇ X and the Mxl combiner in the above direction 1 ⁇ X, and is used to capture the Mxl combiner output of the above direction 1 ⁇ X. After the optical signal is amplified, it is output to the Lx l coupler in the above direction 1 ⁇ X.
  • the ⁇ splitter of the downlink unit uses an arrayed waveguide grating AWG or a dielectric film filter TFF technology device;
  • the Mxl combiner of the above-mentioned upper unit uses an arrayed waveguide grating AWG or a dielectric filter TFF, or a combiner.
  • the NxN optical switches of the upper unit and the lower unit respectively need to block the input optical signal that does not need to be output by the NxN optical switch. Broken, even if the optical signal is not output from any port; when the above-mentioned upper unit uses a neon switch and the lower unit uses a Kxl optical switch, the NxN optical switches of the upper unit and the lower unit do not need to be input, respectively The optical signal output by the NxN optical switch is blocked.
  • the / ⁇ coupler/optical switch of the above-mentioned upper unit, the Kxl coupler/optical switch of the above-mentioned down unit are integrated in a module, and the first port of each coupler is output by a parallel fiber optic connector MPO connector, The second port is output by another MPO connector, and so on;
  • the Mxl combiner of the upper circuit unit, the ⁇ ⁇ splitter of the downlink unit, and the NxN optical switch respectively provide an MPO connector, that is, the above-mentioned downlink a unitary splitter, an optical connection between the NxN optical switch and the Kxl coupler/optical switch using an MPO connector; an Mxl combiner of the add-on unit, the NxN optical switch, and the above-described ⁇ coupler/light A fiber optic connection between the switches using an MPO connector.
  • the invention has the beneficial effects of realizing the completely unimpeded wavelength-independent reconfigurable optical add/drop multiplexer according to the present invention, capable of realizing the uplink and downlink direction independence and the broadcast function and line of the uplink and line direction signals. Based on the loopback function of the direction, the wavelength dependence of the upper and lower paths is completely unobstructed, and the fiber optic connection and the device volume are reduced by using the parallel fiber optic connector MPO connector, thereby reducing the equipment cost.
  • FIG. 1 is a schematic diagram of a ROADM device according to the related art
  • FIG. 2 is a schematic diagram of a ROADM device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a ROADM device in four directions according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a 1 ⁇ 4 coupler module according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a 4 ⁇ 4 coupler module according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of the fiber connection of the drop unit in the ROADM device in four directions according to an embodiment of the present invention.
  • a wavelength-independent reconfigurable optical add/drop multiplexer that achieves complete unobstructedness is based on an existing reconfigurable optical add/drop multiplexer, through a downlink unit and a road The improvement of the unit achieves wavelength independence of the unobstructed underpass and on the road.
  • the device includes a wavelength scheduling unit, a downlink unit, and an uplink unit.
  • the wavelength scheduling unit is configured to perform wavelength scheduling between the line direction 1 X and broadcast of the line direction signal and loopback in the line direction.
  • the wavelength scheduling unit includes: an optical preamplifier (OPA) of direction 1 to X, and a direction. 1 ⁇ X line direction combiner, direction 1 ⁇ X wavelength selection switch (WSS), direction 1 ⁇ X optical power amplifier (OBA).
  • OPA optical preamplifier
  • WSS direction 1 ⁇ X wavelength selection switch
  • OPA optical power amplifier
  • the dispersion compensation module of direction 1 ⁇ X can be selected according to the dispersion and dispersion tolerance of the system. Where X is an integer greater than or equal to 2, and X is the number of directions of the ROADM node, that is, the dimension.
  • the wavelength scheduling can be performed remotely through the network management of the device.
  • the above-mentioned downlink unit is configured to: distinguish optical signals of multiple wavelengths between directions 1 and X of the line direction broadcast input, and switch optical signals of multiple wavelengths between directions 1 and X through a plurality of NxN optical switches.
  • the lower unit includes: a combination of direction 1 ⁇ , Direction 1 X optical amplifier (OA), direction 1 ⁇ ⁇ splitter (where K is an integer, M is the number of wavelengths in one direction), Y NxN optical switches (where Y is an integer, N > M, and YxN > XxM ), N Kxl couplers / optical switches (where K is an integer, K > Y ), and the receiver.
  • the directional 1 splitter of the direction 1 ⁇ X is amplified by the optical amplifier (OA) after being distributed by the coupler in each direction of the downlink unit by the coupler in the line direction.
  • the optical signals of the respective wavelengths are separated and output to the respective NxN optical switches.
  • Each NxN optical switch switches the input multi-wavelength optical signals in each direction to any corresponding output port, and the Kxl coupler/optical switch passes through each NxN optical switch.
  • the selected optical signals are combined and output to the receiver.
  • the direction 1 ⁇ combiner can be an IxL coupler with a direction of 1 ⁇ X, where L is an integer greater than or equal to 1, and each direction is broadcasted to the lower unit by a coupler in the line direction.
  • the optical signals are respectively divided into L parts by an I xL coupler, and each of them is amplified by the optical amplifier OA and output to a chirping splitter of direction 1 X.
  • the NxN optical switch and the Kx 1 coupler/optical switch can be remotely controlled by the network management of the device to realize the reconstruction of the downstream wavelength.
  • the above-mentioned uplink unit is configured to: broadcast the optical signal emitted by the transmitter to a plurality of NxN optical switches via a 1 ⁇ coupler/optical switch, and switch the optical signals to any corresponding output port by each optical switch, and then The corresponding optical signals of directions 1 to X are combined and output to the line direction.
  • X is an integer greater than or equal to 2
  • K and ⁇ are integers.
  • the above-mentioned upper unit includes: a coupler with a direction 1 X , an Mx l combiner with a direction of 1 to ⁇ , Y NxN optical switches, a Kxl coupler/optical switch, and a transmitter (TX).
  • the optical signal of the transmitter is first broadcasted to the Y NxN optical switches via the ⁇ coupler/optical switch, and each NxN optical switch switches the multi-wavelength optical signals in each direction to any corresponding output port, and the Mxl combination in each direction.
  • the wave device combines the optical signals selected by the Y NxN optical switches and outputs them to the combiner in the corresponding direction, and combines the combined signals of the corresponding directions to output the wavelength selection switch wss in the corresponding direction.
  • the direction 1 ⁇ X combiner can be the Lxl combiner of the direction 1 ⁇ X to realize the upper end The expansion of the number of mouths.
  • the NxN optical switch and the ⁇ coupler/optical switch can be remotely controlled by the network management device of the device to realize the reconstruction of the uplink wavelength.
  • the chirp-demultiplexer of the down-channel unit may be a device using an array waveguide grating (AWG), a dielectric film filter (TFF), etc., and is used to separate signals of respective wavelengths;
  • the Mxl combiner of the uplink unit may be adopted A device that combines wavelength signals by techniques such as arrayed waveguide grating (AWG), dielectric film filter (TFF), and coupler. When the coupler is used, the optical power loss is large, and it is necessary to consider adding the optical amplifier after the Mxl combiner.
  • the NxN optical switches of the upper and lower units respectively need to block the input optical signal that does not need to be output by the NxN optical switch, even if the optical signal does not Any port output.
  • the NxN optical switches of the upper and lower units do not need to block the input optical signals that are not required to be output by the NxN optical switch.
  • several (such as 8, or 16) Kxl/lxK 3 ⁇ 4 ⁇ /optical switches of the upper and lower units can be integrated in one module, and the first port of each coupler is connected by a parallel fiber connector.
  • the Mxl combiner of the add-on unit and the splitter and NxN optical switch of the drop unit can also conveniently provide the MPO connector, so that the splitter, NxN optical switch and Kxl coupler/optical switch of the down circuit unit
  • the fiber connection between the fiber optic connection and the Mxl combiner of the add-on unit, the NxN optical switch and the ⁇ coupler/optical switch can be connected by an MPO connector to reduce the required space.
  • These fiber optic connections can also be fiber-removed from the back to further fiberize the fiber connection.
  • 3 is a schematic diagram of a ROADM device in four directions according to Embodiment 1 of the present invention.
