CN114853587B - 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法 - Google Patents

一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法 Download PDF

Info

Publication number
CN114853587B
CN114853587B CN202210440337.9A CN202210440337A CN114853587B CN 114853587 B CN114853587 B CN 114853587B CN 202210440337 A CN202210440337 A CN 202210440337A CN 114853587 B CN114853587 B CN 114853587B
Authority
CN
China
Prior art keywords
bio
formula
epoxy resin
bisphenol
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210440337.9A
Other languages
English (en)
Other versions
CN114853587A (zh
Inventor
郭凯
史娜
何军
李振江
陈恺
颜蕊
倪勇伟
于会
张智浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210440337.9A priority Critical patent/CN114853587B/zh
Publication of CN114853587A publication Critical patent/CN114853587A/zh
Application granted granted Critical
Publication of CN114853587B publication Critical patent/CN114853587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法,属于小分子催化领域。本发明采用香草醛、姜酮、对羟基苯甲醛和覆盆子酮为原料,通过简单的羟醛缩合制备得到生物基双酚,该双酚两端缩水甘油化得到单体。本发明还提供了由该生物基环氧树脂单体固化得到的生物基环氧树脂材料。本发明制备得到的生物基环氧树脂材料具有工艺简单,操作简便,易于实施等优点,并且基于催化剂为单组分,较易控制反应的质量,使得反应更加简便。

Description

一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法
技术领域
本发明属于小分子催化领域,具体涉及一种生物基双酚及其生物基环氧树脂单体的制备方法。
背景技术
生物基双酚是一种广泛应用的化学物质,可以做环氧树脂前体,也可以环氧化后与二氧化碳反应得到的双五元环状碳酸酯来制备非异氰酸酯聚氨酯;在[CN201911066391.6]这篇专利中,公开了由生物基愈创木酚与糠醛为原料制备二酚化合物,再与胺类化合物、多聚甲醛混合反应得到生物基苯并噁嗪单体。此外,随着全球变暖和石油资源的枯竭,生产一种环境友好的材料对于人类社会的持续发展是至关重要的。由生物基双酚所制备的材料,具有绿色环保、节能减排、原料可再生等优势。因此开发新的生物基双酚具有重要的意义,而天然生物双酚种类有限,因此通过简单生物单酚制备生物双酚是一种可行的方法。
生物基环氧树脂单体是通过生物基双酚缩水甘油化得到的,目前开发的生物基酚主要包括阿魏酸和芥子酸合成的生物基双酚,已用于制备可再生芳香族环氧树脂和环碳酸脂(Green Polym Chem.2018,15,221-251),甲基丙烯化木质素模型化合物,即愈创木酚和丁子香酚的甲基丙烯化形式(ACS Sustain.Chem.Eng. 2013,1,4,419-426),还有白藜芦醇(ACS Sustain.Chem.Eng.2020,8,37,14137-14149)。在[CN202011561258.0]这篇专利中,提出了含芴环及愈创木酚结构的生物基双酚,[CN202011152967.3]中提出了含呋喃环的生物基双酚。
香草醛,又名香兰素,是一种同时含有醛基与酚羟基的化合物,研究者们重点研究了香草醛在制备生物基多酚上的应用,包括(JAPS,2018,136,4)、(Eur. Polym.J,2014,67,527-538)、(Key Engineering Materials,2021,882,121-131)、(Eur.Polym.J.2020,140,9)。在我们之前的研究中,公开了有关香草醛和羟基苯乙酮通过羟醛缩合反应制备的含查尔酮结构的生物基双酚,具有很好的应用前景,其中羟基苯乙酮属于芳香甲基酮,并且用现有技术香草醛和羟基苯乙酮的方法无法合成此专利中的双酚。鉴于此,我们尝试将羟基苯乙酮改变为生物酮,目前已知的生物酮包括姜酮、覆盆子酮等等,它们都是天然存在的,且属于脂肪甲基酮。(Bioorganic&Medicinal Chemistry Letters 23(2013)3700- 3703)中报道了姜酮和醛的羟醛缩合反应,但是产率不佳,且催化为双组分,量不易控制,因此可以尝试单组分体系,即同时含有酸和碱的官能团,以此来简便双酚的合成路线。因此,我们选择了脯氨酸为催化剂,由于是单组分,催化剂的量较易控制。
发明内容
针对现有技术存在的不足,本发明的目的是获得产率较优的含香草醛的生物基双酚、及其含香草醛的生物基环氧树脂单体的制备方法,可以从生物来源的香草醛和姜酮出发,扩展到对羟基苯甲醛和覆盆子酮,它们不仅廉价易得,也可降低其潜在毒性,并且该催化剂为单组分,对于简便合成路线具有重大意义。
本发明提供一种如式(I)所示的生物基双酚,结构式如下
其中R1,R2为氢或甲氧基,在式(I)所示的生物基双酚中,R1,R2可以是相同的也是可以不同的。
本发明提供一种较高产率的如式(I)所示的生物基双酚的制备方法,如式 (III)所示的醛与如式(IV)所示的脂肪酮在催化剂的作用下发生缩合反应得到,所述的催化剂是脯氨酸;
其中R1,R2为氢或甲氧基。
优选所述的缩合反应在溶剂条件下发生,所述的溶剂为四氢呋喃、乙醇、乙腈;如式(III)所示的醛与如式(IV)所示的脂肪酮摩尔比为1:1-1.6:1.5;如式 (IV)所示的脂肪酮与催化剂的摩尔比100:1-10:1。
进一步优选如式(III)所示的醛与如式(IV)所示的脂肪酮摩尔比为1.6:1.5,如式(IV)所示的脂肪酮与催化剂的摩尔比10:1。
本发明提供一种如式(II)所示的生物基环氧树脂单体,结构式为
其中R1,R2为氢或甲氧基,R1,R2可相同可不相同
式(I)所示的生物基双酚与环氧氯丙烷在碱的催化下反应生成如式(II)所示的生物基环氧树脂单体。
优选所述的碱为四丁基溴化铵、碳酸钾、三乙胺或者二甲氨基吡啶。
优选式(I)所示的生物基双酚与环氧氯丙烷的摩尔比为1:20-1:30。
进一步优选式(I)所示的生物基双酚与环氧氯丙烷的摩尔比为1:26。
本发明提供一种生物基环氧树脂的制备方法:
式(II)所示的生物基环氧树脂单体与胺混合并加热固化。式(II)所示的生物基环氧树脂单体与胺的摩尔比为1:0.3-1:1。
优选所述的式(II)所示的生物基环氧树脂单体与胺摩尔比为1:0.5。
本发明从香草醛、对羟基苯甲醛、覆盆子酮、姜酮四种原料出发,以脯氨酸为催化剂制备生物基双酚的工艺路线,筛选了三种溶剂(四氢呋喃、乙腈、乙醇)、不同催化剂负载量(10%、5%、1%)以及温度(60℃、70℃、 80℃),通过缩合反应制备含有上述物质的生物基双酚,进而得到合成生物基双酚产率较高的温度、溶剂、催化剂负载量的体系。随后将得到的生物基双酚与环氧化物反应得到生物基环氧树脂单体,最后该生物基环氧树脂单体与二胺反应得到生物基环氧树脂。
有益效果
(1)本发明的原料香草醛、对羟基苯甲醛、姜酮、覆盆子酮均为生物来源,廉价易得,通过简单的缩合反应就得到具有式I结构的生物基双酚。
(2)通过对具有式I结构的生物基双酚进行环氧化反应可以制备具有式II 结构的环氧树脂单体,具有α,β不饱和酮结构。
(3)通过对具有式II结构的生物基环氧树脂单体与长链脂肪胺交联固化,得到生物基环氧树脂材料。
(4)该方法路线简单,只需通过一步反应即可得到生物基双酚,再一步可以得到生物基环氧树脂单体,产率高。
(5)具有香草醛结构的生物基双酚与环氧树脂单体毒性低,生物兼容性好。
(6)该路线催化剂简单且易于控制量,在80℃时催化效果较好。