  • the connection relationship between the four line directions of direction 1 to direction 4 and the lower unit and the upper unit is as follows:
  • the input signals in the direction of the line direction 1 ⁇ 4 are amplified by the optical preamplifier (OPA), and then enter the directions.
  • OPA optical preamplifier
  • the coupler In the line direction coupler, the coupler outputs the optical signal to the wavelength selection switch and the downlink unit in the direction of each line in a broadcast manner, and then the wavelength selection switch in each direction broadcasts the input optical signal from the coupler in each direction, Selecting the wavelength signal in the optical signal input by the upper unit and combining the output To the optical power amplifier (OBA), amplified by OBA and output to the line fiber.
  • OBA optical power amplifier
  • the wavelength scheduling can be realized by remotely controlling the wavelength selection switch through the network management of the device.
  • the drop unit includes: an optical amplifier (OA), an AWG, a 128x128 optical switch, and a coupler/optical switch.
  • the 128x128 optical switch is required to block the optical signal that does not need to be output, even if the optical signal is not output from any port.
  • the connection relationship of the downlink unit is as follows: Direction 1 ⁇ 4
  • the optical signals broadcasted to the downlink unit by the line direction are amplified by the optical amplifier (OA), output to the AWG, and the optical signals of the respective wavelengths are separated, and then output.
  • Up to three 128x128 optical switches each 128x128 optical switch switches the input optical signal to the output port.
  • the coupler combines the optical signals selected by the three chopper switches and outputs them to the receiver (RX) for wavelength independence.
  • the reconstruction of the downstream wavelength can be realized by remotely controlling the 128x128 optical switch through the network management of the device.
  • the add-on unit includes: AWG, 128x 128 optical switch, and coupler/optical switch. Among them, the 128x128 optical switch is required to block the optical signal that does not need to be output, even if the optical signal is not output from any port.
  • the connection relationship of the uplink unit is as follows:
  • the optical signal transmitted by the transmitter (TX) is first broadcasted to three 128x128 optical switches via the coupler/optical switch, and each 128x128 optical switch switches the optical signal to the output port, and the AWG in each direction will pass
  • the optical signals selected by the Y 128x128 optical switches are combined and output to the wavelength selective switch (WSS) in the corresponding direction.
  • WSS wavelength selective switch
  • the transmitter (TX) is a wavelength tunable TX
  • the reconstruction of the upstream wavelength can be realized by remotely controlling the 128x128 optical switch through the network management of the device.
  • FIG. 4 is a schematic diagram of a ROADM device in four directions according to Embodiment 2 of the present invention.
  • the device consists of a line 4 in the direction 1, a line 4 in the direction 2, a line 4 in the direction 3, a line portion in the direction 4, a drop unit, and an on-go unit.
  • the connection relationship between the four line directions of direction 1 to direction 4 and the lower unit and the upper unit is as follows:
  • the input signals in the direction of the line direction 1 ⁇ 4 are amplified by the optical preamplifier (OPA), and then enter the directions.
  • OPA optical preamplifier
  • the coupler In the line direction coupler, the coupler outputs the optical signal to the wavelength selection switch and the downlink unit in the direction of each line in a broadcast manner, and then the wavelength selection switch in each direction broadcasts the input optical signal from the coupler in each direction,
  • the optical signal input from the upper unit is selected as a wavelength signal and then output to an optical power amplifier (OBA), which is amplified by the OBA and output to the line fiber.
  • OBA optical power amplifier
  • the drop unit includes: an optical amplifier (OA), an AWG, a 128x128 optical switch, and a coupler/optical switch.
  • the 128x128 optical switch is required to block the optical signal that does not need to be output, even if the optical signal is not output from any port.
  • the connection relationship of the downlink unit is as follows: Direction 1 ⁇ 4
  • the optical signals broadcasted to the downlink unit by the line direction are amplified by the optical amplifier (OA), output to the AWG, and the optical signals of the respective wavelengths are separated and output to Three 128x 128 optical switches, each 128x128 optical switch switches the input optical signal to the output port.
  • the coupler/optical switch combines the optical signals selected by the three NxN optical switches and outputs them to the receiver (RX) for wavelength.
  • the reconstruction of the downstream wavelength can be realized by remotely controlling the 128x 128 optical switch through the network management of the device.
  • the add-on unit includes: an AWG, a 128x 128 optical switch, and a coupler/optical switch.
  • the 128x128 optical switch is required to block the optical signal that does not need to be output, even if the optical signal is not output from any port.
  • the connection relationship of the uplink unit is as follows:
  • the optical signal transmitted by the transmitter (TX) is first broadcasted to three 128x128 optical switches via the coupler/optical switch, and each 128x128 optical switch switches the optical signal to the output port, and the AWG in each direction will pass
  • the optical signals selected by the Y 128x128 optical switches are combined and output to the wavelength selective switch (WSS) in the corresponding direction.
  • WSS wavelength selective switch
  • the transmitter (TX) is a wavelength tunable TX
  • the reconstruction of the upstream wavelength can be realized by remotely controlling the 128x128 optical switch through the network management of the device.
  • Figure 5 is a schematic illustration of a coupler/optical switch module.
  • FIG. 5 is a schematic diagram of fiber optic connections of a drop unit of a directional ROADM device (1) in four directions, in accordance with an embodiment of the present invention.
  • the output of the AWG uses 10 MPO connectors (each MPO connector contains 8 wavelengths of output).
  • the input and output ports of the 128x128 optical switch use 16 MPO connectors (each MPO connector contains 8 wavelengths). Output) Leads out.
  • the input of the first 128x 128 optical switch is first connected to the output of the AWG in direction 1, the remaining port is connected to the partial output of the AWG in direction 2, and the remaining output port of the AWG in direction 2 is connected to the input of the second 128x 128 optical switch.
  • the second 128x128 optical switch input remaining port and direction 3 respectively
  • the output port of the AWG is connected to the partial output port of the AWG of direction 4
  • the input port of the third 128x 128 optical switch is connected to the remaining output port of the AWG of direction 4.
  • the first 8 MPO ports of the output ports of the three 128x128 optical switches are respectively connected to the MPO ports of the first 16-coupler/optical switch module.
  • the above-mentioned upper unit can also adopt the optical fiber connection method similar to that of FIG. 6, that is, the reverse direction of the arrow according to FIG. 6 is the optical fiber connection diagram of the upper unit.
  • 7 is a schematic diagram of fiber optic connections of a drop unit of a ROADM device (2) in four directions, in accordance with an embodiment of the present invention.
  • the output of the AWG uses 10 MPO connectors (each MPO connector contains 8 wavelengths of output).
  • the input and output ports of the 128x 128 optical switch use 16 MPO connectors (each MPO connector contains 8 wavelengths).
  • each 128x 128 optical switch is connected to the partial output of the AWG in the direction of 1 ⁇ 4.
  • the first 8 MPO ports of the output ports of the three 128x128 optical switches are respectively connected to the MPO ports of the first 16-coupler/optical switch module. In this way, every 8 MPOs of the output ports of the three 128x 128 optical switches are connected.
  • the ports are respectively connected to the MPO ports of the 16-coupler/optical switch module.
  • the upper unit can also adopt the optical fiber connection mode similar to that of FIG. 7, that is, the reverse direction of the arrow according to FIG. 7 is the optical fiber connection diagram of the upper unit.
  • the wavelength-independent reconfigurable optical add/drop multiplexer that achieves complete unobstructed operation according to the present invention can realize the uplink and downlink direction independence and the broadcast function and line direction of the uplink and line direction signals. Based on the loopback function, the wavelength dependence of the on- and off-circuit is completely unobstructed, and the fiber-optic connection and the device volume are reduced by the parallel fiber-optic connector MPO connector, which reduces the equipment cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Description

实现完全无阻的波长无关性的可重构光分插复用装置 技术领域 本发明涉及光通信技术领域,特别涉及一种实现完全无阻的波长无关性 的可重构光分插复用装置。 背景技术 目前, 密集波分复用 ( Dense Wavelength Division Multiplexing, DWDM ) 设备已经广泛应用于骨干网络到本地及城域核心网络中, DWDM 设备组网 拓朴也从筒单的点对点过渡到环网、 两环相交, 最终将应用于格形网和网状 网。 业务类型由以时分复用模式( TDM )业务为主的电路交换业务过渡到以 IP为主的数据业务。 由于业务发展的不确定性及前期预估难度的增加, 对设 备的智能化提出了要求, 需要在网络拓朴以及业务分布发生改变时, 能快速 灵活实现业务的调度功能以适应组网及业务分布的变化。 与同步数字系歹' J( Synchronous Digital Hierarchy, SDH )设备实现对 VC-4 交换和调度类似, 网络的智能化要求 DWDM设备提供基于波长的可重构功 能, 即波长可重构的光分插复用功能 ( Reconfigurable Optical Add Drop Multiplexing, RO ADM ),灵活实现波长的分插复用功能并可以进行远程配置。 ROADM可以在无须人工调配的情况下实现任意点对任意点的连接 , 也可以 实现单波长的上下路及直通配置。 利用 ROADM技术, 可以增加 WDM网络 的弹性, 使运营商远程动态控制波长传输的路径, 可有效地减少运营商的运 营和维护成本。 同时随着网络规模的发展以及业务类型的多样性, 要求能够 提供多方向、可实现业务广播功能的智能化的可重构光分插复用 ROADM系 统。 图 1是现有的 ROADM装置的示意图。 该装置包括线路方向、 下路单 元、 上路单元三大部分。 具体地, 从方向 1〜方向 X经线路光纤传输的光信 号分别进入该方向的色散补偿模块 (该模块根据系统的色散及色散容忍程度 选配) 进行色散补偿后, 进入相应方向的光前置放大器 (OPA ) 进行放大, 弥补线路损耗, 再进入相应方向的线路方向的 合器夺该方向的光信号以广 播的形式广播到各线路方向的波长选择开关 (Wavelength Selective Switch, WSS ) 和下路单元, 该方向的线路方向的波长选择开关从各方向广播输入到 该方向的输入信号、 上路单元输入的信号中选择波长信号合波后到输出到色 散补偿模块 (该模块根据系统的色散及色散容忍程度选配), 经光功率放大器 ( OBA )放大后输出到线路光纤。 通过这些单元的配合, 实现 X个线路方向 之间的波长调度, 波长调度可通过设备的网管远程控制波长选择开关实现。 图 1中的下路单元由耦合器、 波长选择开关、 光放大器(OA )、 可调谐 滤波器、 接收机 ( RX ) 组成, 其中, 方向 1~X经线路方向的 合器广播下 路的光信号经下路单元的耦合器进行功率分配到几组 (如采用 1x2耦合器可 分配到 2组, 1x4 禺合器可分配到 4组, 以 jt匕类推), 其中每一组由波长选择 开关从输入的各方向光信号选择该组需下路的波长信号合波后输出 , 经光放 大器 (OA ) 放大后输出到可调谐滤波器选择下路波长, 由接收机(RX )接 收, 实现方向无关性、 波长无关性下路功能, 但每一组不能有相同波长下路, 相同波长可通过耦合器分成的多组下路。 其中可调谐滤波器可采用波长选择 开关 (WSS ) 实现。 下路波长的重构可通过设备的网管远程控制波长选择开 关、 可调谐滤波器实现。 图 1中的上路单元由波长选择开关、 耦合器 1、 光放大器 (OA )、 耦合 器 2、 发射机 TX组成, 其中, 每一组的发射机 ( TX ) 输出的光信号经该组 的耦合器 1合波后, 经光放大器( OA )放大后输出到耦合器 2 , 耦合器 2将 合波光信号以广播形式输出到各方向的波长选择开关 , 各方向的波长选择开 关将各组的光信号选择合波后输出到相应方向的线路方向的波长选择开关。 在发射机(TX )是波长可调谐的 TX时, 实现方向无关性、 波长无关性下路 功能, 但每一组不能有相同波长上路, 相同波长可通过多组, 再有波长选择 开关将各组信号选择合波实现。 上路波长的重构可通过设备的网管远程控制 波长选择开关、 波长可调谐的发射机(TX ) 实现。 但是, 现有技术只能实现部分波长无关性, 即每一波长选择及分配单元 下的下路波长不能相同,每一合波及分配单元下的上路波长不能相同。 另夕卜, 由于可调光滤波器阵列不成熟, 目前采用 WSS实现可重构下路, 但是 WSS 器件价格较贵, 且大于 9个端口的 WSS器件不成熟, 因此在实现较多波长 数的上下路时, 需大量的 WSS , 使得 ROADM设备成本及体积都很庞大。 发明内容 本发明的目的在于,提供一种实现完全无阻的波长无关性的可重构光分 插复用装置, 能够实现下路和上路完全无阻的波长无关性。 才艮据本发明的实现完全无阻的波长无关性的可重构光分插复用装置包 括: 下路单元, 用于将线路方向广播输入的方向 1〜X之间多波长的光信号进 行区分, 通过多个 NxN光开关将方向 1〜X之间多波长的光信号切换到相应 的任一输出端口, 并由相应的 Kxl 耦合器 /光开关对接收到的光信号进行合 并后发送至相应的接收机 RX; 上路单元, 用于将发射机 TX发出的光信号经 N个 ΙχΚ耦合器 /光开关广播到多个 NxN光开关,由各个 NxN光开关将光信 号切换到相应的任一输出端口,再将方向 1〜X的相应光信号合波后输出到线 路方向; 其中, X为大于等于 2的整数, K、 Ν均为整数。 