综上所述,本发明相比现有催化体系,具有绿色无毒、生物兼容性好、合成工艺简单、催化剂方便易得和产率高等特点。
附图说明
结合附图来详细说明本发明的实施例,其中
图1:实施例1生物基双酚香草醛-姜酮的生物基双酚的1H NMR图
图2:实施例1生物基双酚香草醛-姜酮的生物基双酚的13C NMR图
图3:实施例12生物基双酚香草醛-覆盆子酮的生物基双酚的1H NMR图
图4:实施例12生物基双酚香草醛-覆盆子酮的生物基双酚的13C NMR图
图5:实施例13生物基双酚对羟基苯甲醛-姜酮的生物基双酚的1H NMR 图
图6:实施例13生物基双酚对羟基苯甲醛-姜酮的生物基双酚的13C NMR 图
图7:实施例14生物基双环氧香草醛-姜酮的1H NMR图
图8:实施例14生物基双环氧香草醛-姜酮的13C NMR图
图9:实施例14中环氧树脂单体的环氧值测定1H NMR图
图10:生物基双酚香草醛-姜酮的生物基环氧树脂的FTIR图
图11:生物基双酚香草醛-姜酮的生物基环氧树脂的DSC曲线
图12:生物基双酚香草醛-姜酮的生物基环氧树脂的TGA曲线
具体实施方式
通过下列实施例可以进一步说明本发明,实施例是为了说明而非限制本发明的。本领域的任何普通技术人员都能够理解这些实施例不以任何方式限制本发明,可以对其做适当的修改和数据变换而不违背本发明的实质和偏离本发明的范围。
实施例中所涉及的核磁共振氢谱采用布鲁克公司(Bruker)的Bruker Ascend TM-400型核磁共振氢谱仪测定,所使用氘代试剂为氘代氯仿(CDCl3) 和氘代二甲基亚砜(DMSO-d6)。
下述实施例中所用的原料均商业可得。
本发明中的生物基双酚制备方法为:
脯氨酸催化:在氩气保护下,将生物来源的醛和酮加入到THF中,并搅拌混合直至溶解,随后加入脯氨酸。混匀后加热回流4h,直到醛的量不再变化,即得生物基双酚。
反应通式为:
其中R1,R2为氢或甲氧基。
本发明中含香草醛的生物基环氧树脂单体,其结构式为
本发明中含香草醛的生物基环氧树脂单体的制备方法为:
在室温下,将含香草醛的生物基双酚溶于环氧氯丙烷中,加入四丁基溴化铵作为催化剂,在80℃下反应2h,降低至室温,缓慢滴加氢氧化钠(40%wt.) 水溶液,在室温下搅拌3h,用乙酸乙酯萃取,饱和食盐水洗,干燥,旋干,得到黄色粉末,即含香草醛的生物基环氧树脂单体。
反应方程式为:
在以下实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法,下面实施例中所用的材料、试剂、装置、仪器、设备等,如无特殊说明,均可从商业途径获得。
实施例1:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由黄色经红色变为红黑色。用EA:PE=1:1进行点板,发现较浓产物点,得到生物基双酚香草醛-姜酮,分离产率66%。1H NMR(400 MHz,DMSO-d6)δ9.74(s,1H),7.53(d,J=16.2Hz,2H),7.42–7.34(m,2H),7.29(d,J=2.0Hz,2H),7.13(dd,J=8.2,1.9Hz,2H),6.91(d,J=8.1Hz,1H),3.82(d,J=5.3Hz,9H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40, 144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例2:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.075(5%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由橙色变为红色。用EA:PE=1:1进行点板,发现较浓产物点,得到生物基双酚香草醛-姜酮,分离产率49%。1HNMR(400MHz, DMSO-d6)δ9.76(s,1H),7.53(d,J=16.2Hz,1H),7.43–7.36(m,2H),7.29(d,J=2.0Hz,1H),7.13(dd,J=8.2,2.0Hz,1H),6.94(d,J=8.0Hz,1H),3.82(d,J=9.2 Hz,6H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59, 142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例3:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.0017g(1%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由淡黄色变为红色。用EA:PE=1:1进行点板,发现产物点,得到生物基双酚香草醛-姜酮,分离产率9%。1HNMR(400MHz,DMSO-d6)δ 9.77(s,0H),7.44–7.37(m,1H),6.96(d,J=8.0Hz,0H),6.75(d,J=2.0Hz,0H),6.65(d,J=7.9Hz,0H),3.84(s,1H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例4:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙腈中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由黄色经红色变为深红色。用EA:PE=1:1进行点板,发现产物点,得到生物基双酚香草醛-姜酮,分离产率29%。