其中, 在上述下路单元中, 设置有方向 1~Χ的 ΙχΜ分波器以及 Υ个 NxN光开关, 其中, 上述方向 1~X的 ΙχΜ分波器, 用于夺线路方向广播输 入的方向 1〜X之间不同波长的光信号进行区分, 输出至 Y个 NxN光开关; 上述 Y个 NxN光开关, 用于将输入的各方向多波长光信号切换到相应的任 一输出端口, 并发送至相应的上述 Kxl 耦合器 /光开关; 其中, X为大于等 于 2的整数, K、 Υ、 Μ、 Ν为大于等于 1的整数, Κ> Υ, JLN>M, JL YxN >XxM。 其中, 在上述下路单元中进一步设置有方向 1 X的 lxL 合器, 其中 L为大于等于 1的整数, 用于将线路方向广播输入的方向 1〜X之间多波长的 光信号分别经 lxL耦合器分成 L份后输出至上述方向 1〜X的 ΙχΜ分波器。 进一步地, 在上述方向 1 X的 1 1^ 合器与所述方向 1 X的 ΙχΜ分 波器之间设置有光放大器 OA, 用于将经 lxL耦合器输出的光信号放大后 , 输出到所述方向 1~X的 ΙχΜ分波器。 另夕卜, 在上路单元中, 设置有方向 1 X的 Mxl合波器以及 Y个 NxN 光开关, 其中, 上述 Y个 NxN光开关, 用于将上述 ΙχΚ耦合器 /光开关广播 来的各方向多波长光信号切换到相应的任一输出端口;上述方向 1〜X的 Mxl 合波器, 用于将上述 NxN光开关输出的相应方向的光信号合波后输出。 另夕卜, 在上述上路单元中进一步设置有方向 1〜X的 Lxl耦合器, 其中 L为大于等于 1的整数,用于将上述 Mxl合波器输出的信号分别经 Lxl耦合 器 合后输出后广播到线路方向。 另夕卜, 在上述方向 1~X的 Lxl 禺合器与上述方向 1~X的 Mxl合波器 之间设置有光放大器 OA,用于^)夺上述方向 1~X的 Mxl合波器输出的光信号 放大后, 输出到上述方向 1~X的 Lx l耦合器。 其中, 上述下路单元的 ΙχΜ分波器采用阵列波导光栅 AWG或者介质 膜滤波器 TFF 技术器件; 上述上路单元的 Mxl 合波器采用阵列波导光栅 AWG或者介质莫滤波器 TFF、 或者 合器。 另外, 在上述上路单元采用 1χΚ 合器、 上述下路单元采用 Kxl 禺合 器时,上述上路单元和下路单元的 NxN光开关分别需要对输入的不需经 NxN 光开关输出的光信号进行阻断, 即使光信号不从任一端口输出; 在上述上路 单元采用 ΙχΚ光开关、 上述下路单元采用 Kxl 光开关时, 上述上路单元和 下路单元的 NxN光开关分别不需要对输入的不需经 NxN光开关输出的光信 号进行阻断。 另外, 上述上路单元的 /ΙχΚ耦合器 /光开关、 上述下路单元的 Kxl耦合 器 /光开关均集成在一模块内, 每个耦合器的第一端口由一并行光纤接头 MPO连接器输出、 第二端口由另一 MPO连接器输出, 依此类推; 上述上路 单元的 Mxl合波器、 上述下路单元的 Ι χΜ分波器, 以及上述 NxN光开关均 提供 MPO连接器, 即上述下路单元的 ΙχΜ分波器、 上述 NxN光开关与上 述 Kxl 耦合器 /光开关之间采用 MPO 连接器的光纤连接; 上述上路单元的 Mxl合波器、上述 NxN光开关,以及上述 ΙχΚ耦合器 /光开关之间采用 MPO 连接器的光纤连接。 本发明的有益效果是:依照本发明的实现完全无阻的波长无关性的可重 构光分插复用装置, 能够在实现上路和下路方向无关性以及上路和线路方向 信号的广播功能、 线路方向的环回功能的基础上, 实现上路和下路的完全无 阻的波长无关性, 并且利用并行光纤接头 MPO连接器筒化了光纤连接、 设 备体积, 降低了设备成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解 ,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1为根据相关技术的 ROADM装置的示意图; 图 2为根据本发明实施例的 ROADM装置的示意图; 图 3为才艮据本发明实施例一的四个方向的 ROADM装置的示意图; 图 4为才艮据本发明实施例二的四个方向的 ROADM装置的示意图; 图 5为才艮据本发明实施例的 1 x4耦合器模块的示意图; 图 6为才艮据本发明实施例的四个方向的 ROADM装置中下路单元的光 纤连接的示意图; 图 7为才艮据本发明实施例的四个方向的 ROADM装置中的下路单元的 光纤连接的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 以下 ,参考附图 1~7详细描述根据本发明实施例的实现完全无阻的波长 无关性的可重构光分插复用装置。 才艮据本发明实施例的实现完全无阻的波长无关性的可重构光分插复用 装置, 是在现有的可重构光分插复用装置基础上, 通过对下路单元和上路单 元进行改进实现了下路和上路完全无阻的波长无关性。 如图 2所示, 该装置 包括波长调度单元、 下路单元、 上路单元。 其中, 上述波长调度单元用于线路方向 1 X之间的波长调度及线路方 向信号的广播、 线路方向的环回, 上述波长调度单元包括: 方向 1~X的光前 置放大器 (OPA )、 方向 1~X的线路方向的 合器、 方向 1~X的波长选择开 关(WSS )、 方向 1〜X的光功率放大器(OBA )。 另外, 还可以根据系统的色 散及色散容忍程度选配方向 1~X的色散补偿模块。 其中, X为大于等于 2的 整数, X为 ROADM节点的方向数, 即维数。 波长调度可通过设备的网管远 程进行。 上述下路单元用于: 将线路方向广播输入的方向 1~X之间多波长的光 信号进行区分, 通过多个 NxN光开关将方向 1〜X之间多波长的光信号切换 到相应的任一输出端口, 并由相应的 Kxl 耦合器 /光开关对接收到的光信号 进行合并后发送至相应的接收机 RX; 其中, 上述下路单元包括: 方向 1~ 的 合器、 方向 1 X的光放大器 ( OA ), 方向 1~ 的 ΙχΜ分波器 (其中 K为整数, M为单方向的波长数)、 Y个 NxN光开关 (其中 Y为整数, N > M, 且 YxN > XxM )、 N个 Kxl 禺 合器 /光开关 (其中 K为整数, K > Y ), 以及接收机。 具体地, 经线路方向的耦合器广播到下路单元的各方向 1~Χ光信号分 别经耦合器进行功率分配后,经光放大器(OA )放大输出到方向 1〜X的 Ι χΜ 分波器将各波长的光信号分开, 再输出到各个 NxN光开关, 各 NxN光开关 将输入的各方向多波长光信号切换到相应的任一输出端口, Kxl耦合器 /光开 关将经各 NxN光开关选择的光信号合波后输出到接收机。 其中, 为实现下路端口数的扩展, 方向 1~ 合器可以为方向 1~X的 IxL耦合器, 其中 L为大于等于 1的整数, 各方向经线路方向的耦合器广播 到下路单元的光信号分别经 I xL耦合器分成 L份,每一份经光放大器 OA放 大后, 输出到方向 1 X的 ΙχΜ分波器。 另外 , 可通过设备的网管远程控制 NxN光开关、 Kx 1耦合器 /光开关实 现下路波长的重构。 上述上路单元用于: 将发射机 ΤΧ发出的光信号经 Ν个 1 χΚ耦合器 /光 开关广播到多个 NxN 光开关, 由各个光开关将光信号切换到相应的任一输 出端口, 再将方向 1〜X的相应光信号合波后输出到线路方向。 其中, X为大 于等于 2的整数, K、 Ν均为整数。 相应地, 上述上路单元: 包括方向 1 X 的 禺合器、 方向 1~Χ 的 Mx l 合波器、 Y个 NxN光开关、 Kxl耦合器 /光开关, 以及发射机(TX )。 具体地,发射机上路的光信号先经 ΙχΚ耦合器 /光开关广播到 Y个 NxN 光开关, 各 NxN光开关将各方向多波长光信号切换到相应的任一输出端口, 各方向的 Mxl合波器将经 Y个 NxN光开关选择的光信号合波后输出到相应 方向的 合器, 由相应方向的 合器合波后输出到相应方向的波长选择开关 wss。 其中, 方向 1~X 合器可以为方向 1~X的 Lxl 合器, 以实现上路端 口数的扩展。 并且, 可通过设备的网管远程控制 NxN光开关、 ΙχΚ耦合器 / 光开关实现上路波长的重构。 另外, 下路单元的 ΙχΜ分波器可为采用阵列波导光栅( AWG )、 介质 膜滤波器( TFF )等技术的器件, 并用于将各波长信号分开; 上路单元的 Mxl 合波器可为采用阵列波导光栅( AWG )、 介质膜滤波器 ( TFF )、 耦合器等技 术实现的将各波长信号合波的器件。 当采用耦合器时, 光功率损耗较大, 需 考虑在 Mxl合波器后加光放大器。 当上路单元采用 1χΚ 合器, 下路单元采用 Kxl 合器时, 上路和下 路单元的 NxN光开关分别需要对输入的不需经 NxN光开关输出的光信号进 行阻断, 即使光信号不从任一端口输出。 当上路单元采用 ΙχΚ光开关, 下路单元采用 Kxl光开关时, 上路和下 路单元的 NxN光开关分别不需要对输入的不需经 NxN光开关输出的光信号 进行阻断。 其中, 上路单元和下路单元的几个 (如 8个, 或 16个) Kxl/lxK ¾^ 器 /光开关可集成在一个模块内, 每个耦合器的第一端口由一并行光纤接头 ΜΡΟ连接器输出, 第二端口由另一 ΜΡΟ连接器输出, 依此类推。 上路单元的 Mxl合波器和下路单元的 ΙχΜ分波器、 NxN光开关也可方 便地提供 MPO连接器, 这样, 下路单元的 ΙχΜ分波器、 NxN光开关与 Kxl 耦合器 /光开关之间的光纤连接, 及上路单元的 Mxl合波器、 NxN光开关与 ΙχΚ耦合器 /光开关之间的光纤连接可采用 MPO连接器, 筒化光纤的连接、 减小所需空间。 这些光纤连接还可采用光背板的方式从后面走纤, 进一步筒 化光纤连接。 图 3为才艮据本发明实施例一的四个方向的 ROADM装置的示意图。图 3 由方向 1的线路 4分、 方向 2的线路 4分、 方向 3的线路 4分、 方向 4的线 路部分、 下路单元、 上路单元组成。 方向 1〜方向 4四个线路方向之间, 及与 下路单元和上路单元的连接关系如下: 线路方向 1~4各方向的输入信号经光前置放大器(OPA )放大后, 进入 各方向的线路方向的耦合器, 由耦合器将光信号以广播的形式输出到各线路 方向的波长选择开关、 下路单元, 然后各方向的波长选择开关从各方向的 禺 合器广播输入的光信号、 上路单元输入的光信号中选择波长信号合波后输出 到光功率放大器(OBA ), 经 OBA放大后输出到线路光纤。 通过这些单元的 配合, 实现四个线路方向之间的波长调度及线路方向信号的广播功能、 线路 方向的环回功能。 波长调度可通过设备的网管远程控制波长选择开关实现。 在图 3中, 下路单元包括: 光放大器 (OA )、 AWG、 128x128光开关、 以及耦合器 /光开关。 其中, 要求 128x128光开关可将不需输出的光信号阻断 的功能, 即使光信号不从任一端口输出。 下路单元的连接关系如下: 方向 1~4 经线路方向的 合器广播到下路单元的光信号分别经光放大 器 (OA ) 放大后, 输出到 AWG, 将各波长的光信号分开, 然后输出到 3个 128x128光开关, 各 128x128光开关将输入光信号切换到输出端口, 耦合器 将经 3个 ΝχΝ光开关选择的光信号合波后输出到接收机 ( RX )接收, 实现 波长无关性、 方向无关性下路功能。 下路波长的重构可通过设备的网管远程 控制 128x128光开关实现。 在图 3 中, 上路单元包括: AWG、 128x 128光开关、 以及耦合器 /光开 关。 其中, 要求 128x128光开关可将不需输出的光信号阻断的功能, 即使光 信号不从任一端口输出。 