1H NMR(400MHz,DMSO- d6)δ9.76(s,1H),7.52(d,J=16.2Hz,0H),7.43–7.36(m,2H),7.29(d,J=2.0Hz,0H),7.12(dd,J=8.2,1.9Hz,0H),6.94(d,J=8.0Hz,1H),3.82(d,J=9.5Hz,4H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例5:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙腈中混合直至溶解。随后加入0.0086g(5%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由粉色变为红色。用EA:PE=1:1进行点板,发现产物点,得到生物基双酚香草醛-姜酮,分离产率6%。1HNMR(400MHz,DMSO-d6)δ9.76(s,1H),7.43–7.36(m,2H),6.95(d,J=8.0Hz,1H),6.75(d,J=2.0Hz,1H),6.64 (d,J=8.0Hz,1H),6.56(dd,J=8.0,2.0Hz,1H),3.83(s,3H).13C NMR(101MHz, DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例6:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙腈中混合直至溶解。随后加入0.0017g(1%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由粉色变为红色。点板未发现生物基双酚香草醛-姜酮产物,打核磁结果显示相同。1H NMR(400MHz,DMSO-d6)δ9.77(s,1H),7.44–7.37 (m,2H),6.96(d,J=8.0Hz,1H),6.75(d,J=2.0Hz,1H),6.65(d,J=7.9Hz,1H),6.56(dd,J=8.0,2.0Hz,1H),3.84(s,3H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
本实施例中催化剂采用的量为1%,实验结果是催化效果不佳,最终没有得到产物。
实施例7:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙醇中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由淡黄色到酒红色。用EA:PE=1:1进行点板,发现较浓产物点,得到生物基双酚香草醛-姜酮,分离产率42%。1H NMR(400MHz,DMSO- d6)δ9.75(s,1H),7.52(d,J=16.2Hz,1H),7.43–7.34(m,2H),7.29(d,J=2.0Hz,1H),7.13(dd,J=8.2,1.9Hz,1H),6.93(d,J=8.0Hz,1H),3.82(d,J=7.9Hz,6H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例8:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙醇中混合直至溶解。随后加入0.0086g(5%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由淡黄色变为红色。用EA:PE=1:1进行点板,发现产物点,得到生物基双酚香草醛-姜酮,分离产率21%。1HNMR(400MHz,DMSO-d6)δ7.52(d,J=16.1Hz,1H),7.44–7.35(m,9H),7.29(d,J=1.9Hz,1H),7.13(dd,J= 8.3,2.0Hz,1H),6.94(d,J=8.0Hz,4H),3.82(d,J=9.2Hz,16H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70, 29.45.
实施例9:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL乙醇中混合直至溶解。随后加入0.0017g(1%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由淡黄色变为橙色。点板未发现生物基双酚香草醛-姜酮产物,打核磁结果显示相同。1H NMR(400MHz,DMSO-d6)δ9.76(s,1H),7.45–7.36 (m,2H),6.95(d,J=8.1Hz,1H),6.75(d,J=2.0Hz,1H),6.64(d,J=7.9Hz,1H),3.84(s,3H).13C NMR(101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40, 144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例10:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到60℃回流4h。滴加完成后,反应液颜色由黄色变为红色。点板发现产物点,得到生物基双酚香草醛-姜酮,分离产率为64%。1H NMR(400MHz,DMSO-d6)δ9.74(s,1H), 7.53(d,J=16.2Hz,2H),7.42–7.34(m,3H),7.29(d,J=1.9Hz,2H),7.13(dd,J=8.2,1.9Hz,2H),6.91(dd,J=8.0,1.6Hz,1H),3.82(d,J=5.1Hz,11H).13CNMR (101MHz,DMSO-d6)δ199.21,149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56, 41.70,29.45.