上路单元的连接关系如下: 经发射机(TX ) 上路的光信号先经耦合器 /光开关广播到 3个 128x128 光开关, 各 128x128光开关将光信号切换到输出端口, 各方向的 AWG将经 Y 个 128x128 光开关选择的光信号合波后输出到相应方向的波长选择开关 ( WSS )。 在发射机(TX ) 是波长可调谐的 TX时, 实现波长无关性、 方向 无关性上路功能。 上路波长的重构可通过设备的网管远程控制 128x128光开 关实现。 图 4为 居本发明实施例二的四个方向的 ROADM装置的示意图。 该 装置由方向 1的线路 4分、 方向 2的线路 4分、 方向 3的线路 4分、 方向 4 的线路部分、 下路单元、 上路单元组成。 方向 1〜方向 4四个线路方向之间, 及与下路单元和上路单元的连接关系如下: 线路方向 1~4各方向的输入信号经光前置放大器(OPA )放大后, 进入 各方向的线路方向的耦合器, 由耦合器将光信号以广播的形式输出到各线路 方向的波长选择开关、 下路单元, 然后各方向的波长选择开关从各方向的 禺 合器广播输入的光信号、 上路单元输入的光信号中选择波长信号合波后输出 到光功率放大器(OBA ), 经 OBA放大后输出到线路光纤。 通过这些单元的 配合, 实现四个线路方向之间的波长调度及线路方向信号的广播功能、 线路 方向的环回功能。 波长调度可通过设备的网管远程控制波长选择开关实现。 图 4中, 下路单元包括: 光放大器(OA )、 AWG、 128x128光开关、 以 及耦合器 /光开关。 其中, 要求 128x128光开关可将不需输出的光信号阻断的 功能, 即使光信号不从任一端口输出。 下路单元的连接关系如下: 方向 1~4 经线路方向的 合器广播到下路单元的光信号分别经光放大 器(OA )放大后,输出到 AWG,将各波长的光信号分开,输出到 3个 128x 128 光开关, 各 128x128光开关将输入光信号切换到输出端口, 耦合器 /光开关将 经 3个 NxN光开关选择的光信号合波后输出到接收机( RX )接收, 实现波 长无关性、 方向无关性下路功能。 下路波长的重构可通过设备的网管远程控 制 128x 128光开关实现。 在图 4中, 上路单元包括: AWG、 128x 128光开关、 以及耦合器 /光开 关。 其中, 要求 128x128光开关可将不需输出的光信号阻断的功能, 即使光 信号不从任一端口输出。 上路单元的连接关系如下: 经发射机(TX ) 上路的光信号先经耦合器 /光开关广播到 3个 128x128 光开关, 各 128x128光开关将光信号切换到输出端口, 各方向的 AWG将经 Y 个 128x128 光开关选择的光信号合波后输出到相应方向的波长选择开关 ( WSS )。 在发射机(TX ) 是波长可调谐的 TX时, 实现波长无关性、 方向 无关性上路功能。 上路波长的重构可通过设备的网管远程控制 128x128光开 关实现。 图 5是耦合器 /光开关模块的示意图。 如图 5所示, 16个耦合器 /光开关 集成在一起, 其中前 8个耦合器 /光开关的第 1/2/3/4输出端分别用四个 MPO 连接器引出,后 8个耦合器的第 1/2/3/4输出端分别用四个 MPO连接器 1出。 图 6是根据本发明实施例的四个方向的 ROADM装置 (一) 的下路单 元的光纤连接的示意图。 AWG的输出采用 10个 MPO连接器(每个 MPO连 接器包含 8个波长的输出) 引出, 128x128光开关的输入和输出端口分别采 用 16个 MPO连接器 (每个 MPO连接器包含 8个波长的输出) 引出。 第 1 个 128x 128光开关的输入先与方向 1的 AWG的输出连接, 剩余端口与方向 2的 AWG的部分输出连接,方向 2的 AWG的其余输出端口与第 2个 128x 128 光开关的输入连接, 第 2个 128x128光开关的输入剩余端口分别与方向 3的 AWG的输出端口、 方向 4的 AWG的部分输出端口相连, 第 3个 128x 128 光开关的输入端口与方向 4的 AWG的剩余输出端口相连。 3个 128x128光 开关的输出端口的前 8个 MPO口分别与第 1个 16-耦合器 /光开关模块的 MPO 口相连, 按此方式, 3个 128x 128光开关的输出端口的每 8个 MPO 口分别 与 16-耦合器 /光开关模块的 MPO口相连。 上述上路单元也可采用类似图 6的光纤连接方式,即依照图 6的箭头反 方向就是上路单元的光纤连接示意图。 图 7是根据本发明实施例的四个方向的 ROADM装置 (二) 的下路单 元的光纤连接示意图。 AWG的输出采用 10个 MPO连接器(每个 MPO连接 器包含 8个波长的输出) 引出, 128x 128光开关的输入和输出端口分别采用 16个 MPO连接器(每个 MPO连接器包含 8个波长的输出)引出。每个 128x 128 光开关的输入分别与方向 1~4的 AWG的部分输出连接。 3个 128x128光开 关的输出端口的前 8个 MPO口分别与第 1个 16-耦合器 /光开关模块的 MPO 口相连, 按此方式, 3个 128x 128光开关的输出端口的每 8个 MPO 口分别 与 16-耦合器 /光开关模块的 MPO口相连。 上路单元也可采用类似图 7的光纤连接方式,即依照图 7的箭头反方向 就是上路单元的光纤连接示意图。 综上所述,依照本发明的实现完全无阻的波长无关性的可重构光分插复 用装置, 能够在实现上路和下路方向无关性以及上路和线路方向信号的广播 功能、 线路方向的环回功能的基础上, 实现上路和下路的完全无阻的波长无 关性, 并且利用并行光纤接头 MPO连接器筒化了光纤连接、 设备体积, 降 低了设备成本。 以上是为了使本领域普通技术人员理解本发明 ,而对本发明所进行的详 细描述, 但可以想到, 在不脱离本发明的权利要求所涵盖的范围内还可以做 出其它的变化和 4爹改, 这些变化和 4爹改均在本发明的保护范围内。