实施例11:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到80℃回流4h。滴加完成后,反应液颜色由黄色变为红色。得到生物基双酚香草醛-姜酮,分离产率为70%。1H NMR(400MHz,DMSO-d6)δ9.73(s,1H),7.53(d,J=16.1Hz,2H), 7.41–7.34(m,2H),7.29(d,J=2.0Hz,2H),7.13(dd,J=8.2,1.9Hz,3H),6.91(d,J=8.1Hz,1H),3.82(d,J=4.9Hz,10H).13C NMR(101MHz,DMSO-d6)δ199.21, 149.42,147.95,147.40,144.59,142.94,132.12,125.91,123.39(d,J=18.4Hz),120.36,115.62,115.26,112.60,111.28,55.66,55.56,41.70,29.45.
实施例12:
取10mL耐压管干燥并充入氩气保护,室温条件下将香草醛(0.243g,1.6 mmol,1.07eq.)、覆盆子酮(0.246g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到70℃回流4h。滴加完成后,反应液颜色由黄色经红色变为深红色。得到生物基双酚香草醛-覆盆子酮,分离产率为86%。1H NMR(400MHz,DMSO)δ9.77,9.64,9.15,7.54, 7.50,7.29,7.13,7.11,7.04,7.01,6.80,6.78,6.76,6.72,6.66,6.64,4.21,4.19,3.81,3.57,2.91,2.75,1.23.13C NMR(101MHz,DMSO)δ200.30,199.16,155.43,149.37, 147.94,142.92,131.39,128.51,125.94,123.49,123.27,115.61,115.04,111.31,69.12,55.67,41.70,33.95,28.96,28.07,22.54.
实施例13:
取10mL耐压管干燥并充入氩气保护,室温条件下将对羟基苯甲醛(0.195 g,1.6mmol,1.07eq.)、姜酮(0.291g,1.5mmol,1.00eq.)加入到1mL四氢呋喃中混合直至溶解。随后加入0.017g(10%)脯氨酸,混匀后加热到80℃回流4h。滴加完成后,反应液颜色由棕色经橙红色变为深红色。得到生物基双酚对羟基苯甲醛-姜酮,分离产率为50%。1H NMR(400MHz,DMSO)δ7.55,7.53,7.51, 6.81,6.79,6.71,6.67,6.64,6.62,6.60,3.73,3.37,2.94,2.93,2.92,2.91,2.91,2.77,2.75,2.73,1.23.13C NMR(101MHz,DMSO)δ199.67,159.93,147.40,144.60, 142.55,132.12,130.46,125.43,124.02,119.95,115.87,114.39,112.62,55.56,41.73,29.44,21.59.
实施例14:
将反应瓶充分干燥,在惰气氛围下加入上述用最优方法合成的双酚1.62g 环氧氯丙烷12.71mL和四丁基溴化按0.156g,此时溶液呈现红黑色,在80℃下搅拌3h后变为黄色,温度降至室温,于冰浴下加入氢氧化钠溶液(1.44g溶于2.16mL水中)搅拌3h,反应完全后加入乙酸乙酯,以饱和食盐水洗,萃取至水相无色为止,得环氧树脂单体干燥,减压除去溶剂。1HNMR(400MHz, DMSO-d6)δ9.73(s,1H),7.53(d,J=16.1Hz,2H),7.41–7.34(m,2H),7.29(d,J=2.0Hz,2H),7.13(dd,J=8.2,1.9Hz,3H),6.91(d,J=8.1Hz,1H),3.82(d,J= 4.9Hz,10H).13C NMR(101MHz,Chloroform-d)δ199.48,150.38,149.79,149.68, 146.44,142.78,135.30,128.26,124.69,122.88,120.36,114.57,113.42,112.53,110.38,70.57,70.10,56.07(d,J=2.5Hz),50.41,50.17,45.11,44.97,42.56,30.03.
1H NMR内标法测定生物基环氧树脂单体的环氧值。称取环氧树脂单体 X g(X=0.0125g),加入内标四氯乙烷Y g(Y=0.0213g),加入氘代氯仿使其溶解。通过积分,以环氧特征峰的积分为1,四氯乙烷的积分为Z(4.58),则X 克生物基环氧树脂单体的环氧值可以通过以下公式测得:
测出0.0125g生物基环氧树脂单体中含有0.055mmol的环氧,因此0.227g生物基环氧树脂单体中含有1.0mmol的环氧。此生物基环氧树脂单体可以做树脂,不仅容易制备而且可以作为石油基的替代品。该方法采用可再生生物质原料制备生物基环氧树脂,能够缓解化石能源危机和减轻环境污染,符合社会可持续发展的需求。
根据购买的信息,1g二聚胺Priamine 1074的胺值中含有3.7mmol的胺,因此换算得到0.27g二聚胺Priamine 1074含有1mmol的胺。
实施例15:
将0.44g生物基环氧树脂单体在100℃抽真空搅拌脱气0.5h,随后加入 0.27g二聚胺Priamine 1074,此时(环氧:胺=1:0.5),并在100℃继续抽真空直至混匀成均相,立即趁热倒入模具中,在120℃烘箱中加热固化24h,待模具冷却至室温,取出含香草醛的生物基环氧树脂材料(1:0.5)。结构由红外表征。如附图10。附图10可以确定是环氧树脂。1653cm-1是树脂中的不饱和羰基峰,另外位于900cm-1的环氧峰消失了,证明环氧反应完全。附图11是香草醛-姜酮环氧树脂的DSC谱图,从图中可以看出玻璃态转变温度为60℃。附图12是香草醛-姜酮环氧树脂的热重分析图,其从350℃开始分解,在500℃附近几乎完全分解,最终残碳率为10%。