Claims

权 利 要 求 书 一种实现完全无阻的波长无关性的可重构光分插复用装置, 其特征在 于, 所述装置包括:
下路单元,用于将线路方向广播输入的方向 1〜X之间多波长的光 信号进行区分, 通过多个 NxN光开关将方向 1〜X之间多波长的光信 号切换到相应的任一输出端口,并由相应的 Kx l耦合器 /光开关对接收 到的光信号进行合并后发送至相应的接收机 RX;
上路单元, 用于将发射机 TX发出的光信号经 N个 1 xK耦合器 / 光开关广播到多个 NxN光开关, 由各个 NxN光开关将光信号切换到 相应的任一输出端口, 再将方向 1〜X的相应光信号合波后输出到线路 方向; 其中, X为大于等于 2的整数, K、 Ν均为整数。 如权利要求 1 所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 在所述下路单元中设置有方向 1~Χ的 Ι χΜ分波 器以及 Y个 NxN光开关, 其中,
所述方向 1~X的 Ι χΜ分波器, 用于夺线路方向广播输入的方向 1〜X之间不同波长的光信号进行区分, 输出至 Y个 NxN光开关; 所述 Y个 NxN光开关 , 用于将输入的各方向多波长光信号切换 到相应的任一输出端口, 并发送至相应的所述 Kx l耦合器 /光开关; 其 中, X为大于等于 2的整数, K、 Υ、 Μ、 Ν为大于等于 1的整数, Κ > Υ, 且 Ν > Μ, 且 ΥχΝ > ΧχΜ。 如权利要求 2所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 在所述下路单元中进一步设置有方向 1〜Χ的 l xL 耦合器, 其中, L为大于等于 1 的整数, 用于将线路方向广播输入的 方向 1〜X之间多波长的光信号分别经 l xL耦合器分成 L份后输出至所 述方向 1~X的 Ι χΜ分波器。 如权利要求 3所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 进一步在所述方向 1 X的 l xL耦合器与所述方向 1〜X的 Ι χΜ分波器之间设置有光放大器 OA, 用于将经 l xL耦合器输 出的光信号放大后, 输出到所述方向 1〜X的 1 xM分波器。 如权利要求 1 所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 在上路单元中设置有方向 1~X的 Mx l合波器以 及 Y个 NxN光开关, 其中,
所述 Y个 NxN光开关,用于将所述 Ι χΚ耦合器 /光开关广播来的 各方向多波长光信号切换到相应的任一输出端口;
所述方向 1〜X的 Mx l合波器,用于将所述 NxN光开关输出的相 应方向的光信号合波后输出。 如权利要求 5所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 在所述上路单元中进一步设置有方向 1 X的 Lx l 耦合器, 其中 L为大于等于 1的整数, 用于将所述 Mxl合波器输出的 信号分别经 Lx l耦合器耦合后输出后广播到线路方向。 如权利要求 5所述的实现完全无阻的波长无关性的可重构光分插复用 装置, 其特征在于, 在所述方向 1-X的 Lx l 耦合器与所述方向 1~X 的 Mxl合波器之间设置有光放大器 OA,用于^)夺所述方向 1~X的 Mxl 合波器输出的光信号放大后, 输出到所述方向 1〜X的 Lx 1耦合器。 如权利要求 2至 7中任一项所述的实现完全无阻的波长无关性的可重 构光分插复用装置, 其特征在于,
所述下路单元的 Ι χΜ分波器采用阵列波导光栅 AWG或者介质月莫 滤波器 TFF技术器件;
所述上路单元的 Mxl合波器采用阵列波导光栅 AWG或者介质月莫 滤波器 TFF、 或者 合器。 如权利要求 2至 7中任一项所述的实现完全无阻的波长无关性的可重 构光分插复用装置, 其特征在于,
在所述上路单元采用 Ι χΚ耦合器、 所述下路单元采用 Kxl耦合 器时,所述上路单元和下路单元的 NxN光开关分别需要对输入的不需 经 NxN 光开关输出的光信号进行阻断, 即使光信号不从任一端口输 出;
在所述上路单元采用 Ι χΚ光开关、 所述下路单元采用 Kxl光开 关时,所述上路单元和下路单元的 NxN光开关分别不需要对输入的不 需经 NxN光开关输出的光信号进行阻断。 如权利要求 2至 7中任一项所述的实现完全无阻的波长无关性的可重 构光分插复用装置, 其特征在于,
所述上路单元的 /Ι χΚ耦合器 /光开关、 所述下路单元的 Kx l耦合 器 /光开关均集成在一模块内 , 每个耦合器的第一端口由一并行光纤接 头 MPO连接器输出、 第二端口由另一 MPO连接器输出, 依此类推; 所述上路单元的 Mxl合波器、 所述下路单元的 I xM分波器, 以 及所述 NxN光开关均提供 MPO连接器,即所述下路单元的 I xM分波 器、 所述 NxN光开关与所述 Kx l耦合器 /光开关之间采用 MPO连接 器的光纤连接;
所述上路单元的 Mx l合波器、 所述 NxN光开关, 以及所述 Ι χΚ 耦合器 /光开关之间采用 MPO连接器的光纤连接。
PCT/CN2009/073974 2009-07-09 2009-09-16 实现完全无阻的波长无关性的可重构光分插复用装置 WO2011003247A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/383,151 US8861968B2 (en) 2009-07-09 2009-09-16 Reconfigurable optical add/drop multiplexing device for enabling totally inresistant colorless
EP09846998A EP2453601A4 (en) 2009-07-09 2009-09-16 RECONFIGURABLE OPTICAL ADD / DROP MULTIPLEXING DEVICE FOR COMPLETELY RESISTANT WAVELENGTHIRRELEVANCE
IN1119DEN2012 IN2012DN01119A (zh) 2009-07-09 2009-09-16
KR1020127003464A KR101533872B1 (ko) 2009-07-09 2009-09-16 완전 무저항의 파장 무관계성을 실현한 재구성 가능한 광신호 분기, 삽입 다중화 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158384A CN101610129B (zh) 2009-07-09 2009-07-09 实现完全无阻的波长无关性的可重构光分插复用装置
CN200910158384.9 2009-07-09

Publications (1)

Publication Number Publication Date
WO2011003247A1 true WO2011003247A1 (zh) 2011-01-13

Family

ID=41483733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073974 WO2011003247A1 (zh) 2009-07-09 2009-09-16 实现完全无阻的波长无关性的可重构光分插复用装置

Country Status (6)

Country Link
US (1) US8861968B2 (zh)
EP (1) EP2453601A4 (zh)
KR (1) KR101533872B1 (zh)
CN (1) CN101610129B (zh)
IN (1) IN2012DN01119A (zh)
WO (1) WO2011003247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651059A1 (en) * 2012-04-10 2013-10-16 Alcatel Lucent Add device and drop device for an optical network element