Claims (10)

1.一种如式(I)所示的生物基双酚的制备方法,其特征在于,如式(III)所示的醛与如式(IV)所示的脂肪酮在催化剂的作用下发生缩合反应得到,所述的催化剂是脯氨酸;
其中R1,R2为氢或甲氧基。
2.根据权利要求1所述的制备方法,其特征在于,所述的缩合反应在溶剂条件下发生,所述的溶剂为四氢呋喃、乙醇、乙腈;如式(III)所示的醛与如式(IV)所示的脂肪酮摩尔比为1:1-1.6:1.5;如式(IV)所示的脂肪酮与催化剂的摩尔比100:1-10:1。
3.根据权利要求1所述的制备方法,其特征在于,如式(III)所示的醛与如式(IV)所示的脂肪酮摩尔比为1.6:1.5,如式(IV)所示的脂肪酮与催化剂的摩尔比10:1。
4.一种如式(II)所示的生物基环氧树脂单体的制备方法,其特征在于,
其中R1,R2为氢或甲氧基,R1,R2可相同可不相同
其步骤如下:
(1)如式(III)所示的醛与如式(IV)所示的脂肪酮在催化剂的作用下发生缩合反应得到,所述的催化剂是脯氨酸;
其中R1,R2为氢或甲氧基;
(2)式(I)所示的生物基双酚与环氧氯丙烷在碱的催化下反应生成如式(II)所示的生物基环氧树脂单体。
5.根据权利要求4所述的制备方法,其特征在于,所述的碱为四丁基溴化铵、碳酸钾、三乙胺或者二甲氨基吡啶。
6.根据权利要求4所述的制备方法,其特征在于,式(I)所示的生物基双酚与环氧氯丙烷的摩尔比为1∶20-1∶30。
7.根据权利要求6所述的制备方法,其特征在于,式(I)所示的生物基双酚与环氧氯丙烷的摩尔比为1∶26。
8.一种生物基环氧树脂的制备方法,其特征在于,其步骤如下:
(1)如式(III)所示的醛与如式(IV)所示的脂肪酮在催化剂的作用下发生缩合反应得到,所述的催化剂是脯氨酸;
其中R1,R2为氢或甲氧基;
(2)式(I)所示的生物基双酚与环氧氯丙烷在碱的催化下反应生成如式(II)所示的生物基环氧树脂单体
其中,式(II)所示的生物基环氧树脂单体
其中R1,R2为氢或甲氧基,R1,R2可相同可不相同
(3)式(II)所示的生物基环氧树脂单体与胺混合并加热固化。
9.根据权利要求8所述的制备方法,其特征在于,所述的式(II)所示的生物基环氧树脂单体与胺摩尔比为1∶0.3-1∶1。
10.根据权利要求8所述的制备方法,其特征在于,所述的式(II)所示的生物基环氧树脂单体与胺摩尔比为1∶0.5。
CN202210440337.9A 2022-04-25 2022-04-25 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法 Active CN114853587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210440337.9A CN114853587B (zh) 2022-04-25 2022-04-25 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210440337.9A CN114853587B (zh) 2022-04-25 2022-04-25 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法