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610129B (zh) * 2009-07-09 2012-10-10 中兴通讯股份有限公司 实现完全无阻的波长无关性的可重构光分插复用装置
US10461880B2 (en) 2010-08-26 2019-10-29 Ciena Corporation Flexible grid optical spectrum transmitter, receiver, and transceiver
US9197354B2 (en) 2010-08-26 2015-11-24 Ciena Corporation Concatenated optical spectrum transmission systems and methods
CN102130721B (zh) * 2011-03-16 2014-01-08 烽火通信科技股份有限公司 自动获取可重构光分插复用器节点内部连纤关系的方法
CN103023599A (zh) * 2011-09-20 2013-04-03 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
US9106983B2 (en) * 2012-04-02 2015-08-11 Nec Laboratories America, Inc. Reconfigurable branching unit for submarine optical communication networks
JP5910750B2 (ja) 2012-09-27 2016-04-27 日本電気株式会社 光分岐結合装置及び光分岐結合方法
US9332323B2 (en) * 2012-10-26 2016-05-03 Guohua Liu Method and apparatus for implementing a multi-dimensional optical circuit switching fabric
US9332324B2 (en) 2012-10-26 2016-05-03 Guohua Liu Method and apparatus for efficient and transparent network management and application coordination for software defined optical switched data center networks
ES2684771T3 (es) 2013-04-16 2018-10-04 Huawei Technologies Co., Ltd. Dispositivo de nodo
US9491526B1 (en) * 2014-05-12 2016-11-08 Google Inc. Dynamic data center network with a mesh of wavelength selective switches
US9735914B2 (en) * 2014-07-25 2017-08-15 Nec Corporation Mechanism for traffic privacy in reconfigurable add/drop multiplexer based submarine networks
US9654209B2 (en) * 2015-04-08 2017-05-16 Nec Corporation Low cost secure ROADM branching unit with redundancy protection
CN104869480A (zh) * 2015-04-29 2015-08-26 国网智能电网研究院 一种具有业务疏导功能的roadm交换节点装置和方法
CN106716891B (zh) * 2015-06-25 2018-11-13 华为技术有限公司 一种集成型全光交换节点
WO2017092046A1 (zh) * 2015-12-04 2017-06-08 华为技术有限公司 一种光器件和光传输系统
US10615901B2 (en) 2017-06-30 2020-04-07 Juniper Networks, Inc. Apparatus, systems, and methods for optical channel management
WO2019006758A1 (zh) * 2017-07-07 2019-01-10 华为技术有限公司 光分插复用器和光通信装置
CN111596409B (zh) * 2019-02-20 2022-08-30 阿里巴巴集团控股有限公司 光传输系统、调度节点、合波节点以及分波节点
CN109802744B (zh) * 2019-03-20 2020-09-04 深圳市腾讯计算机系统有限公司 可重构光分插复用器、光网络及光信号处理方法
JP7243364B2 (ja) * 2019-03-26 2023-03-22 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
CN113193936B (zh) * 2021-04-28 2023-06-27 武汉光迅科技股份有限公司 一种支持线路id功能的多播光开关组件及其实现方法
CN114545562B (zh) * 2022-03-25 2023-12-26 阿里巴巴(中国)有限公司 光纤连接盒、数据处理方法、计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427571A (zh) * 2001-12-18 2003-07-02 中国科学院半导体研究所 光上下路分插复用器件
US20040165813A1 (en) * 2003-02-24 2004-08-26 Heath Kouns Switch/variable optical attenuator (SVOA)
US20050265720A1 (en) * 2004-05-28 2005-12-01 Peiching Ling Wavelength division multiplexing add/drop system employing optical switches and interleavers
CN101136717A (zh) * 2006-08-28 2008-03-05 中兴通讯股份有限公司 实现单、多方向波长调度的可配置光分插复用装置
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233074B1 (en) * 1998-05-18 2001-05-15 3Com Corporation Ring networks utilizing wave division multiplexing
GB0007552D0 (en) * 2000-03-28 2000-05-17 Iltron Limited A fully reconfigurable regenerative optical add-drop multiplexer
EP1379898A2 (en) * 2001-03-20 2004-01-14 Corning Incorporated Protected dwdm ring networks using wavelength selected switches
WO2002082706A2 (en) * 2001-04-03 2002-10-17 Nortel Networks Limited High spectral efficiency, high performance optical mux and demux architecture
US7027732B2 (en) * 2002-01-18 2006-04-11 Pts Corporation WDM cross-connects for core optical networks
US7308197B1 (en) * 2003-01-31 2007-12-11 Ciena Corporation Modular add/drop multiplexer including a wavelength selective switch
KR100520637B1 (ko) * 2003-04-30 2005-10-13 삼성전자주식회사 파장분할다중방식 자기치유 양방향 환형 광통신망
US7336901B1 (en) * 2004-02-24 2008-02-26 Avanex Corporation Reconfigurable optical add-drop multiplexers employing optical multiplex section shared protection
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置
US8190027B2 (en) * 2006-07-12 2012-05-29 Tellabs Operations, Inc. Multifunctional and reconfigurable optical node and optical network
US7983560B2 (en) * 2005-10-11 2011-07-19 Dynamic Method Enterprises Limited Modular WSS-based communications system with colorless add/drop interfaces
CN1870469B (zh) * 2006-05-29 2010-06-09 浙江工业大学 基于声光可调谐滤波器的光学分插复用器
JP4920489B2 (ja) * 2007-05-16 2012-04-18 株式会社日立製作所 光分岐挿入装置
CN101420286B (zh) * 2007-10-23 2012-02-08 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置
US8116630B2 (en) * 2008-12-08 2012-02-14 At&T Intellectual Property I, L.P. Methods for dynamic wavelength add/drop in a ROADM optical network
US8126330B2 (en) * 2008-12-11 2012-02-28 At&T Intellectual Property I, L.P. Dynamic wavelength service over a ROADM optical network
US8447183B2 (en) * 2009-04-24 2013-05-21 Tellabs Operations, Inc. Methods and apparatus for performing directionless and contentionless wavelength addition and subtraction
CN101610129B (zh) * 2009-07-09 2012-10-10 中兴通讯股份有限公司 实现完全无阻的波长无关性的可重构光分插复用装置
WO2011011914A1 (zh) * 2009-07-28 2011-02-03 华为技术有限公司 无色光交换设备及方法
US8412042B2 (en) * 2010-04-21 2013-04-02 Cisco Technology, Inc. Innovative architecture for fully non blocking service aggregation without O-E-O conversion in a DWDM multiring interconnection node

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1427571A (zh) * 2001-12-18 2003-07-02 中国科学院半导体研究所 光上下路分插复用器件
US20040165813A1 (en) * 2003-02-24 2004-08-26 Heath Kouns Switch/variable optical attenuator (SVOA)
US20050265720A1 (en) * 2004-05-28 2005-12-01 Peiching Ling Wavelength division multiplexing add/drop system employing optical switches and interleavers
CN101136717A (zh) * 2006-08-28 2008-03-05 中兴通讯股份有限公司 实现单、多方向波长调度的可配置光分插复用装置
CN101227247A (zh) * 2007-10-30 2008-07-23 中兴通讯股份有限公司 实现灵活波长调度的可配置光分插复用装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2651059A1 (en) * 2012-04-10 2013-10-16 Alcatel Lucent Add device and drop device for an optical network element

Also Published As

Publication number Publication date
EP2453601A1 (en) 2012-05-16
US20120114332A1 (en) 2012-05-10
US8861968B2 (en) 2014-10-14
IN2012DN01119A (zh) 2015-04-10
KR20120042949A (ko) 2012-05-03
CN101610129B (zh) 2012-10-10
CN101610129A (zh) 2009-12-23
KR101533872B1 (ko) 2015-07-03
EP2453601A4 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2011003247A1 (zh) 实现完全无阻的波长无关性的可重构光分插复用装置
US7164861B2 (en) Node apparatus, optical wavelength division multiplexing network, and system switching method
US5712932A (en) Dynamically reconfigurable WDM optical communication systems with optical routing systems
US20120201536A1 (en) Method and System for Realizing Multi-Directional Reconfigurable Optical Add-Drop Multiplexing
US8903240B2 (en) Scalable reconfigurable optical add-drop multiplexer
US9252910B2 (en) Expandable multicast optical switch
JP5410620B2 (ja) 波長分割多重光ネットワークの要素
US9762348B2 (en) Reconfigurable optical add-drop multiplexer apparatus
CN101420286A (zh) 实现灵活波长调度的可配置光分插复用装置
WO2008028362A1 (fr) Dispositif à multiplexeur optique à insertion/extraction configurable pour la réalisation d'une distribution de longueur d'onde monodirectionnelle et polydirectionnelle
US8406625B2 (en) Apparatus and method for cross-connecting optical path in wavelength division multiplexing system
EP1443695A2 (en) An optical transmission apparatus and an optical wavelength multiplex network therewith
CN106605381B (zh) 光网络中的可重新配置的分插复用器
US7218805B2 (en) WDM ring network for flexible connections
KR100875828B1 (ko) 파장가변 레이저를 이용한 재구성 가능한 분기결합 다중화장치 및 방식
JP2006319857A (ja) 1心双方向波長多重伝送システム
US11233564B1 (en) Method and device for migrating data traffic from an existing optical WDM transmission system to a new optical WDM transmission system
WO2023161976A1 (ja) 光伝送システム、光伝送システムの伝送方法、及び通信装置
KR20000033945A (ko) 파장분할다중방식 광전송망에서의 동적 라우팅 기능을 갖는 파장분할다중 전송장치
JPS62230128A (ja) 光通信装置
JP2010166353A (ja) 映像信号伝送システムおよび多波長電光変換器
KR20080092897A (ko) 파장가변 레이저를 이용한 재구성 가능한 분기결합 다중화장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13383151

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009846998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1119/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127003464

Country of ref document: KR

Kind code of ref document: A