Publications (2)

Publication Number Publication Date
CN114853587A CN114853587A (zh) 2022-08-05
CN114853587B true CN114853587B (zh) 2024-03-12

Family

ID=82632899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210440337.9A Active CN114853587B (zh) 2022-04-25 2022-04-25 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法

Country Status (1)

Country Link
CN (1) CN114853587B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810716A (en) * 1986-04-11 1989-03-07 Warner-Lambert Company Diarylalkanoids having activity as lipoxygenase inhibitors
US5177259A (en) * 1986-04-11 1993-01-05 Warner-Lambert Company Diarylalkanoids having activity as lipoxygenase inhibitors
CN113816844A (zh) * 2021-10-12 2021-12-21 南京工业大学 一种生物基环氧树脂单体及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150216867A1 (en) * 2012-09-25 2015-08-06 Novartis Ag Compounds for use in gastric complication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810716A (en) * 1986-04-11 1989-03-07 Warner-Lambert Company Diarylalkanoids having activity as lipoxygenase inhibitors
US5177259A (en) * 1986-04-11 1993-01-05 Warner-Lambert Company Diarylalkanoids having activity as lipoxygenase inhibitors
CN113816844A (zh) * 2021-10-12 2021-12-21 南京工业大学 一种生物基环氧树脂单体及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Prashanth K. Amancha等.《Diels-Alder reactions of acyclic α-cyano α,β-alkenones: a new approach to highly substituted cyclohexene system》.《Tetrahedron》.2010,第66卷(第4期),第871-877页. *
Shuyan Zheng等.《Platinum(IV)-Catalyzed Synthesis of Unsymmetrical Polysubstituted Benzenes via Intramolecular Cycloaromatization Reaction》.《Advanced Synthesis & Catalysis》.2015,第357卷(第13期),第2803-2808页. *

Also Published As

Publication number Publication date
CN114853587A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Qin et al. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties
WO2016172353A1 (en) Epoxy resin derived from vanillin and thermosets therefrom
US10604468B2 (en) Application of ionic liquid in propylene glycol ether synthesis and method for synthesizing propylene glycol ether
CN112409298B (zh) 一种基于对羟基肉桂酸的环氧树脂单体及其制备方法和应用
CN113816844A (zh) 一种生物基环氧树脂单体及其制备方法和应用
CN111825829B (zh) 一种含三嗪环结构的生物基环氧树脂及其制备方法
CN116217423A (zh) 一种生物基双酚和生物基环氧树脂单体的制备方法和应用
CN111138423B (zh) 苯并噁嗪树脂的单体、苯并噁嗪树脂及其制备方法
CN111057050B (zh) 生物基苯并噁嗪树脂的单体、苯并噁嗪树脂及其制备方法
CN115197173A (zh) 一种生物基环氧树脂及其制备方法
CN114853587B (zh) 一种生物基双酚、生物基环氧树脂单体及其树脂的制备方法
Seuyep Ntoukam et al. Postpolymerization modification of reactive polymers derived from vinylcyclopropane. III. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides
CN116178195A (zh) 一种生物基双酚的制备方法、生物基环氧树脂及其制备方法和应用
Shimokawaji et al. Synthesis of partially bio‐based triepoxides from naturally occurring myo‐inositol and their polyadditions
JP4431790B2 (ja) レゾルシノールノボラック誘導体
CN112812079A (zh) 六氟异丙基缩水甘油醚的合成方法
CN114409896B (zh) 一种非异氰酸酯聚氨酯的制备方法
CN113354557B (zh) 一种3-苯基-2-丙烯-1-酮o-正丁基肟的制备方法及应用
CN111303088B (zh) 一种双呋喃类化合物的合成方法
CN110627622A (zh) 一种高纯度四甲基双酚a的制备方法
CN114195803B (zh) 一种基于香豆素生物基双官能苯并噁嗪树脂及其制备方法
CN109053459A (zh) 一种四正丙基溴化铵的制备方法
CN111004125B (zh) 一种缩醛或缩酮化合物的制备方法
JP6824699B2 (ja) 新規ベンゾオキサジン化合物
CN114605355A (zh) 一种二乙烯基芳烃二环氧化物及其固化产物的制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant